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Abstract

This paper defines time-series numerical association rule mining in smart-agriculture
applications from an explainable-AI perspective. Two novel explainable methods are
presented, along with a newly developed algorithm for time-series numerical association
rule mining. Unlike previous approaches, such as fixed interval time-series numerical
association, the proposed methods offer enhanced interpretability and an improved data
science pipeline by incorporating explainability directly into the software library. The newly
developed xNiaARMTS methods are then evaluated through a series of experiments, using
real datasets produced from sensors in a smart-agriculture domain. The results obtained
using explainable methods within numerical association rule mining in smart-agriculture
applications are very positive.

Keywords: association rule mining; explainable artificial intelligence (XAI); numerical
association rule mining; optimization algorithms

MSC: 68T05

1. Introduction
Numerical association rule mining methods have recently attracted the interest of re-

searchers due to their easy applicability and good performance in many different prediction
problems [1]. These methods, which are based particularly on stochastic population-based
nature-inspired algorithms, show efficiency when searching for association rules in large
datasets, mainly due to the stochastic nature of population-based algorithms, which have
several advantages over the deterministic methods, e.g., Apriori methods, which search the
whole search space in a deterministic way [2–4]. Additionally, a very positive point of these
methods is that they can handle both numerical and categorical attributes concurrently.
Thus, they do not involve any specific discretization steps in the data preprocessing stages.
The importance of this research area has already been covered in several review papers
published recently [5,6]. The main issue with evolving numerical association rule mining
lies mainly in the number of identified (mined) association rules, which can go beyond
thousands of rules, making them non-explainable AI approaches in general.
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Canonical numerical association rule mining using population-based, nature-inspired
algorithms, is often used for the mining of association rules in classical datasets [7–9] and
different applications. Recently, new methods have been proposed, also intended for the
mining of time-series datasets [10]. Time-series association rule mining also has great
potential in areas where we deal with time data, especially when the data are acquired from
Internet of Things (IoT) sensors. One of these areas is smart agriculture, where agricultural
processes are monitored increasingly with IoT sensors. A great potential also comes with the
introduction of Industry 5.0, along with the corresponding branches, e.g., Agriculture 5.0.
On the other hand, Explainable Artificial Intelligence (XAI) [11] is an established field with a
vibrant community that has developed a variety of very successful approaches to explain
and interpret the predictions of complex machine learning models [12]. The importance of
the visualization and explanation of rules becomes even greater in time-series numerical
mining. One of the first steps in this direction is represented by the approach proposed
in [13], which enhances the interpretability of complex association rules derived from time
series, aligning with explainable AI principles. The method was tested using agricultural
time-series data and demonstrates promising potential for smart-agriculture applications.

In this paper, we go a step further by introducing two novel post hoc explainable
methods, i.e., xNiaARMTS, which are capable of either graphical or non-graphical ex-
plainable data analysis. The first proposed explainable method enables users to obtain
deeper insights into the behavior of attributes arising in the antecedent and consequent of
time-series association rules. On the other hand, the second explainable method developed
here, where the stability of time-sequences is estimated, is devoted to statistical stationary
analysis. Graphical explainable data analysis is applied to the analysis of trends, seasonality,
and cycle behavior of the time series, while the non-graphical method highlights the same
data by producing summary statistics and analysis [14].

The main contributions of this work are the following:

• Contribution 1: A new method for time-series numerical association rule mining is
developed, called segmented interval time-series numerical association rule mining.

• Contribution 2: Two additional novel explainable methods (xNiaARMTS) are pro-
posed for the analysis of time-series association rules.

• Contribution 3: Nature-inspired Association Rule Mining for Time Series (NiaARMTS)
software is developed and published.

• Contribution 4: Extensive experimental work is conducted in order to show the
advantages and disadvantages of the proposed explainable methods in a smart-
agriculture application.

The remainder of the paper is structured as follows: Section 2 deals with the materials
and methods needed to understand the subjects that follow. In Section 3, the proposed
explainable methods for mined time-series association rules xNiaARMTS are described
in detail. The experimental work and analysis of the results are described in Section 4.
The paper is closed in Section 5, where the performed work is summarized and potential
directions for future work are outlined.

2. Materials and Methods
2.1. Numerical Association Rule Mining

The classical Apriori algorithm for the mining of transaction databases is designed
to work with categorical attributes only. These attributes need to be discretized if the
numerical attributes are to be processed using this algorithm. However, when Numerical
Association Rule Mining (NARM) is applied, this phase can be avoided. The algorithms for
NARM typically work with the attributes represented as either numerical intervals or sets
of categorical values.
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NARM is defined formally as follows: Let us assume that a set of features
(I = {A(.)

1 , . . . , A(.)
M} of M) called items and a set of transactions (TD = {t1, . . . , tN})

called the database are given, where each feature (A(.)
i ) is of a specific type ((.) =

{(Cat), (Num)}) (either categorical or numerical attribute type) and each transaction in TD
has a unique transaction ID and contains a subset of items in I. Then, the association rule is
an implication:

X =⇒ Y, (1)

where it holds that X ⊆ I, Y ⊆ I, and X ∩ Y = ∅. The following measures have been
devised for assessing the quality of the association rule:

supp(X =⇒ Y) =
number of transactions containing X and Y

N
, (2)

and

conf (X =⇒ Y) =
supp(X ∪ Y)

supp(X)
, (3)

where N denotes the number of transactions and M is the number of features in the
transaction database (|A(.)|).

During the mining process, only association rules that satisfy the following relations
are mined:

supp(X =⇒ Y) ≥ Smin and conf (X =⇒ Y) ≥ Cmin,

where the Smin variable denotes minimum support and the Cmin variable represents the
minimum confidence. Actually, these variables determine that only association rules with
support and confidence higher than the corresponding threshold values are to be taken
into consideration, respectively.

2.2. Segmented Interval Time-Series Numerical Association Rule Mining

Usually, we are not interested in all time series but only a part of them. A partial
sequence of a time series is also called a segment derived from the time-series matrix (Z),
defined as follows:

Z =



ts(1)1 , . . . ts(1)i , . . . , ts(1)j . . . , ts(1)T ,

. . . . . . . . . . . . . . . . . . . . .

ts(k)1 , . . . ts(k)ts
, . . . , ts(k)j , . . . ts(k)T

. . . . . . . . . . . . . . . . . . . . .

ts(l)1 , . . . ts(l)i , . . . , ts(l)te
, . . . ts(l)T ,

. . . . . . . . . . . . . . . . . . . . .

ts(N)
1 , . . . ts(N)

i , . . . , ts(N)
j . . . ts(N)

T .


, (4)

where the t ∈ [1, T] parameter denotes the time-series counter and T is the length of each
episode (also a row of the time-series matrix), while each element of the time series denotes
a set of features:

ts = {A1, A2, . . . , AM}, (5)

where M is the total number of features, whose attributes are typically obtained from
various sensors. The segment is determined with its starting point (ts—at the time when
element ts(k)i has arisen) and ending point (te—at the time when element ts(l)j has arisen).
In general, segment S represents the part of time series Z within the time interval of [ts, te];
in other words,

S =
(
tsts , tsts+1 , . . . , tste

)
. (6)
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Let us mention that segment S is denoted with a border line in Equation (4).

3. Explainability in Rule-Based Time-Series Mining
Explainable artificial intelligence is a growing field that seeks to make the decision-

making processes of complex models more transparent and interpretable. In the con-
text of time-series rule mining using NiaARMTS, we focus on post hoc explainability,
i.e., analyzing and understanding the logic and behavior of discovered rules after they are
mined. In line with this, two methods (xNiaARMTS) are developed.

Each Time-series Association Rule (TAR) in NiaARMTS represents a temporal implication:

[ts, te] : A(.)
1 ∧ A(.)

2 ∧ · · · ∧ A(.)
m︸ ︷︷ ︸

X(also LHS)

=⇒ C(.)
1 ∧ C(.)

2 ∧ · · · ∧ C(.)
n︸ ︷︷ ︸

Y(also RHS)

,

where the interval of [ts, te] determines the time interval valid for the mined rule and
A(.)

i and C(.)
j are feature-based constraints on either numerical (Num) or categorical (Cat)

attributes (denoted by (.)) belonging to either the antecedent (i.e., left-hand side (LHS)) or
consequent (i.e., right-hand side (RHS)) of the definite TAR.

Example 1. Let us suppose a time series with the following features of numerical attributes (Let
us emphasize that each element on the LHS or RHS is not a simple discrete item but a constrained
feature derived from a time-series segment):

I = {’temp’, ’hum’, ’moist’, ’light’},

where all the attributes of the features are obtained from the corresponding agriculture sensors
for temperature, humidity, moisture, and light during the period between 10 September 2024 and
11 September 2024 from 19:59:29 until 06:18:13. Then, the potential rule mined by NiaARMTS is
expressed as follows:

[(10 September 2024, 19:59:29), (11 September 2024, 06:18:13)] :
′temp′[24.2925, 26.2961] =⇒ ′moist′[2015.6761, 2377.9884].

Let us suppose a moisture sensor that returns the resistance between the sensor probes in the
interval of [0, 5000]. If the soil is too wet, the resistance is less than 2500. If the soil is too dry,
the resistance is higher than 3750. The ideal soil moisture is obtained if the resistance is between
2500 and 3750. In our case, the soil moisture was between 2015.6761 and 2377.9884, which means
that the soil was too dry. The conclusion of the observed TAR is that if the temperature is high
(e.g., between 24.3 ◦C and 26.3 ◦C), the soil becomes wet.

To help users understand why a rule holds, how reliable it is, and what makes it
distinctive, we introduce two explainable methods:

• Attribute criticality analysis;
• Rule stability assessment.

Before we take a closer look at these methods, the metrics for estimating the quality of
the mined TAR used by the method are illustrated in more detail.

3.1. Explainability Metrics for xNiaARMTS

The explainable methods mentioned above also need the metrics necessary for estimat-
ing the quality of the mined TARs. In this study, we introduce the following five metrics:
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• Coverage;
• Inclusion;
• Amplitude;
• Inverse frequency;
• Generalized constraint tightness.

While the first two metrics are suitable for estimating the mixed types of features arising
in TAR, the third is dedicated to estimating the numerical attributes, and the last one
is for estimating the discrete attributes. The explainability metrics mentioned above are
discussed in more detail in the remainder of the paper.

3.1.1. Coverage Metric

Coverage (also called cover or LHS support) is the support of the left-hand side of
the TAR, i.e., supp(X). It represents a measure of how often the rule is applied during the
time-series segment. However, the calculation of the metric is different for categorical and
numerical attributes. The coverage metric of a specific attribute (A(.)

i ) for i = 1, . . . , M is
defined simply as a ratio between the sum of the attribute and the time-series element of
segment ts ∈ S and the length of time-series segment |S|:

cover(A(.)
i ) =

1
|S|

∑
∀ts(.)∈S

match(A(.)
i , ts), (7)

In other words, the function expressed as match(A(.)
i , a(.)) is defined as follows for

∀a(.) ∈ ts:

match(A(.)
i , ts) =

 1,

{
if I.a(Cat) = I.A(Cat)

i ∧ a(Cat) = A(Cat)
i ,

if I.a(Num) = I.A(Num)
i ∧ a(Num) ∈ A(Num)

i [Lb, Ub],
0, otherwise,

(8)

The function returns a value of one in cases in which the categorical attribute from the
definite time series (a(Cat) ∈ ts) matches the categorical attribute from the TAR (A(Cat)

i ∈
X), or the numerical value of the attribute (a(Num) ∈ ts) is drawn from the interval of
[Lb, Ub], as proposed by the corresponding antecedent of the TAR. Thus, the equivalence
relation (I.a(.) = I.A(.)

i ) ensures that the attribute relations are determined based on the
same features.

3.1.2. Inclusion Metric

An inclusion metric estimates the number of distinct features used in the TAR (an-
tecedent and consequent), normalized by the total number of features in the time-series seg-
ment determined by the interval of [ts, te]. Mathematically, the metric is defined as follows:

incl(A(.)
i , [ts, te] : X =⇒ Y) =

|X|+ |Y|
M

, if A(.)
i ∈ X ∪ Y, (9)

where |X| and |Y| denote the number of features in the antecedent and the number of
features in the consequent, respectively, and M is the total number of features within the
time-series segment. Indeed, the metric estimates how many attributes emerge in the
specific TAR. The higher the value of the metric, the more interesting the rule can be. As is
evident from Equation (9), the metric is defined on the TAR level, not on the attribute level.
Indeed, the metric is defined only for TARs that include the particular attribute.
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3.1.3. Amplitude Metric

A measure of constraint tightness for a definite numerical feature (A(Num)
i ) is defined as

follows for ∀A(.)
i ∈ X ∪ Y:

ampl(A(num)
i ) = 1 −

∑
∀A(Num)i∈X∪Y

A(Num)
i .Ub − A(Num)

i .Lb
max∀ts∈S ts.a(Num) − min∀ts∈S ts.a(Num)

, (10)

where the sum of ratios is calculated between the width of the numeric attribute interval
(A(Num)

i [Lb, Ub]) and the difference between the maximum and minimum values of the
corresponding numeric attribute (ts.a(Num)) found during the observed time-series segment
in the interval of [ts, te]. The sum converges to a value of 1, which means, theoretically,
that the total interval of observed values is covered by only one TAR. This is in contrast
with NARM, where we want to find intervals of numerical attributes that highlight the
relationships between attributes and that are the most crucial. Smaller amplitudes suggest
more precise, selective conditions.

3.1.4. Inverse Frequency Metric

Let us emphasize that the amplitude metric is defined for numerical features only.
Therefore, the inverse frequency measure is defined as the constraint tightness for categori-
cal features. First, the frequency of a categorical attribute is defined as follows:

i f req(A(Cat)
i ) = 1 − 1

|S|

∑
∀ts∈S

{
1, if A(Cat)

i ∈ X ∪ Y,
0, otherwise,

(11)

where |S| denotes the number of elements in time-series segment S. The frequency is
calculated as the representation of the specific categories within the segment. Because we
prefer the presence of rare categories, the inverse value of the frequency metric is applied
to estimate the specific TAR as, simply incrementing the frequencies of all attributes arising
in the TAR, regardless of whether they arise in the antecedent or consequent.

3.1.5. Generalized Constraint Tightness Metric

Typically, in an explainability analysis, we are interested in metrics that are indepen-
dent of the type of attributes arising in the TAR. While the coverage and inclusion metrics
satisfy this precondition, this is not true for the amplitude and inverse frequency metrics.
Fortunately, the amplitude and inverse frequency metrics are dedicated to estimating the
constraint tightness of different attribute types. To find the general metric for the constraint
tightness, we need to integrate both metrics presented by Equations (10) and (11) into
one metric.

This integration is performed by the introduction of the so-called generalized con-
straint tightness metric, which is defined as follows:

ctigh(A(.)
i ) =

{
ampl(A(Num)

i ), if isNum(A(.)
i ),

i f req(A(Cat)
i ), otherwise,

(12)

where the calculation of constraint tightness is conducted according to the corresponding
type of attribute. Hence, a function (isNum(A(.)

i )) returns a true value when the attribute

(A(.)
i ) is of the numerical type and a false value otherwise.



Mathematics 2025, 13, 2122 7 of 17

3.2. Attribute Criticality Analysis

The goal of this analysis is to quantify the individual contribution of each attribute
to a rule—whether in the antecedent or the consequent. This allows users to focus on the
most informative features and interpret the rules with greater precision.

3.2.1. Antecedent Criticality

Each antecedent condition (Ai) of any type is evaluated using the following score:

ScoreA(Ai) = α · cover(Ai) + β · incl(Ai, [ts, te] : X =⇒ Y) + γ · ctight(Ai), (13)

where

• cover(Ai) is the empirical frequency with which Ai is satisfied in the dataset;
• incl(Ai), [ts, te] : X =⇒ Y) captures a semantic or logical overlap between the

attribute (Ai) and the rule’s consequent (optional) (These metrics demand the corre-
sponding time-series association rule);

• ctigh(Ai) returns either the width of the numerical condition |Ai.Ub − Ai.Lb| or the
class of the categorical attribute.

By default, we use the following weighting values: α = 0.5, β = 0.3, and γ = 0.2. Although
we agree that a formal sensitivity analysis or ablation study could provide deeper insights
into the impact of these weights, such an investigation was beyond the scope of this paper,
which primarily aimed to introduce and validate the proposed explainable framework.
Therefore, the default values of these weights were employed in our study.

Interpretation

High-scoring attributes are those that are rare, selective, and aligned with the outcome.
This scoring helps distinguish core drivers from noisy or redundant features.

3.2.2. Consequent Criticality

Similarly, for each consequent attribute Cj of any type, we define:

ScoreC(Cj) = λ · (1 − cover(Cj)) + µ · ctigh(Cj). (14)

Here, the lower coverage and tighter bounds indicate a more informative or surprising
consequence. The recommended weights are λ = 0.4 and µ = 0.6.

Interpretation

High-scoring attributes are those that are rare, selective, and aligned with the outcome.
This scoring helps distinguish core drivers from noisy or redundant features.

Example 2. Let us suppose a time-series segment with four features, expressed as follows:

I = {’temp’,’hum’,moist,’light’,’weather’},

where the first four incorporate attributes of the numerical type, while the last one is of the categorical
type. The attributes represent measurements obtained from either agricultural sensors (temperature,
humidity, moisture, and light) or a meteorological station (weather). The data from the time-series
segment were collected from 20:16:21 to 20:17:51 on 8 September 2024 (Table 1).
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Based on the time-series segment, the following association rule was mined by NiaARMTS:

[(8 September 2024, 20:16:21), (8 September 2024, 20:17:51)] :

’weather’(cloudy) ∧ ’light’[0.0, 7.0] ∧ ’moist’[2340.0.0, 2341.0] =⇒
′temp′[28.3, 28.4] ∧′ hum′[60.2, 60.3].

The results of the attribute critical analysis are illustrated in Table 2, where the values of all
three metrics are included. As is evident from the table, all the conditions match only the ’weather’
feature due to the same attribute being set in all rows of the selected segment. The ’hum’ feature
demonstrates strong discriminative power,due to a tight numerical range (high amplitude), but its
coverage was the lowest, i.e., it captured only half of the elements within the observed segment.
The ’temp’ feature, as a consequent, ranks lower than the ’hum’ feature due to its lower tight
constraint, although it covers 80 % of the time-series elements within the segment. The inclusion
metric, which is consistent across features, reflects that three out of five available dataset features are
used in the antecedent.

Table 1. Analyzed time-series segment.

Seq. ’temp’ ’hum’ ’moist’ ’light’ ’weather’ Timestamp

13 28.5 58.3 2338 11.67 cloudy 8 September 2024 20:16:21
14 28.5 59.7 2342 10.83 cloudy 8 September 2024 20:16:31
15 28.4 60.3 2340 15.83 cloudy 8 September 2024 20:16:41
16 28.4 58.6 2339 0.00 cloudy 8 September 2024 20:16:51
17 28.4 58.3 2340 0.00 cloudy 8 September 2024 20:17:01
18 28.3 60.3 2343 0.00 cloudy 8 September 2024 20:17:11
19 28.3 60.2 2340 0.00 cloudy 8 September 2024 20:17:21
20 28.3 60.2 2340 0.00 cloudy 8 September 2024 20:17:31
21 28.3 60.2 2340 0.00 cloudy 8 September 2024 20:17:41
22 28.3 60.6 2340 0.00 cloudy 8 September 2024 20:17:51

Table 2. Explanation of rule components.

Part Rank Feature Coverage Inclusion Tightness Score

Antecedent
1 ’weather’ 1.00 1.00 0.00 0.8000
2 ’light’ 0.70 1.00 0.56 0.7616
3 ’moist’ 0.60 1.00 0.80 0.7600

Consequent 1 ’hum’ 0.50 n/a 0.96 0.7283
2 ’temp’ 0.80 n/a 0.50 0.6516

3.3. Rule Stability Analysis

Time-series rules are inherently sensitive to their time windows. A rule that only
holds in a very specific time interval may not be generalized. To assess this, we define a
stability metric as follows: Let I = [ts, te] be the original time interval where the rule holds.
Additionally, the following two evaluation windows are indicated:

I− = [ts − δ, te − δ], I = [ts, te], I+ = [ts + δ, te + δ],

where the δ parameter determines the offset from the original evaluation window to the
past I− and the future I+ evaluation windows. For each window, we re-evaluate whether
the rule’s antecedent and consequent still co-occur. The co-occurrence is estimated using
standard support and confidence metrics, which are redefined as follows:
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supp(I : X =⇒ Y) =
Number of time series containing both X and Y

Total number of time series in segment S
, (15)

and

con f (I : X =⇒ Y) =
supp(I : X ∪ Y)

supp(I : X)
, (16)

where attributes X and Y hold within time interval I. Then, the quality of the TAR within
the observed interval (I) is expressed as follow:

∇(I : X =⇒ Y) =
supp(I : X =⇒ Y) + con f (I : X =⇒ Y)

2
. (17)

Let us mention that our intention in using Equation (17) was not to introduce a new
theoretical metric but, rather, to provide a practical and interpretable way to evaluate the
temporal consistency of a rule. Finally, the stability score is defined as follows:

Stability(I : X ⇒ Y) =
√
(∇(I− : X ⇒ Y)−∇(I : X ⇒ Y))2 + (∇(I+ : X ⇒ Y)−∇(I : X ⇒ Y))2, (18)

where Stability(I : X =⇒ Y) is an indicator function that calculates Euclidean distances
between the original and either past or future evaluation windows and returns values
within the interval of [0.0, 1.0]. The rule holds in the observed evaluation window if the
function returns values greater than a definite confidence interval pre-defined by the user.
The purpose of using Euclidean distance in Equation (18) is not to compute spatial distance
but, rather, to quantify temporal variability in rule quality, i.e.,

• The function measures how much the rule’s support and confidence vary when the
time window is shifted.

• A lower stability value implies that the rule maintains similar quality (i.e., consistency)
across time, suggesting it is more robust and generalizable.

• A higher value indicates greater sensitivity to the specific time segment, potentially
pointing to overfitting or transient behavior.

Interpretation

A high stability score indicates that the rule is temporally robust, i.e., it persists even
with small shifts. Unstable rules may be overfit to transient anomalies.

3.4. Discussion

Together, these two methods support a richer understanding of the rules discovered
by NiaARMTS. Users are not only shown what patterns exist but also why they occur, how
reliably they generalize, and what makes them unique. These capabilities align with the key
objectives of explainable AI: transparency, user trust, and decision support in high-stakes
domains such as healthcare, finance, and industrial monitoring. By offering insights into
the causal and statistical underpinnings of identified patterns, new methods (xNiaARMTS)
integrated into the NiaARMTS framework foster deeper user engagement and critical
evaluation of the results. This is particularly valuable in contexts where understanding
the rationale behind decisions can influence policy or operational protocols—for example,
the protocol for watering a garden in the context of smart agriculture. Moreover, the sys-
tem’s emphasis on uniqueness helps reduce noise and redundancy in pattern discovery,
allowing users to focus on the most salient insights. The combination of statistical rigor and
semantic clarity supports a broader range of users, including those without deep technical
expertise and domain-specific knowledge.
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4. Experiments and Results
4.1. Dataset

The intention in the development of the proposed explainable methods (xNiaARMTS)
was to support a smart agriculture process that relies on a real dataset collected using the
LilyGO T-Call ESP32 microcontroller, which was applied to monitor the parameters of Aloe
vera plants using IoT agriculture sensors. The hardware schematics and source code used
to collect and store data are available in the corresponding repository (https://github.com/
firefly-cpp/t-call-esp32-data-collection, accessed on 3 June 2025). The data were sent to our
data collection framework called succulent (https://github.com/firefly-cpp/succulent,
accessed on 3 June 2025) using POST requests. The entire dataset used in this study can be
accessed in the following repository: https://github.com/firefly-cpp/smart-agriculture-
datasets (accessed on 3 June 2025).

A summary of the dataset is presented in Table 3. As is evident in the table, the dataset
consists of time-series elements that include four features, as follows:

I =
(′temp′,′ hum′,′ moist′,′ light′

)
.

Let us emphasize that the attributes of all features are of the numerical type, and
obtained from the corresponding IoT agriculture sensors. On the other hand, our proposed
segmented interval time-series numerical association method builds upon and significantly
extends NARM to handle the temporal dimension inherent in time-series data. This
includes mechanisms for segmentation, interval detection, and incorporating temporal
patterns—features not present in the original NARM framework. Thus, while TS-NARM
can be seen as a conceptual extension of NARM, the underlying differences in data structure
and mining objectives make a direct comparison technically inappropriate.

Table 3. Characteristics of the ’Data Collection with LilyGO T-Call in Smart Agriculture’ dataset.

Dataset Name September 2024

Number of Instances 145,607
Number of Features 4
Feature Type Numerical
Missing Values No
Start Data Point 9 September 2024 00:00:01
End Data Point 25 September 2024 23:59:56
Sampling Rate Approximately every 5 s
Device LilyGO T-Call ESP32
Plant Species Aloe Vera

4.2. Hardware and Software

The whole experiment proceeded in two parts. In the first part, we used Ni-
aARMTS (https://github.com/firefly-cpp/NiaARMTS, accessed on 3 June 2025) software
for the mining of TARs, as described in the previous sections. In the second part, the newly
proposed explainable methods (xNiaARMTS) were integrated into the NiaARMTS software,
then run on randomly selected identified association rules. Table 4 presents the hardware
and software environment as applied in our experimental work.

https://github.com/firefly-cpp/t-call-esp32-data-collection
https://github.com/firefly-cpp/t-call-esp32-data-collection
https://github.com/firefly-cpp/succulent
https://github.com/firefly-cpp/smart-agriculture-datasets
https://github.com/firefly-cpp/smart-agriculture-datasets
https://github.com/firefly-cpp/NiaARMTS
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Table 4. Hardware and software configuration for experiments.

Component Specification

Processor (CPU) Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
RAM 8 Gb
Operating System Fedora 42
Programming Language Python 3.13.3
Libraries NiaARMTS 0.2.0

Since NiaARMTS can deal with any of the algorithms that are included in the NiaPy
framework [15], we decided to generate rules using the PSO algorithm, which was already
confirmed as a very efficient algorithm in our previous experiments [10]. While we ac-
knowledge the potential of other metaheuristics, such as Genetic Algorithms (GAs) [16],
our goal in this paper was not to perform a comprehensive comparison of optimization
techniques but to focus on demonstrating the explainability of the proposed time-series
numerical association rule-mining approach. The control parameters of the PSO algorithm
applied during the tests are presented in Table 5. Let us emphasize that we used parameter
settings that had already proven effective in our previous studies to ensure a stable and con-
sistent evaluation environment. Given the focus on explainability rather than exhaustive
optimization, we did not conduct a full sensitivity analysis in this work. However, we agree
that this would be a valuable direction for future research, especially when prioritizing
performance fine-tuning.

Table 5. Control Parameters of Particle Swarm Optimization (PSO).

Parameter Selected Value(s)

Swarm Size (nparticles) 40
Cognitive Coefficient (c1) 2.0
Social Coefficient (c2) 2.0
Total Function Evaluations 10,000

Indeed, all the features are of the numerical type. The whole experimental work
was dedicated to testing both explainable methods, consequently conducted in two steps
as follows. In the first step, the following three scenarios were defined:

• Scenario A;
• Scenario B;
• Scenario C.

In each of the mentioned scenarios, the TARs were selected randomly and explained by
the proposed attribute criticality analysis metrics. In the second step, the rule stability was
tested using the selected TAR and explained by the proposed explanation metrics.

Let us emphasize that a direct comparison between the proposed TS-NARM method
and the traditional Apriori algorithm is not feasible or meaningful due to fundamental
differences in the nature and scope of the problems they address; therefore, no such
comparison is included in the experimental study.

4.3. Results of the Attribute Criticality Analysis

In the first experiment, the attribute criticality analysis was conducted using three
randomly selected TARs (i.e., Scenarios A–C) mined by the NiaARMTS software. In the
remainder of the paper, the explainable data analysis according to different scenarios is
described in detail.
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4.3.1. Scenario A

In the first scenario, TAR-1 was analyzed, which is expressed as follows:

[(21 September 2024, 13:37:36), (24 September 2024, 17:37:29)] :

’hum’[52.48, 62.91] ∧ ’light’[624.46, 892.87] =⇒ ’temp’[21.14, 23.23].

TAR-1 captured more than 3 days and 4 h and highlights how a conjunction of features,
humidity, and lights influence the temperature. The attribute criticality analysis metrics
are illustrated in Table 6, from which it can be seen that the ’hum’ feature has the highest
coverage (i.e., cover(TAR-1) = 0.93). This means that the attribute is presented in more than
90 % of the antecedent of rules arising during the time-series segment. The rule incorporates
three of the maximum four features (i.e., incl(TAR-1) = 0.75), while the amplitude is higher
than 55 % and, thus, covers more than half of the border values within the domain of
the attribute’s feasible values in the segment. The ’light’ attribute, on the other hand, is
the second-ranked attribute in the antecedent. This attribute is distinguished by a higher
amplitude, but it emerged rarely in the time-series elements within the observed segment.
The ’temp’ attribute, arising in the consequent, exposed the lower coverage by evaluating
its consequent criticality due to the longer time interval in which the observations were
performed (i.e., more than three days). The temperature in such long time intervals is
subject to huge temperature changes.

Table 6. Attribute criticality analysis of TAR-1.

Rule Part Rank Feature Coverage Inclusion
Amplitude

Score
Metric Range

Antecedent 1 ’hum’ 0.93 0.75 0.55 [40.2, 63.4] 0.8018
2 ’light’ 0.07 0.75 0.88 [0.0, 2326.7] 0.4380

Consequent 1 ’temp’ 0.09 n/a 0.48 [20.3, 24.3] 0.3243

The results of the attribute criticality analysis are illustrated graphically in Figure 1,
where the attributes of the antecedent and consequent rule parts are presented in a
stacked bar plot. In the diagram, each of the observed metrics is drawn as a bar plot
in different colors, while the corresponding areas reflect their magnitudes.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Importance Score

humidity

light

0.80

0.44

Antecedent

Coverage (50%)
Inclusion (30%)
Amplitude (20%)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Importance Score

temperature 0.32

Consequent
Coverage (40%)
Amplitude (60%)

Feature Metric Contributions with Final Scores

humidity  [52.4763, 62.9139]  light  [624.4559, 892.867]  temperature  [21.136, 23.2259]

Figure 1. Visualization of attribute criticality analysis metrics for TAR-1.
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In summary, the ’hum’ attribute had the biggest impact on rule criticality due to a
greater area being dedicated to the blue-colored bar.

4.3.2. Scenario B

The purpose of Scenario B was to analyze TAR-2, which is introduced as follows:

[(14 September 2024, 21:43:07), (15 September 2024, 12:07:09)] :

’light’[110.38, 213.33] ∧ ’temp’[22.71, 23.71] =⇒ ’hum’[43.72, 53.67].

Indeed, the main characteristic of the rule is that it captures relatively short time
intervals because the duration of the corresponding segment is less than one day (exactly
14 h, 24 min, and 2 s). Thus, it was expected that the observed criticality metrics could be
more reliable, especially for the moisture feature.

The analytical results of the attribute criticality analysis are presented in Table 7, from
which it is evident that our hypothesis about attribute reliability holds. Humidity remains
the most critical attribute of TAR-2, where the most crucial metric coverage approaches
the maximum value. The value of this metric was also increased substantially by the
temperature attribute. The ’light’ attribute remains less critical, especially because the
observed interval captures time from the beginning of the night until noon the next day.
Consequently, a suitable sensor measures light in almost all the measurement ranges
(e.g., from 0 to 10,000 LUX) that are hard to cover with the appropriate time interval by
mining with NiaARMTS.

Table 7. Attribute criticality analysis of TAR-2.

Rule Part Rank Feature Coverage Inclusion
Amplitude

Score
Metric Range

Antecedent 1 ’light’ 0.0216 0.75 0.87 [0.0, 918.33] 0.4095
2 ’temp’ 0.0002 0.75 0.55 [20.9, 23.1] 0.3342

Consequent 1 ’hum’ 0.9305 n/a 0.65 [28.0, 56.4] 0.4176

The graphical results of the attribute criticality analysis are illustrated in Figure 2,
where the criticality of the attributes in TAR-2 is depicted by stacked bar plots. The larger
the area of the bar, the more critical the observed attribute. In this sense, the most critical
attribute in the antecedent is ’temp’, while the ’hum’ attribute remains the most critical in
the consequent.

4.3.3. Scenario C

The attribute criticality analysis of TAR-3 was the most complex due to the appearance
of all features in this rule and the longer duration of the time-series segment (precisely
4 days, 10 h 28, and min 54 s). The rule was mined by NiaARMTS, highlighting a relation-
ship between the antecedent ’light’ attribute and the remainder of the attributes emerging
in the consequent. It is expressed as follows:

[(16 September 2024, 21:58:18), (21 September 2024, 07:27:12)] :

’light’[227.73, 716.13] =⇒
’temp’[24.19, 36.93] ∧ ’hum’[36.93, 41.09] ∧ ’moist’[1666.32, 1974.21].

The analytical results of the attribute criticality analysis of TAR-3 are depicted in
Table 8, from which it is evident that the ’hum’ attribute in the consequent achieved a
total score of 0.9556; consequently, it is presented in all the elements of the observed time-
series segment. This behavior indicates that the weather might be stable in this segment.
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The ’moist’ attribute also achieved a good value regarding the coverage metric, but the
results were not so brilliant regarding the inclusion metric. In contrast, the ’term’ attribute
is better regarding inclusion but worse regarding the coverage metric.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Importance Score

light

temperature

0.41

0.33

Antecedent
Coverage (50%)
Inclusion (30%)
Amplitude (20%)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Importance Score

humidity 0.42

Consequent
Coverage (40%)
Amplitude (60%)

Feature Metric Contributions with Final Scores

light  [110.38, 231.33]  temperature  [22.71, 23.71]  humidity  [43.72, 53.67]

Figure 2. Visualization of attribute criticality analysis metrics for TAR-2.

Table 8. Attribute criticality analysis of TAR-3.

Rule Part Rank Feature Coverage Inclusion
Amplitude

Score
Metric Range

Antecedent 1 ’light’ 0.24 1.00 0.69 [0.0, 1552.5] 0.5580

Consequent
1 ’hum’ 1.00 n/a 0.93 [6.3, 62.8] 0.9556
2 ’temp’ 0.18 n/a 0.72 [19.3, 25.7] 0.5032
3 ’moist’ 0.49 n/a 0.33 [1550.0, 2010.0] 0.3926

’Light’ is the only attribute in the antecedent and showed good results regarding the
inclusion and amplitude metrics. In contrast, the coverage metric is crucially dependent on
the longer time-series segments, where days and nights (and, consequently, the intensity of
the light) are exchanged four times.

The graphical results for TAR-3 are also interesting, as presented in Figure 3, where the
most criticality in the total scores for attributes is in the inclusion metric in the antecedent
and the amplitude attribute in the consequent.

4.4. Results of the Rule Stability Analysis

TAR-4 was randomly selected for the rule stability analysis. The rule is described as
follows:

[(18 September 2024, 13:18), (20 September 2024, 13:18)] :

’temp’[22.34, 24.83] =⇒ ’light’[0.00, 871.11].

As indicated by the definition of TAR-4, the association rule captures a time-series
segment with a duration of 2 days (i.e., 48 h). To make the experiment as fair as possible,
the offset from the original time interval was also set to this duration, i.e., δ = 48 h.
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Figure 3. Visualization of attribute criticality analysis metrics for TAR-3.

The results of the stability analysis are illustrated in Table 9, which represents the three
evaluation windows (I−, I, and I+) needed for a stability calculation, together with their
corresponding starting and ending timestamps and support and confidence metrics; finally,
the quality metric (∇) is expressed as the average of two calculated metrics. Based on the
Euclidean distances between the mentioned evaluation windows, the stability function was
calculated according to Equation (18) as Stability(TAR-4) = 0.0955.

In summary, the performed stability analysis showed that the calculated stability func-
tion is within the confidence interval of 90 %. Therefore, we can accept the hypothesis that
the observed time-series association rule (TAR-4) is stable because a stability value below 0.1
(e.g., 0.0955 for TAR-4) is considered excellent and indicates strong temporal consistency.

The graphical results of the stability analysis are illustrated in Figure 4, where the
diagram is divided into two parts: (1) the stacked bar plot, and (2) the group-ordered
bar plot. The first bar plot represents the widths of the particular evaluation windows,
while the second is focused on the particular metrics on which the stability calculation
was founded, i.e., support, confidence, and quality. As is evident from the first bar plot,
the evaluation windows are of the same duration. The second bar plot is more expressive
and shows only the minor deviations between the calculated metrics.
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Figure 4. Visualization of rule stability analysis for TAR 4.
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Table 9. Stability analysis for TAR 4 (∇ = 0, 0955, δ = 48 h).

Window Start End Support Confidence Quality

I− 16 September 2024 13:18 18 September 2024 13:18 0.7324 0.9334 0.8329
I 18 September 2024 13:18 20 September 2024 13:18 0.8643 0.9532 0.9088
I+ 20 September 2024 13:18 22 September 2024 13:18 0.7229 0.9787 0.8508

5. Conclusions
In this paper, we have demonstrated the effectiveness of integrating explainable

methods into numerical association rule mining for time-series data. Two explainable
methods (xNiaARMTS) have been proposed for explainable data analysis for time-series
numerical association rules from two points of view. The first explainable method focuses
on attribute criticality analysis, while the second is based on a statistical stationary analysis
of the time-series data.

Although the proposed explainable methods (xNiaARMTS) can be used generally,
they were employed specifically to agricultural time-series data collected using several
IoT sensors during long enough periods and processed by NiaARMTS. Only parts of the
time-series data (the so-called time-series segment) were entered into the explainable data
analysis due to the easier identification of the trends, seasonality, and cycle behavior of
the time series. The proposed methods (xNiaARMTS) show promising results in smart-
agriculture applications, highlighting the importance of advancing not only algorithm
development but also post hoc explainable NARM methods.

This paper provides a bridge between the theoretical aspects and practical demonstra-
tions of the study in the following ways:

• Real-world data: Our experimental evaluations were conducted on real-world time-
series data collected from a smart-agriculture environment, which ensures method’s
applicability.

• Open-source implementation: The complete implementation of our proposed method
is publicly available in a GitHub repository that is accompanied by detailed documen-
tation and numerous usage examples to facilitate use in the real world.

• Visualization tools: We developed and presented several visualization techniques
to effectively interpret the discovered numerical association rules, enhancing the
practical interpretability of the results.

• Application-driven: This study is grounded in a clear, real-world problem, i.e., in
smart agriculture.

In future lines of research, we plan to experiment with different weights/offsets,
which play an important role in both proposed methods, to enhance their performance
on different prediction problems. Beyond the smart-agriculture domain, the proposed
methods (xNiaARMTS) have potential applications involving time-series sensor data, such
as predictive maintenance in industrial systems, health monitoring through the use of
wearable devices, energy consumption analysis in smart grids, sports training data analysis,
and environmental monitoring. These domains similarly benefit from interpretable rule
mining to support decision-making processes.
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