MARNN: A New Method for Multi-agent Reinforcement
Learning

Aleksander Kalacun', Iztok Fister, Jr.!

! Faculty of Electrical Engineering and Computer Science, University of Maribor
E-mail: aleksander.kalacun @ student.um.si

Abstract

This paper presents a new method for tackling dynamic
partially observed multi-agent Markov decision processes
with stochastic elements. We use this formulation to de-
fine and simulate real-world problems and present them
on graphs. The current multi-agent reinforcement learn-
ing algorithms struggle in changing environments which
lack consistency. The core idea of the algorithm is based
on the deep autoregressive model GraphRNN, achieving
long-term goal memorization and greater resilience to
stochastic changes in environments. The policy making is
based on graph convolution network encoders. Based on
observations and information communicated from other
agents via graph attention network encoders, agents de-
cide on the best next state. To demonstrate its capabil-
ities, new graph based environments were implemented.
Using them, we evaluated the performance of multi-agent
reinforcement learning algorithms in real-world type prob-
lems as an effective benchmark.

1 Introduction

Reinforcement learning (RL) has regained a lot of popu-
larity compared to other deep learning paradigms in re-
cent years [1]. Supervised learning may potentially be
reaching the plateau and troubles reliability of solutions
with human biases embedded in training datasets [2]. In
contrast, the RL domain allows intelligent agents to come
up with solutions in an environment by themselves. This
results in avoiding any previous biases and producing cre-
ative, possibly yet unseen solutions. Although MARL
progress has been driven by autonomous driving, recent
LLM research renewed interest, as deep reasoning mod-
els increasingly rely on RL loops [3].
Multi-agent path finding problems have long been solved
with optimal algorithms [4]. Still, we find it to be an illus-
trative benchmark for demonstrating the performance of
algorithms, and compare it with the current state-of-the-
art. Being abstracted as a graph, such environment set-
ting is also flexible to be reshaped into a real-world prob-
lem. Examples include networking, hardware optimiza-
tion, robotics, and drone swarms (from food delivery to
space exploration). More distant fields include synthetic
biology, finance, and sport simulations [5].

We explore the yet less known but promising topic
of dynamic partially observed stochastic environments.

ERK'2025, Portoroz, 601-604 601

While most algorithms struggle in changing settings where
the Markov property does not hold [5], our robust method
is resilient to such changes. Our main contributions in
this paper are:

* New method (algorithm) of tackling dynamic par-
tially observed stochastic Markov decision prob-
lems. The method was compared, benchmarked,
and analyzed with the current space of state-of-the-
art algorithms.

* Creation of new, custom-made dynamic decentral-
ized partially observed environments, flexible for
any further use to benchmark numerous MARL al-
gorithms.

This paper is structured as follows: In Section 2, we
present related work relevant to the research areas central
to our study. Section 3 introduces key theoretical aspects
of the topic. In Section 4, we describe our new environ-
ment and agent architecture in detail. Section 5 presents
the experiments and results. Finally, the paper is con-
cluded in Section 6.

2 Related Work

2.1 Multi-agent Reinforcement Learning and Com-

munication for Path Finding

Approximation-based algorithms (e.g., RL) address the
problematic (unbearable) time complexity of optimal multi-
agent coordination algorithms (e.g. Dynamic Program-
ming). Modeling real-world problems in simulated en-
vironments often requires taking into account stochas-
tic (random) events and incomplete observations. Thus,
partially observed Markov decision environments [6] are
studied. Dynamic changes, random communication noise,
and other random events are needed, in order to train real-
world applicable models.

The problem of partial observability is overcome with
inter-agent communication. Some works [7] have shown
the use of a graph attention network (GAT) [8] approach
to create a communication network with supervised learn-
ing. The agents are able to assign different attention val-
ues to different agents, depending on the agents’ posi-
tions, observations, etc. The parameters and message en-
coding and decoding are learnt in the environment.



2.2 Machine Learning on Graphs

We focus on generative graph algorithms. Given a learn-
ing process, these algorithms create realistic graphs fol-
lowing training. Pioneering generative graph models is
the employment of recurrent neural networks (RNNs) in
graph setting, first introduced by the concept of GraphRNN
[9]. There, RNNs were used for generating unique graphs
by considering the graph as a sequence of edges and nodes.
However, node classification tasks are approached more
commonly with Graph neural networks (GNN) [10], due
to their improved expressiveness. This approach consid-
ers a graph structure to be presented as layers of neigh-
borhoods around a concerning node. In the following
work [11], the authors showed a combination of these
ideas, where the GNN layers increased expressiveness
in sequence models (solving dynamic graph problems).
Work [12] introduced concept of world models in MARL
settings.

3 Theoretical Background

3.1 Markov Decision Processes (MDPs)

Markov Decision Process (MDP) is a mathematical frame-
work for single-agent sequential decision-making [5, 2.2].

It can be extended further for multiple agents and stochas-

tic environments. Formally, an MDP is defined as a tuple

(S, A, T, R,~), where:

e S is a finite set of states and A is a finite set of
actions,

e T:5x%x AxS —]0,1] is the transition probabil-
ity function, denoting T'(s’|s, a), the probability of
transitioning to state s’ from s by taking action a

e R:S x AxS — Ris the reward function with
~ € [0, 1] being the discount factor.

The goal is to determine the optimal policy 7* : S —
A that maximizes the expected cumulative discounted re-
ward:

VT(s)=E Z'th(st,Tr(st),st+1) | so=s|, (1)
t=0

The Markov property: P(si11|St, aty St—1,G1—1,...) =
P(st41]8¢,at). However, in dynamic environments with
changing states this property is violated.

3.2 Partially Observable Markov Decision Processes
(POMDPs)

POMDPs extend MDPs to situations with incomplete or
noisy state information. Formally, a POMDP extends
MDP and is defined by the tuple (S, A, T, R,Q,0,~) [6,
2.2], where: €2 is a finite set of observations and O :
Sx AxQ — [0, 1] is the observation probability function
O(o|s’,a). Agents maintain a belief state b € A(S) (a
probability distribution over states), updated via Bayes’
rule. The objective is to find a policy 7 that maps belief
states to actions to maximize:

VI() =E |> ' R(st, m(br), se11) | bo =b| . (2)
t=0

602

3.3 Graph Convolution Networks for MARL

Given a graph G = (V, E)) where nodes represent states
and edges represent possible transitions, we employ Graph
Convolutional Networks (GCNs) [13] for state represen-
tation learning:

R = o (W(’f) - AGG ({h,(ﬁ) u€ /\/(v)})) 3)

where hg)k) is the hidden representation of node v at layer
k, N'(v) represents the neighbors of v, and AGG is some
aggregation function. Matrix W is matrix of learnable
weights and o is some activation function.

4 Proposed method

4.1 Environment Description

We consider a complex partially observed environment in
form of a graph. We found the inspiration in the Rware
environment [5], generalized into a graph form. In such
problems, we are facing the sparse reward problem, a
common obstacle in the MARL paradigm [5]. In our
custom-built environment (see Fig.1) agents have to carry
packages from package states to the goal state, receiving
a reward of +100 if able to do so. After a package is de-
livered, a new random state is assigned as a package state
making our environment dynamic. Agents also face a -50
penalty for colliding at the same node and timestep. In
each time step the agents observe the type of state of the
node and all neighbor nodes (possible types being goal
state, package state, and normal state). To force agents
to make legal moves we give a reward of -10 for every
illegal move. The environment is randomly regenerated
with given edge probability for every new iteration.

4.1.1 Enhancing the Base environment

Given the premise of building an environment that imi-
tates real-world problems, we added the following fea-
tures: (i) we force agents to pick neighbour states to avoid
reward mixing. (ii) The temporal dynamics of edge re-
moval and creation and package changing (iii) agents mem-
ory decay (iv) asymmetric knowledge (simulating the ad-
dition of new agents over time), (v) observation noise
(randomly corrupting agents’ observations).

These features combined harm the simple observability
of the environment, effectively lowering the performance
of classical algorithms while simulating the real world
more realistically.

4.2 Agent Architecture

The agents are built out of Long Short-Term Memory
(LSTM) [14] cells in the actor critic architecture. The
reasoning behind using recurrent neural networks is their
capability to memorize their tendencies over multiple time
steps. The hidden state is being transferred over time,
countering an ever-changing dynamic environment and
stochastic events where the Markov property does not
hold. LSTMs were used instead of vanilla RNN for their
better consistency and gates allowing forgetting of lost
graph connections. Both, actor and critic are built out of
LSTM neural networks. The difference being that critic



Graph Environment

Agent 0
Package Node 7
BN Goal Node -
Normal Node 5 \
i T‘
e
1 — ! / 5
(4]
T~ 3 i‘ ®
3~ 8 /
~ N\ s
)
/ Agent1 % \Y
67
99— 58 A\

B

o

Figure 1: Graph based MARL environment.

outputs a scalar of predicted reward given the action se-
quence while actor outputs best possible next step fol-
lowing the policy. Formally, LSTM networks implicitly
maintain belief representations (Section 3) through hid-
den states h! for each agent i.

For the purposes of communication, we use the GAT [8]
structure. The agents first encode their observations, and
then pass them through a graph communication network.
Attention is learnt to be given to the agents that carry the
most important information.

Improving the expressiveness of each LSTM cell, we in-

troduce Graph Convolution Network (GCN) encoders. Note

we define the observation space of only one layer ahead.
Contrary to GraphRNN, GCN performs classification at
every step among the neighbor states (by forming graph
with central state and one layer of neighbor states). Thus,
considering dynamic graph setting with stochastic ele-
ments, optimal policies must condition on history.
MARNN approximates 7* (a¢|So.¢, ao.t—1) with 7(a¢|hy)
where h; is a learnt compression of history via LSTMs.
Additionally, world model based on received information
is gradually built. This helps agents plan ahead with lim-
ited observation. Note that world model is not shared
among agents nor it is input with observations, thus we
consider it less relevant. See algorithm 1.

Unlike reactive policies 7(a|o;), MARNN’s memory aug-
mented policy w(alh:) can: (i) remember previous pack-
age locations after relocation, (ii) adapt to edge deletions
by recalling alternative paths, and (iii) maintain coordina-
tion despite observation noise. In summary, architecture
addresses challenges in the following ways:

LSTM: Compresses unbounded history og.; into fixed-
size h; € R%, GCN: Handles variable graph topology via
permutation-invariant aggregation, GAT: Enables selec-
tive communication without fixed topology assumptions.

5 Results

Hypotheses: We expect MARNN to: (H1) maintain per-
formance in dynamic settings better than memoryless base-

603

Algorithm 1 MARNN
Input: Graph Gy, observations {o:}, hidden states

{hi_y}
for each agent ¢ do
ht « LSTM(o, bt ;) > Memory update
2t < GCN(Gy, {h? : j € N(i)}) > Graph
encoding .
mi — GAT({H] : j #i})
ai ~ (2, mj)
end for
return actions {a’}

> Communication
> Action selection

lines, (H2) show higher sample efficiency due to memory,
(H3) exhibit longer convergence time due to architectural
complexity. To demonstrate the performance of MARNN
we compare it to other state-of-the-art algorithms in our
custom made environment using the EPyMARL frame-
work [15].

5.0.1 Experimental Setup

We evaluated three graph environments: small (2 agents,
10 nodes), medium (3 agents, 15 nodes), large (6 agents,
30 nodes), and the enhanced (3 agents, 15 nodes, all dy-
namic features). Baselines: IQL [16], QMIX [17], VDN
[18], MARNN (hidden dim: 64, LSTM layers: 2, learn-
ing rate: Se-4, optimizer: RMSprop). Metrics: mean
episode return and sample efficiency (measures perfor-
mance with respect to environment interactions (visual-
ized as area under learning curve), implying how quickly

’ the algorithm learns). All experiments use 3 seeds, 140k
environment steps. Table 1 shows the mean episode re-
ward, and Figures 2 and 3 plot them versus environmental
steps plots, demonstrating the algorithms’ performance
over time.

Table 1: Benchmark results for the base graph env.

Algorithm Medium Small Large
IQL[16] | —20.6£1.1 | —6.0£1.0 | —56+4.1

QMIX [17] | —13.6+£3.1 | —6.5+£2.0 | —45+6.9
VDN [18] | —124£0.9 | —4.5+2.0 | —=59+0.7
MARNN | —25.0£3.2 | —10.5+3.7 | —79£13

Table 2: Benchmark results for enhanced env. and sample

efficiency (SE).

Algorith | Enh. Mean | Enh. SE | Med. SE
IQL -1.8 0.88246% | 0.90784%
QMIX -2.1 0.87823% | 0.87320%
VDN -3.3 0.70847% | 0.89575%
MARNN —4.0 0.77477% | 0.91802%

Considering the results for enhanced environment (Ta-
ble 2, Fig. 3a), trends still seems to hold.




Graph Environment Graph Environment

Episode Return

Episode Return

1750

0 4000 60000 80000 100000 120000 000 60000 60000 100000 120000
Environment Steps Environment Steps

(a) Medium environment (b) Small environment

Figure 2: Experimental results on large and small env.

The results look promising when taking the sample effi-
ciency (SE) into account (Table 2).

Temporal Environment Graph Environment

nnnnn

rrrrr

Episode Return
Episode Return

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

‘o0 oo suoo0 100000 120000
Environment Steps Environment Steps

(a) enhanced environment (b) Large environment

Figure 3: Experimental results on large and small env.

6 Conclusion and further work

Analysis: The experiments showed that our method is
very close to other state-of-the-art methods while still not
surpassing any performance wise. Note that, from the
plots, we also read high variations among all the runs of
the algorithms (visible as shade). Analyzing the plots,
MARNN generally takes longer to settle on the final solu-
tion (also explainable as more diverse exploration). Con-
sider this as a consequence of a complex algorithm struc-
ture with many components. Thus, notably, promising
results come from the sample efficiency metric, where
MARNN performed better than VDN, and was close to
the rest of the algorithms. Considering the medium graph
environment setting, the MARNN mean sample efficiency
outperforms all the state-of-the-art algorithms. This over-
all validates H2 and H3: the architecture learns useful
representations quickly but struggles with credit assign-
ment across LSTM, GCN, and GAT components. Al-
though our proposed method did not outperform the cur-
rent state-of-the-art, the gap was surprisingly slim (even
considering that the environment characteristics were tai-
lored so as to favor MARNN’s performance). We believe
that advanced MARL approaches could further improve
our method, potentially outperforming standard methods
in niche environments. When building our environment,
we sought balance between a theoretically simple envi-
ronment and an accurate representation of real-world sce-
narios. We encourage further studies on more complex
graph environments. Possible extensions to our environ-
ment include limited energy, package expiration, partial
deliveries, and weighted rewards. We believe that if a
deeper observation horizon is considered, the improve-
ments of the GCN classification would be even greater.

604

On the other hand, we observe all the results to be neg-
ative. This implies a too complex environment, testing
which algorithms make the least mistakes. One of the
aspects of reinforcement learning training we neglected
is hyperparameter tuning. We acknowledged this vari-
able early in benchmarking, but later decided that this
brings another dimension of inconsistency between dif-
ferent algorithms runs. However, using an auto-tuning
framework [19] might eliminate the uncertainties of such
hyperparameter tuning process and enable the algorithms
to reach their peak performance.

References

[1] R.S. Sutton and A. G. Barto, “Reinforcement Learning: An
Introduction,” 2nd ed., MIT Press, 2018.

[2] V. Udandarao et al., "No ‘“Zero-Shot” Without Exponen-
tial Data: Pretraining Concept Frequency Determines Mul-
timodal Model Performance”

[3] D. Guo et al. "DeepSeek-R1: Incentivizing Reasoning Ca-
pability in LLMs via Reinforcement Learning,”

[4] G. Sharon et al. "Conflict-Based Search for Optimal Multi-
Agent Path Finding,” Artificial Intelligence, vol. 219, pp.
40-66, 2015.

[5] S. V. Albrecht, F. Christianos, and L. Schifer, Multi-Agent
Reinforcement Learning: Foundations and Modern Ap-
proaches. MIT Press, 2024.

[6] F. A. Oliehoek and C. Amato, A Concise Introduction to
Decentralized POMDPs. Springer, 2016.

[7]1 Q. Li, F. Gama, A. Ribeiro, and A. Prorok, ”Graph neural
networks for decentralized multi-robot path planning,” in
IROS, 2020

[8] P. Velickovié et al., "Graph attention networks,” in /CLR,
2018.

[9] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec,
”GraphRNN: Generating realistic graphs with deep auto-
regressive models,” in ICML, 2018

[10] F. Scarselli et al. ”The graph neural network model,” IEEE
Trans. Neural Netw., vol. 20, no. 1, 2009.

[11] A. Pareja et al., "EvolveGCN: Evolving graph convolu-
tional networks for dynamic graphs,” in Proc. AAAI Conf.
Artif. Intell., vol. 34, no. 04, Apr. 2020.

[12] C. Guestrin et al., "Coordinated Reinforcement Learn-
ing”, ICML, 2002

[13] T. Kipf, M. Welling, ’Semi-Supervised Classification with
Graph Convolutional Networks”, ICLR, 2017

[14] S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Comput., vol. 9, no. 8, 1997.

[15] G. Papoudakis et al., "Benchmarking multi-agent deep
reinforcement learning algorithms in cooperative tasks,”
NeurIPS, 2024.

[16] I. Kostrikov, A. Nair, and S. Levine, ”Offline reinforce-
ment learning with implicit Q-learning,” in /ICML, 2021,

[17] T. Rashid et al., ?"QMIX: Monotonic value function fac-
torisation for deep multi-agent reinforcement learning,” in
ICML, 2018

[18] P. Sunehag et al., ”Value-decomposition networks for co-
operative multi-agent learning,” in AAMAS, 2018

[19] L. Pec¢nik and I. Fister, "NiaAML: AutoML framework
based on stochastic population-based nature-inspired algo-
rithms,” J. Open Source Softw., vol. 6, no. 61, Art. no. 2949,
2021



