
Academic Editor: Janez Žerovnik

Received: 8 May 2025

Revised: 29 May 2025

Accepted: 12 June 2025

Published: 13 June 2025

Citation: Mlakar, U.; Fister, I., Jr.;

Fister, I. NiaAutoARM: Automated

Framework for Constructing and

Evaluating Association Rule Mining

Pipelines. Mathematics 2025, 13, 1957.

https://doi.org/10.3390/

math13121957

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

NiaAutoARM: Automated Framework for Constructing and
Evaluating Association Rule Mining Pipelines
Uroš Mlakar * , Iztok Fister, Jr. and Iztok Fister

Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46,
2000 Maribor, Slovenia; iztok.fister1@um.si (I.F.J.); iztok.fister@um.si (I.F.)
* Correspondence: uros.mlakar@um.si

Abstract: Numerical Association Rule Mining (NARM), which simultaneously handles
both numerical and categorical attributes, is a powerful approach for uncovering meaning-
ful associations in heterogeneous datasets. However, designing effective NARM solutions
is a complex task involving multiple sequential steps, such as data preprocessing, algo-
rithm selection, hyper-parameter tuning, and the definition of rule quality metrics, which
together form a complete processing pipeline. In this paper, we introduce NiaAutoARM,
a novel Automated Machine Learning (AutoML) framework that leverages stochastic
population-based metaheuristics to automatically construct full association rule mining
pipelines. Extensive experimental evaluation on ten benchmark datasets demonstrated that
NiaAutoARM consistently identifies high-quality pipelines, improving both rule accuracy
and interpretability compared to baseline configurations. Furthermore, NiaAutoARM
achieves superior or comparable performance to the state-of-the-art VARDE algorithm
while offering greater flexibility and automation. These results highlight the framework’s
practical value for automating NARM tasks, reducing the need for manual tuning, and
enabling broader adoption of association rule mining in real-world applications.

Keywords: AutoML; association rule mining; numerical association rule mining; pipelines

MSC: 68TXX; 68T42

1. Introduction
The design of Machine Learning (ML) pipelines usually demands user interaction to

select appropriate preprocessing methods, perform feature engineering, select the most ap-
propriate ML method, and set a combination of hyper-parameters [1]. Therefore, preparing
an ML pipeline is complex, and, primarily, it is inappropriate for non-specialists in the data
science or artificial intelligence domains [2]. On the other hand, tuning the entire pipeline
to produce the best results may also involve a great deal of time for the users, especially if
we deal with very complex datasets.

Automated Machine Learning (AutoML) methods have appeared to draw the applica-
tion of ML methods nearer to the users (in the sense of ML democratization) [2,3]. The main
benefit of these methods is searching for the best pipeline in different ML tasks automati-
cally. Until recently, AutoML forms can be found for solving classification problems, neural
architecture search, regression problems [4], and reinforcement learning.

Association Rule Mining (ARM) is a ML method for discovering the relationships
between items in transaction databases. Bare ARM is limited since it initially operates
with a categorical type of attributes only. Recently, Numerical Association Rule Mining
(NARM) was proposed, which is a variant of a bare ARM and allows for dealing with

Mathematics 2025, 13, 1957 https://doi.org/10.3390/math13121957

https://doi.org/10.3390/math13121957
https://doi.org/10.3390/math13121957
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4278-6078
https://orcid.org/0000-0002-6418-1272
https://orcid.org/0000-0002-9964-6957
https://doi.org/10.3390/math13121957
https://www.mdpi.com/article/10.3390/math13121957?type=check_update&version=2

Mathematics 2025, 13, 1957 2 of 20

numerical and categorical attributes concurrently. Thus, it removes the bottleneck of the
bare ARM. The NARM also delivers several benefits since the results can be more reliable
and accurate, and it contains less noise than bare ARM, but the numerical attributes need to
be discretized before use. Currently, the problem of NARM is mainly tackled through using
population-based meta-heuristics, which can cope large search spaces effectively. (Please
note that the acronym ARM is used as a synonym for the acronym NARM in the paper.)

The ARM pipeline (see Figure 1) is far from being uncomplicated since it consists
of several components: (1) data preprocessing, (2) mining algorithm selection, (3) hyper-
parameter optimization, (4) evaluation metric selection, and (5) evaluation. Each of these
components can be implemented using several ML methods.

TRANSACTION
DATABASE

DATA
PREPROCESSING

ALGORITHM
SELECTION

HYPERPARAMETER
OPTIMIZATION

METRIC
SELECTION

EVALUATION
THE BEST
PIPELINE

min-max scaling,
data squashing,

z-score normalization,
k-means discretization,

remove correlated
features

DE, jDE, PSO, GA,
LSHADE,ILSHADE

Population size,
max_evals

Support, confidence,
comprehensibility,

amplitude, coverage,
inclusion

INPUT OUTPUT

Figure 1. The structure of the basic ARM pipeline.

Consequently, composing the ARM pipeline manually requires a great deal of human
intervention, and it is potentially a time-consuming task. Therefore, automation of this
composing led us to ARM democratization and, consequently, to the new domain of
AutoML, i.e., AutoARM.

The data entering the ARM pipeline are in the form of a transaction database; the
optional first component of the ARM pipeline is preprocessing, where the data can be
preprocessed further using various ML methods. The selection of the proper process-
ing component presents a crucial step, where the most appropriate population-based
meta-heuristic nature-inspired (NI) algorithm needs to be determined for ARM. Mainly,
the NI algorithms encompasses two classes of population-based algorithms: Evolutionary
Algorithms (EAs) [5] and swarm intelligence (SI)-based ones [6].

According to previous studies, no universal, population-based meta-heuristic exists
for ARM that can achieve the best results by mining all datasets. This phenomenon is
also justified by the No Free Lunch (NFL) theorem of Wolpert and Macready [7]. The next
component in the pipeline is the hyper-parameter optimization for the selected population-
based meta-heuristic, where the best combination of hyper-parameters is searched for.
Finally, the selection of the favorable association rules depends on the composition of the
more suitable metrics captured in the fitness function. In our case, the fitness function
is represented as a linear combination of several ARM metrics (e.g., support, confidence,
amplitude, etc.) weighted with particular weights.

A structured comparison of existing ARM approaches is presented in Table 1, where
their level of automation, hyper-parameter tuning capabilities, and optimization techniques
were focused on. The table illustrates the diversity in methodological design, ranging from
manual, heuristic-based systems to fully automated, data-driven solutions.

To the best knowledge of the authors, no specific AutoML methods exist for constructing
the ARM pipelines automatically. Therefore, the contributions of this study are as follows:

• To propose the first AutoARM solution for searching for the best ARM pipeline, where
this automatic searching is represented as an optimization problem.

• To dedicate special attention to the preprocessing steps of ARM, which have been
neglected slightly in recent research works.

• To implement a new framework called NiaAutoARM v.0.1.1 as a Python package v.3.9.
• To evaluate the proposed framework rigorously on several datasets.

Mathematics 2025, 13, 1957 3 of 20

Table 1. Comparison of association rule mining methods.

Method Type AutoML HPT Optimization

Apriori [8] Traditional ✗ ✗ None
FP-Growth [9] Traditional ✗ ✗ None
MODENAR [10] NARM ✗ ✗ DE
Hybrid DE-SCA [11] NARM ✗ ✗ DE + SCA 1

NARM-DE [12] NARM ✗ ✗ DE
Multi-objective GA [13] NARM ✗ ✗ GA
BA [14] NARM ✗ ✗ BA
PSO [15] NARM ✗ ✗ PSO
NiaAutoARM AutoML-NARM ✓ ✓ AutoARM pipeline

1 Sine cosine algorithm.

The structure of the remainder of this paper is as follows: The materials and methods,
needed for understanding the observed subjects that follow, are discussed in Section 2.
The proposed method for automated ARM is described in Section 3 in detail. The experi-
ments and the obtained results are the subjects of Section 4, where a short discussion of the
results is also presented. This paper is then concluded in Section 5 with a summarization of
the performed work and an outlining of the potential directions for future work.

2. Materials and Methods
The section highlights the topics necessary for understanding the subjects of this paper.

In line with this, the following topics are handled:

• NI meta-heuristics.
• AutoML.
• NiaAML.
• NiaARM.

The mentioned topics are discussed in detail in the remainder of this paper.

2.1. NI Meta-Heuristics

Exact solving of NP-hard optimization problems [16] requires enormous time and
space resources. However, in practical applications, exact solutions are often unnecessary
as we are typically satisfied with high-quality approximate solutions obtained within
a reasonable time. Consequently, interest in approximate, or heuristic, approaches for
solving intractable problems has grown significantly, especially following the emergence of
nature-inspired (NI) algorithms.

Heuristics solve the optimization problems directly, i.e., on the lower level. The term
“meta-heuristic” refers to a higher-level procedure or heuristic in the fields of computer
science, mathematical optimization, and engineering, and it is used to search for, find,
generate, or select a heuristic that may offer a good solution to an optimization problem,
particularly for large problems (i.e., NP-hard problems) or in cases of limited, incomplete,
or imperfect information [17].

One of the first meta-heuristic concepts that used NI algorithms was introduced by
Grefenstette in [18], who applied a meta-Genetic Algorithm (meta-GA) to control the
parameters of another GA. Recently, this approach has become increasingly widespread,
especially in the field of Machine Learning (ML), where meta-heuristics are used for setting
the hyper-parameters of neural networks (NNs) [19,20].

2.2. AutoML

Using ML methods in practice demands experienced human ML experts, who are
typically expensive and hard to find on the market. On the other hand, computing is
becoming cheaper day by day. This fact has led to the advent of AutoML, which is capable

Mathematics 2025, 13, 1957 4 of 20

of constructing ML pipelines that are of a similar, or even better, quality than those by
human experts [2]. Consequently, AutoML enables the so-called democratization of ML.
This means that the usage of the ML methods is drawn closer to the user by AutoML; hus,
this technology tries to avoid the principle of human-in-the-loop [21].

Automation of ML methods is allowed by AutoML using ML pipelines. Indeed, these
pipelines are the control points of the AutoML system. Typically, the ML pipeline consists
of the following processing steps:

• Preprocessing.
• Processing with definite ML methods.
• Hyper-parameter optimization.
• Evaluation.

AutoML is, currently, a very studied research area. The recent advances in the field
have been summarized in several review papers [1,3,22,23]. There also exist a dozen
applications of AutoML [24,25], where the special position is devoted to NiaAML, which is
discussed in more detail in the remainder of this section.

2.3. NiaAML

NiaAML is an AutoML method based on stochastic Nia-s for optimization, where the
AutoML is modeled as an optimization problem. The first version of NiaAML [26] covers
composing classification pipelines, whereas a stochastic Nia searches for the best classifi-
cation pipeline. The following steps are included in the AutoML pipeline, i.e., automatic
feature selection, feature scaling, classifier selection, and hyper-parameter optimization.
Each classifier configuration found by the optimizers was tested using cross-validation.

Following NiaAML, the NiaAML2 [27] method was proposed, which eliminates the
main weakness of the original NiaAML method, where the hyper-parameters’ optimization
is performed simultaneously with the construction of the classification pipelines in a single
phase. In NiaAML, only one instance of the stochastic algorithm was needed. However,
in NiaAML2, the construction of the pipeline and hyper-parameter optimization was
divided into two separate phases, where two instances of nature-inspired algorithms were
deployed, one after the other, to cover both steps. The first step covers the composition of the
classification of the pipeline, while the second is devoted to hyper-parameter optimization.

2.4. NiaARM

NiaARM is a Python framework [28] that implements the ARM algorithm compre-
hensively [12], where the ARM is modeled as a single objective, continuous optimization
problem. The fitness function in NiaARM is defined as a weighted sum of arbitrary eval-
uation metrics. One of the most vital points of NiaARM is that it is based on the NiaPy
framework [29]; thus, different Nia-s can be used in the optimizer role. According to the
knowledge of the authors, NiaARM is the only comprehensive framework for NARM as it
is where all NARM steps are implemented, i.e., preprocessing, optimization, and visualiza-
tion. Other benefits of NiaARM are good documentation and the many examples provided
by its maintainers.

3. Proposed Framework: NiaAutoARM
The proposed framework NiaAutoARM was mainly inspired by the meta-heuristic

concept, where the higher-level meta-heuristic controls the hyper-parameters of the lower-
level heuristic. Both algorithms explore implementations from the NiaAML library (Figure 2).

Mathematics 2025, 13, 1957 5 of 20

Hyper-parameters
Pipeline application

Pipeline results

Higher-level NI
Hyper-heuristic

Lower-level NI
heuristic Transaction

Dataset

Control Problem
solving Problem

Figure 2. NiaAutoARM framework for automated ARM.

Indeed, the NiaAutoARM higher-level meta-heuristic controls the behavior of the lower-
level NI heuristic devoted for problem solving, i.e., ARM. The task of the control meta-
heuristic is searching for the optimal hyper-parameter setting of the lower-level heuristic.
The hyper-parameter settings direct the ARM pipeline construction. As can be observed from
Figure 2, there is two-way communication between the control and the problem heuristics:
(1) the pipeline constructed by the higher-level metaheuristic is transmitted to the lower-level
heuristic, and (2) the results of the constructed pipeline are transmitted back to the higher-level
heuristics that evaluate them in order to specify the best one.

3.1. Higher-Level Meta-Heuristic

Thus, we defined the problem of ARM pipeline construction as a continuous optimization
problem. This means that an arbitrary population-based NI meta-heuristic, which works in
a continuous search space, can be applied for solving this problem. In the NiaAutoARM
higher-level meta-heuristic, each individual in the population of solutions represents one
feasible ARM pipeline that is encoded into the representation of an individual:

x(t)i =

〈
x(t)i,1︸︷︷︸

ALGORITHM

, y(t)i,1 , y(t)i,2︸ ︷︷ ︸
CONTROL-PARAM

, p(t)i,1 , . . . , p(t)i,P︸ ︷︷ ︸
PREPROCESSING

, z(t)i,1 , . . . , z(t)i,M︸ ︷︷ ︸
METRICS

, w(t)
i,1 , . . . , w(t)

i,M︸ ︷︷ ︸
METRIC WEIGHTS

〉
, (1)

where parameter P denotes the number of potential preprocessing methods, and parameter
M is the number of potential ARM metrics to be applied. As is evident from Equation (1),
each real-valued element of solution in a genotype search space within the interval [0, 1]
decodes the particular NiaAutoARM hyper-parameter of the pipeline in a phenotype
solution space, as presented in Table 2, and it is determined for each hype-parameter of its
corresponding domain values.

Table 2. Hyper-parameters and their domains.

Nr. Hyper-Parameter Domain

1 ALGORITHM {PSO,DE,GA,ILSHADE,LSHADE,jDE}
2 CONTROL-PARAM {NP,MAXFES}
3 PREPROCESSING {MM,ZS,DS,RHC,DK}
4 METRICS {Supp,Conf,Cover,Amp,Incl,Comp}
5 METRIC-WEIGHTS ∑M

i=1 wi = 1.0

As is evident from the table, the ALGORITHM component denotes the specific stochas-
tic NI population-based algorithm, which is chosen from the pool of available algorithms
and is typically selected by the user from a NiaPy library to the relative value of x(t)i,1 [28].
The CONTROL-PARAM component indicates a magnitude of two algorithm’s parameters:
the maximum number of individuals NP, and the maximum number of fitness function
evaluations MAXFES as a termination condition for the lower-level heuristic. Both values,
y(t)i,1 and y(t)i,2 , are mapped in genotype–phenotype mapping to the specific domain of the
mentioned parameters, as proposed by Mlakar et al. in [30]. The PREPROCESSING com-
ponent determines the pool of available preprocessing methods that can be applied to the
dataset. On the one hand, if P = 0, no preprocessing method is applied; meanwhile, on the

Mathematics 2025, 13, 1957 6 of 20

other hand, if P > 0 and p(t)i,j > .5 for j = 1, . . . , P, then the j-th preprocessing methods
from a pool of available ones. For instance, the pool of preprocessing methods in Table 2
consists of the following: “Min_Max normalization” (MM), “Z-Score normalization” (ZS),
“Data Squashing” (DS), “Remove Highly Correlated features” (RHC), and “Discretization
K-means” (DK). The METRICS component is reserved for the pool of M rule evaluation
metrics devoted for estimating the quality of the mined association rules. Additionally,
the weights of the metrics are included by the METRIC_WEIGHTS component, which
weighs the influence of the particular evaluation metric on the appropriate association rule.

Typically, the evaluation metrics illustrated in Table 3 are employed in an NiaAutoARM
higher-level meta-heuristic. These metrics were chosen because they reflect both the statistical
strength and the practical usefulness of the discovered rules. The framework uses these
metrics in the fitness function of the lower-level heuristic. Consequently, this allows for the
higher-level meta-heuristic to be directed into the more promising areas of the underlying
hyper-parameter’s search space while still catering to a dataset-specific context.

Table 3. ARM metrics used for evaluating the mined rules.

Metric Evaluation Functions

Support Supp(X =⇒ Y) = |ti |ti∈X∧ti∈Y|
N

Confidence Con f (X =⇒ Y) = Supp(X∪Y)
Supp(X)

Coverage Cover(X =⇒ Y) = |ti |ti∈Y|
M

Amplitude Amp(X =⇒ Y) = Supp(X∩Y)
Supp(X)

− Supp(Y)
N

Inclusion Incl(X =⇒ Y) = Supp(X∩Y)
Supp(X)

Comprehensibility Comp(X =⇒ Y) = Supp(X∩Y)
Supp(Y)

Although the quality of the mined association rules is calculated in the lower-level
algorithm using the weighted linear combination of the ARM metrics, the higher-level
meta-heuristic estimates the quality of the pipeline due to the fairness using the fitness
function as follows:

f (x(t)i) =
α · supp(X =⇒ Y) + β · conf (X =⇒ Y)

α + β
, (2)

where α and β designate the impact of the definite ARM metric on the quality of the solution.
It is discarded if no rules are produced or the pipeline fails to decode to the solution space.

The pseudo-code of the proposed NiaAutoARM higher-level meta-heuristic for con-
structing the classification pipelines is presented in Algorithm 1, from which it can
be observed that the higher-level meta-heuristic starts with a random initialization of
the population (function INITIALIZE_REAL-VALUED_VECTORS_RANDOMLY in line 1).
After evaluation regarding Equation (2) and determining the best solution (function
EVAL_AND_SELECT_THE_BEST in Line 2), the evolution cycle was started (Lines 3–15),
and it was terminated using function TERMINATION_CONDITION_NOT_MET. Within the
evolution cycle, each individual xi in the population P (Lines 4–14) is, at first, modified
(function MODIFY_USING_NI_ALGORITHMS in Line 5). This modification results in the
production of a trial solution xtrial . Next, both the trial and target solutions are mapped to
the phenotype solution space, producing the trial pipeline and target cur_pipeline (and also
the current best) solutions (Lines 6 and 7). If the fitness function value of the trial pipeline
is better that of the current best evaluated using EVAL function (Line 8), the target solution
becomes a trial one (Line 9). Finally, if the trial pipeline is even better than the global best
pipeline, best_pipeline (Line 11), the global best pipeline becomes the trial pipeline (Line 12).

Mathematics 2025, 13, 1957 7 of 20

Algorithm 1 A pseudo-code of the NiaAutoARM higher-level meta-heuristic.

1: P← INITIALIZE_REAL-VALUED_VECTORS_RANDOMLY(xi)
2: best_pipeline← EVAL_AND_SELECT_THE_BEST(P)
3: while TERMINATION_CONDITION_NOT_MET do
4: for each xi ∈ P do
5: xtrial ← MODIFY_USING_NI_ALGORITHM(xi)
6: pipeline← CONSTRUCT_PIPELINE(xtrial)
7: cur_pipeline← CONSTRUCT_PIPELINE(xi)
8: if EVAL(pipeline) ≥ EVAL(cur_pipeline) then
9: xi ← xtrial ▷ Replace the worse individual

10: end if
11: if EVAL(pipeline) ≥ EVAL(best_pipeline) then
12: best_pipeline← pipeline
13: end if
14: end for
15: end while
16: return best_pipeline

3.2. Lower-Level Heuristics

The NiaAutoARM lower-level heuristic can be any NI algorithm from the Niapy library.
The library contains implementations of NI algorithms, which can be used for solving the ARM
problem. The lower-level heuristic is controlled via the hyper-parameters, like the algorithm’s
parameters, preprocessing methods, and orders for constructing the fitness function. It is
devoted to solving the problem and returning the corresponding results.

Because the design and implementation of the lower-level heuristic algorithms are
described in the corresponding documentation of the Niapy library in detail, we focused
only on the construction of the fitness function, which is defined as follows:

f (x) =
M

∑
i=1

wi · ∗zi(x), (3)

where the variable wi denotes the weight of the corresponding ARM metric, and ∗zi(x) is a
pointer to the function for calculating the corresponding ARM metric. Please note that the
sum of all weights should be one, in other words ∑M

i=1 wi = 1.0.

3.3. An Example of Genotype–Phenotype Mapping

An example of decoding an ARM pipeline to the solution space is illustrated in
Figure 3, where the parameters are set as P = 1 and M = 6. Let us suppose that the
domains of hyper-parameters are given in accordance with Table 2, and the individual in
genotype space is defined as that presented in Table 3.

H
yp
er
pa
ra
m
et
er
s

Pr
ep
ro
ce
ss
in
g

0.4 0.660.19 0.45

M
et
ric
s

0.34 0.54 0.69 0.11 0.04 0.03 0.730.99 0.32 0.12 0.23 0.68

Al
go
rit
hm

DE jDE GA LSHADE ILSHADE PSO

13 5600
NP MAXFES

MM
Supp CoverConf Incl Amp Comp

Figure 3. An example of the genotype–phenotype mapping within the ARM pipeline construction.

Then, the higher-level meta-heuristic algorithm transmits the hyper-parameters to the
lower-level heuristic algorithm via the following program call:

∗Alg[Γ(xi,1)]︸ ︷︷ ︸
Algorithm call

(P, M︸︷︷︸
Param

, Γ(yi,1)︸ ︷︷ ︸
NP

, Γ(yi,2)︸ ︷︷ ︸
MAXFES

, Γ(Prep, p)︸ ︷︷ ︸
Preprocess

, Γ(Metr, z)︸ ︷︷ ︸
Metrics

), Γ(Metr, w)︸ ︷︷ ︸
Weights

)), (4)

Mathematics 2025, 13, 1957 8 of 20

where the function Γ denotes the mapping of genotype values to the phenotype values.
Let us mention that the scalar values of ’Algorithm call’, NP, and MAXFES are decoded by
mapping their values from the interval [0, 1] to the domain values in the solution space.
On the other hand, the preprocessing methods and ARM metrics represent sets, where
each member is taken from the sets Prep and Metr according to the probability 0.5 based
on the values of the vectors p and z. Interestingly, the weight vector can be treated either
statically or adaptively with respect to setting the parameter weight_adaptation. When the
parameter is set as true, the adapted values from vector w indicate an impact of a definite
ARM metric in the linear combination of ARM metrics within the fitness function. If this
parameter is set to false, the values are fixed to the value 1.0.

As a result of the pipeline application, the support and confidence of the best associa-
tion rule are returned to the higher-level meta-heuristic.

4. Results
The primary goal of the experiments was to evaluate whether NiaAutoARM can find

an optimal pipeline for solving various ARM problems automatically. A series of experi-
ments utilized the most common ARM publicly available datasets to justify this hypothesis.

The UCI ML datasets, listed in Table 4, were used for evaluating the performance of
the proposed method [31]. Each database is characterized by the number of transactions,
number of attributes, and their types, which can be either categorical (discrete) or numerical
(real). These datasets were selected since they vary in terms of the number of transactions,
the types of attributes, and the total number of attributes they contain. They are also
commonly used within the ARM literature [30], making them appropriate benchmarks
for evaluating the generalizability of the proposed NiaAutoARM framework. It is worth
mentioning that the proposed method automatically determines the most suitable prepro-
cessing algorithm as a part of its process; therefore, no manual preprocessing was applied
to the original datasets.

Table 4. The evaluation datasets used in the experiments.

Dataset Nr. of Inst. Nr. of Attr. Attr. Type [D/N]

Abalone 4177 9 DN
Balance scale 625 5 DN

Basketball 96 5 N
Bolts 40 8 N

Buying 100 40 N
German 1000 20 DN
House 22,784 17 N

Ionosphere 351 35 DN
Quake 2178 4 N
Wine 178 14 N

In our experiments, we used two NI algorithms for the ARM pipeline optimization as
the higher-level meta-heuristics, namely the DE and the PSO. Both have appeared in several
recent studies in the ARM domain in either original or hybridized form [32–34]. To ensure
a fair comparison, the most important parameters of both algorithms were set equally.
Therefore, the population size was set to NP = 30, and the maximum number of fitness
function evaluations was set to MAXFES = 1000 (i.e., the number of pipeline evaluations),
following the parameter ranges used in prior AutoML and NARM studies, and compu-
tational feasibility was then balanced with optimization performance. These parameters
were selected empirically after preliminary tuning runs, ensuring that the optimization
had sufficient search power without introducing prohibitive computational costs. All other

Mathematics 2025, 13, 1957 9 of 20

parameters of the NI algorithms (i.e., GA, DE, PSO, jDE, LSHADE, and ILSHADE) were
left at their default parameter settings, i.e., as implemented in the NiaPy framework, to
maintain fairness across comparisons. In all the experiments, the lower-level optimization
algorithms for ARM were similarly selected as in the example illustrated in Table 2.

Each experimental run produced the best pipeline for a combination of the specific
dataset and algorithm. Considering the stochastic nature of the DE and PSO algorithms,
the reported results are the average fitness function values of the best obtained pipelines
over 30 independent runs.

The quality of the constructed pipeline was evaluated regarding Equation (2) in
the higher-level meta-heuristic algorithm, while the fitness function in the lower-level
heuristic algorithm was calculated as a weighted sum of the ARM metrics decoded from
the corresponding individual by the NiaAutoARM framework.

4.1. Experimental Evaluation

The following experiments were conducted for analyzing the newly proposed NiaAu-
toARM thoroughly:

• Baseline ARM pipeline optimization that allowed for just one preprocessing compo-
nent and a disabled ARM metric weight adaptation.

• Studied the influence of adapting the ARM metric weights on the quality of the ARM
pipeline construction.

• Studied the influence of selecting more preprocessing components on the quality of
the ARM pipeline construction.

• Conducted a comparison with the VARDE state-of-the-art algorithm.

In the remainder of this section, all of the experimental results are presented in detail,
showcasing the usefulness and efficiency of the proposed method.

4.1.1. Baseline ARM Pipeline Construction

The purpose of the first experiment was to establish a foundational comparison for
all the subsequent experiments. In this experiment, no ARM metric weight adaptation
was applied, ensuring that the generated pipelines operated in their default configurations.
Additionally, each generated pipeline was restricted to a single preprocessing method,
eliminating the variability introduced by multiple preprocessing components.

All the results for this experiment are reported numerically in Tables 5 and 6, and they
are graphically represented in Figure 4 for the different PSO and DE higher-level meta-
heuristics, respectively. The mentioned tables are structured as follows: The column
’Preprocessing method’ denotes the frequency of the preprocessing algorithms in the best
obtained pipelines over all 30 runs. The column ’Hyper-parameters’ is used for report-
ing the average obtained population sizes (NP) and the maximum function evaluations
(MAXFES) for the best obtained ARM pipelines. Lastly, the column ’Metrics & Weights’ are
used for reporting the average values of each used ARM evaluation metric. The number in
the subscript denotes the number of pipelines in which a specific metric was used. Since,
in the baseline experiment, no ARM metric weight adaptation was used, all the values are
equal to 1. Each row in the tables refer to one experimental dataset.

Mathematics 2025, 13, 1957 10 of 20

Table 5. Results for the PSO algorithm, with P = 1, without ARM metric weight adaptation.

Dataset
Preprocessing Method Hyper-Parameters Metrics & Weights

MM ZS DS RHC KM N a NP MAXFES Supp Conf Cover Amp Incl Comp

Abalone 0.27 0.07 - 0.20 - 0.47 11.7 ± 5.2 9656.2 ± 796.4 1.00 ± 0.0025 1.00 ± 0.0023 1.00 ± 0.0019 - 1.00 ± 0.0022 1.00 ± 0.0015
Balance scale 0.30 0.07 - 0.10 - 0.53 17.6 ± 9.0 8370.3 ± 2598.6 1.00 ± 0.0024 1.00 ± 0.0028 1.00 ± 0.008 - 1.00 ± 0.0019 1.00 ± 0.0016

Basketball 0.47 - - - - 0.53 11.7 ± 4.8 9851.2 ± 543.7 1.00 ± 0.0025 1.00 ± 0.0026 1.00 ± 0.0018 - 1.00 ± 0.0029 1.00 ± 0.0012
Bolts 0.23 0.10 - 0.07 - 0.60 13.2 ± 6.6 8946.9 ± 2189.4 1.00 ± 0.0023 1.00 ± 0.0025 1.00 ± 0.0016 1.00 ± 0.002 1.00 ± 0.0026 1.00 ± 0.008

Buying 0.23 0.20 - - 0.07 0.50 17.5 ± 8.3 9039.1 ± 1742.6 1.00 ± 0.0025 1.00 ± 0.0018 1.00 ± 0.0011 1.00 ± 0.003 1.00 ± 0.002 1.00 ± 0.008
German - - 0.97 - - 0.03 20.1 ± 7.2 5871.8 ± 3046.2 1.00 ± 0.0016 1.00 ± 0.0020 1.00 ± 0.0012 1.00 ± 0.0012 1.00 ± 0.0015 1.00 ± 0.0017
House16 0.30 0.13 - 0.10 - 0.47 15.5 ± 8.3 8642.5 ± 2038.8 1.00 ± 0.0025 1.00 ± 0.0021 1.00 ± 0.0022 1.00 ± 0.003 1.00 ± 0.007 1.00 ± 0.0012

Ionosphere 0.17 - - 0.03 0.10 0.70 18.3 ± 9.2 8600.9 ± 2393.7 1.00 ± 0.0028 1.00 ± 0.0019 1.00 ± 0.007 1.00 ± 0.001 1.00 ± 0.003 1.00 ± 0.002
Quake 0.30 0.03 - 0.07 - 0.60 11.4 ± 4.3 9622.0 ± 1074.7 1.00 ± 0.0027 1.00 ± 0.0024 1.00 ± 0.0017 1.00 ± 0.001 1.00 ± 0.0017 1.00 ± 0.0018
Wine 0.23 0.03 - 0.10 - 0.63 12.6 ± 6.3 9471.0 ± 1301.1 1.00 ± 0.0024 1.00 ± 0.0025 1.00 ± 0.0020 1.00 ± 0.001 1.00 ± 0.0014 1.00 ± 0.0018

14.94± 3.06 8807.19± 1089.31 1.00 ± 0.0024.20±3.06 1.00 ± 0.0022.90±3.11 1.00 ± 0.0015.00±4.92 1.00 ± 0.003.29±3.65 1.00 ± 0.0015.40±8.73 1.00 ± 0.0012.60±5.00

a No preprocessing of the dataset.

Table 6. Results for DE algorithm, with P = 1, without ARM metrics weight adaptation.

Dataset Preprocessing Method Hyper-Parameters Metrics & Weights

MM ZS DS RHC KM N a NP MAXFES Supp Conf Cover Amp Incl Comp

Abalone 0.43 0.10 - 0.20 - 0.27 13.2 ± 5.4 9360.9 ± 1150.8 1.00 ± 0.0027 1.00 ± 0.0022 1.00 ± 0.0020 - 1.00 ± 0.0023 1.00 ± 0.008
Balance scale 0.33 0.07 - 0.20 - 0.40 14.8 ± 7.4 8216.3 ± 2234.2 1.00 ± 0.0023 1.00 ± 0.0028 1.00 ± 0.007 - 1.00 ± 0.0023 1.00 ± 0.0020

Basketball 0.47 0.17 - 0.13 - 0.23 12.9 ± 3.7 9160.8 ± 1468.8 1.00 ± 0.0022 1.00 ± 0.0025 1.00 ± 0.0017 - 1.00 ± 0.0028 1.00 ± 0.009
Bolts 0.27 0.13 - 0.10 - 0.50 15.4 ± 6.3 9107.0 ± 1343.4 1.00 ± 0.0025 1.00 ± 0.0021 1.00 ± 0.0015 - 1.00 ± 0.0023 1.00 ± 0.0010

Buying 0.33 0.17 - 0.10 0.10 0.30 13.8 ± 6.6 8793.3 ± 1813.5 1.00 ± 0.0028 1.00 ± 0.0013 1.00 ± 0.006 - 1.00 ± 0.001 -
German - - 1.00 - - - 18.7 ± 7.4 7992.1 ± 2403.1 1.00 ± 0.0016 1.00 ± 0.0013 1.00 ± 0.0015 1.00 ± 0.0019 1.00 ± 0.0015 1.00 ± 0.0013
House16 0.50 0.20 - 0.03 - 0.27 14.2 ± 6.4 8751.8 ± 1865.9 1.00 ± 0.0023 1.00 ± 0.0025 1.00 ± 0.0023 - 1.00 ± 0.008 1.00 ± 0.0017

Ionosphere 0.30 - - 0.10 0.10 0.50 15.1 ± 6.6 8769.9 ± 2080.5 1.00 ± 0.0030 1.00 ± 0.0019 1.00 ± 0.004 - - 1.00 ± 0.002
Quake 0.13 0.23 - 0.17 - 0.47 11.1 ± 2.9 9406.5 ± 899.3 1.00 ± 0.0024 1.00 ± 0.0018 1.00 ± 0.0018 - 1.00 ± 0.0021 1.00 ± 0.0015
Wine 0.27 0.07 - 0.13 - 0.53 11.8 ± 2.8 9506.5 ± 827.2 1.00 ± 0.0027 1.00 ± 0.0028 1.00 ± 0.0015 - 1.00 ± 0.0021 1.00 ± 0.0010

14.09± 2.03 8906± 478.47 1.00 ± 0.0024.50±3.72 1.00 ± 0.0021.20±5.21 1.00 ± 0.0014.00±5.98 1.00 ± 0.0019.00±0.00 1.00 ± 0.0018.11±8.10 1.00 ± 0.0011.56±5.06

a No preprocessing of the dataset.

Mathematics 2025, 13, 1957 11 of 20

(a) (b)

Figure 4. Results for the baseline ARM pipeline optimization, where the averages of the best pipelines
in terms of fitness values, number of generated rules, and the used lower-level heuristic algorithms are
reported. (a) Results for the PSO higher-level meta-heuristic algorithm without ARM metric weight
adaptation and just one preprocessing method. (b) Results for the DE higher-level meta-heuristic
algorithm without ARM metric weight adaptation and just one preprocessing method.

Figure 4 presents the obtained average fitness values along with the average number
of rules generated by the best obtained pipelines. Additionally, the frequencies of the
lower-level heuristic algorithms are depicted. The fitness values are marked with blue
dash/dotted lines, whereas the number of rules is marked with a red dotted line. The fre-
quencies of the lower-level heuristic algorithms are presented as different colored lines
from the center of the graph, and they are outward to each dataset.

The results in Table 5, developed by the PSO higher-level meta-heuristic algorithm,
justified that the preprocessing methods, like MM, ZS, and RHC, were selected more frequently.
Meanwhile, in general, ’No preprocessing’ was selected in most of the pipelines, regardless of
the dataset. The ARM metrics support, confidence, and coverage appeared consistently across
most datasets. Notably, the support and confidence were present in nearly all the pipelines for
datasets like Abalone, Balance scale, and Basketball, indicating that these metrics are essential
for the underlying optimization process. Metrics like amplification, which are used less
frequently, are absent in many datasets, suggesting that the current algorithm configuration
does not prioritize such metrics. The hyper-parameters NP and MAXFES varied depending
on the dataset, influencing the ARM pipeline optimization process.

Table 6 shows the results for the DE higher-level meta-heuristic algorithm. Similar to
the results of the PSO, key ARM metrics, like support, confidence, and coverage, are found
consistently in many of the generated pipelines. However, there are subtle differences in
the distribution of these metrics across the pipelines. For instance, the metric amplitude
was selected just for the dataset German. Regarding the preprocessing methods and hyper-
parameters, a similar distribution can be found as in the results of the PSO algorithm.

The graphical results showcase that both DE and PSO obtained similar results regarding
the fitness value. The number of rules was slightly dispersed, although no big deviations
were detected. The key differences were in the selection of the lower-level heuristic algorithm.
For the majority of datasets, the PSO and jDE algorithms were selected more often as the
lower-level heuristic algorithms. This was also true for both the higher-level meta-heuristic
algorithms. Other used algorithms, such as GA, DE, ILSHADE and LSHADE, were selected
rarely as the lower-level heuristic, probably due to their complexity or their lack of it.

Mathematics 2025, 13, 1957 12 of 20

To summarize the results of the baseline experiment, we can conclude that the best
results were obtained when either no preprocessing was applied or when MM was used on
the dataset. The NP parameter seemed to be higher for more complex datasets (i.e., more
attributes), such as Buying, German, House16 and Ionosphere, while it remained lower for
the others, which were less demanding. Regarding the selection of specific ARM evaluation
metrics, it seems that both algorithms focused on the more common ones, i.e., those usually
used in Evolutionary ARM [30]. Overall, these results indicate the DE and PSO algorithms’
robustness as a higher-level meta-heuristic while reinforcing the potential benefits of further
exploration into ARM metric weight adaptation and diversified preprocessing strategies.

Please note that all the subsequent results are reported in the same manner.

4.1.2. Influence of the ARM Metric Weights Adaption on the Quality of ARM
Pipeline Construction

The purpose of this experiment was to analyze the impact of selecting ARM metric
weight adaptation on the performance of the ARM pipeline construction. The ARM metric
weights play a crucial role in guiding the optimization process as they influence the evaluation
and selection of the candidate association rules. By incorporating the ARM weight adaptation
mechanism, the pipeline can adjust the importance of ARM metrics dynamically, such as
support, confidence, coverage, and others, and it is tailored to the characteristics of the dataset.
This experiment aimed to determine whether adapting these weights improved the quality of
the discovered rules; therefore, they are reflected in the pipeline’s metrics. The results were
compared to the baseline configuration, where no weight adaptation was applied.

Tables 7 and 8 present the results obtained by the PSO and DE higher-level meta-
heuristic algorithms, respectively. A similar selection of the preprocessing methods as in
the last experiment was also employed in this experiment, where the preprocessing methods
MM, ZS, and None were applied the most frequently. The hyper-parameters yielded higher
values for the harder datasets. Considering the ARM metrics, the support and confidence
still arose with high weight values in the majority of the pipelines, whereas the ARM
metrics, like amplification or comprehensibility, were utilized less with lower weights.

From the results in Figure 5, we can deduce similar conclusions as from those in
the baseline experiment, but the ARM metric weight adaptation provided slightly higher
fitness values than those achieved in the last experiment. Although these differences were
not significantly different to those according to the Wilcox test (p-value = 0.41), they still
offered overall better ARM pipelines for the majority of datasets.

Mathematics 2025, 13, 1957 13 of 20

Table 7. Results for the outer algorithm PSO with ARM metric weight adaptation and just one preprocessing method.

Dataset
Preprocessing Method Hyper-Parameters Metrics & Weights

MM ZS DS RHC KM N a NP MAXFES Supp Conf Cover Amp Incl Comp

Abalone 0.40 0.07 - 0.10 - 0.43 11.6 ± 5.0 9448.7 ± 1608.1 0.89 ± 0.2323 0.81 ± 0.2925 0.67 ± 0.3317 - 0.63 ± 0.3523 0.41 ± 0.2911
Balance scale 0.40 0.10 - 0.10 - 0.40 16.6 ± 8.8 6563.6 ± 3507.9 0.56 ± 0.3923 0.77 ± 0.3023 0.62 ± 0.258 - 0.66 ± 0.3114 0.74 ± 0.2715

Basketball 0.63 - - 0.07 - 0.30 14.8 ± 7.9 9285.8 ± 1723.5 0.83 ± 0.2829 0.84 ± 0.2224 0.63 ± 0.3610 - 0.76 ± 0.3422 0.88 ± 0.249
Bolts 0.23 0.07 - 0.03 - 0.67 10.9 ± 3.6 8642.9 ± 2285.0 0.86 ± 0.2119 0.68 ± 0.3219 0.75 ± 0.2815 - 0.84 ± 0.2725 0.98 ± 0.045

Buying 0.43 0.03 - 0.13 0.03 0.37 17.6 ± 8.4 8695.0 ± 2184.4 0.75 ± 0.3127 0.83 ± 0.3313 0.61 ± 0.406 1.00 ± 0.001 0.98 ± 0.001 0.99 ± 0.012
German - - 1.00 - - - 20.4 ± 7.0 5921.3 ± 2437.6 0.53 ± 0.2813 0.60 ± 0.3514 0.47 ± 0.3615 0.62 ± 0.3611 0.66 ± 0.3515 0.61 ± 0.2919
House16 0.30 0.03 - 0.03 - 0.63 13.7 ± 6.5 9141.0 ± 1947.1 0.79 ± 0.2824 0.88 ± 0.2018 0.62 ± 0.3614 0.03 ± 0.034 0.67 ± 0.466 0.41 ± 0.2910

Ionosphere 0.23 - - 0.13 0.03 0.60 13.3 ± 6.1 8799.0 ± 2451.1 0.77 ± 0.3529 0.68 ± 0.3420 0.73 ± 0.223 0.03 ± 0.001 - 0.34 ± 0.202
Quake 0.40 - - 0.13 - 0.47 12.1 ± 5.9 9941.2 ± 239.3 0.80 ± 0.2925 0.74 ± 0.3416 0.83 ± 0.2115 - 0.72 ± 0.3217 0.87 ± 0.2913
Wine 0.37 0.07 - 0.03 - 0.53 10.8 ± 2.0 9454.8 ± 1539.8 0.85 ± 0.2423 0.88 ± 0.2625 0.74 ± 0.3010 - 0.73 ± 0.3324 0.70 ± 0.236

14.16± 3.00 8589.34± 1240.34 0.76 ± 0.1223.50±4.54 0.77 ± 0.0919.70±4.24 0.67 ± 0.1011.30±4.38 0.42 ± 0.414.25±4.09 0.74 ± 0.1016.33±7.89 0.69 ± 0.239.20±5.29

a No preprocessing of the dataset.

Table 8. Results for the outer algorithm DE with ARM metric weight adaptation and just one preprocessing method.

Dataset
Preprocessing Method Hyper-Parameters Metrics & Weights

MM ZS DS RHC KM N a NP MAXFES Supp Conf Cover Amp Incl Comp

Abalone 0.60 0.03 - 0.10 - 0.27 12.1 ± 3.9 8808.1 ± 1628.4 0.78 ± 0.2924 0.84 ± 0.1820 0.67 ± 0.3219 - 0.63 ± 0.3326 0.65 ± 0.3011
Balance scale 0.37 0.10 - 0.03 - 0.50 19.3 ± 8.0 8727.0 ± 1780.1 0.66 ± 0.3025 0.80 ± 0.1920 0.66 ± 0.299 - 0.85 ± 0.2615 0.66 ± 0.3615

Basketball 0.37 0.17 - 0.27 - 0.20 13.0 ± 5.1 8858.1 ± 1383.7 0.70 ± 0.3122 0.85 ± 0.2122 0.63 ± 0.2611 - 0.69 ± 0.3427 0.56 ± 0.339
Bolts 0.17 0.20 - 0.07 - 0.57 16.1 ± 7.7 8495.1 ± 2678.4 0.67 ± 0.2820 0.59 ± 0.3423 0.69 ± 0.3616 0.25 ± 0.001 0.59 ± 0.2723 0.78 ± 0.3012

Buying 0.27 0.13 - 0.10 0.07 0.43 16.8 ± 6.9 9124.0 ± 1631.4 0.73 ± 0.3330 0.68 ± 0.3314 0.69 ± 0.343 - 0.10 ± 0.001 0.49 ± 0.442
German - - 1.00 - - - 19.4 ± 7.6 5848.0 ± 3014.7 0.87 ± 0.1712 0.88 ± 0.1710 0.57 ± 0.3010 0.61 ± 0.3711 0.63 ± 0.2712 0.59 ± 0.2810
House16 0.33 0.07 - 0.23 0.03 0.33 15.4 ± 6.7 8682.6 ± 1810.6 0.64 ± 0.3023 0.76 ± 0.3116 0.67 ± 0.3220 - 0.41 ± 0.379 0.60 ± 0.3318

Ionosphere 0.40 - - 0.07 0.13 0.40 14.7 ± 6.4 8727.3 ± 1754.6 0.72 ± 0.2728 0.73 ± 0.3214 0.79 ± 0.236 - 0.46 ± 0.403 0.48 ± 0.173
Quake 0.33 0.10 - 0.17 - 0.40 11.1 ± 2.6 9471.8 ± 1115.7 0.66 ± 0.3226 0.68 ± 0.2518 0.69 ± 0.3018 - 0.74 ± 0.3013 0.59 ± 0.3317
Wine 0.40 0.10 - 0.10 - 0.40 11.8 ± 4.0 9293.9 ± 1261.7 0.75 ± 0.2624 0.77 ± 0.2419 0.54 ± 0.359 - 0.61 ± 0.3420 0.55 ± 0.3411

14.95± 2.84 8603± 961.74 0.72 ± 0.0723.40±4.67 0.76 ± 0.0917.60±3.85 0.66 ± 0.0712.10±5.52 0.43 ± 0.186.00±5.00 0.57 ± 0.2014.90±8.62 0.60 ± 0.0810.80±5.02

a No preprocessing of the dataset.

Mathematics 2025, 13, 1957 14 of 20

(a) (b)

Figure 5. Results for the ARM pipeline construction using ARM metric weight adaptation, where
the averages of the best pipelines in terms of fitness values, number of generated rules, and the used
inner optimization algorithms are presented. (a) Results for the PSO higher-level meta-heuristic
algorithm with ARM metric weight adaptation and just one preprocessing method. (b) Results for
the DE higher-level meta-heuristic algorithm DE with ARM metric weight adaptation and just one
preprocessing method.

4.1.3. Influence of Selecting More Preprocessing Methods on the Quality of ARM
Pipeline Construction

The parameter P controls the number of preprocessing components allowed in an ARM
pipeline. By increasing P beyond 1, we introduce the possibility of combining multiple pre-
processing dataset methods, which can, potentially, enhance the quality of the generated rules.
This increased flexibility enables the pipeline to address complex data characteristics (e.g.,
variability in feature scaling, noise reduction, or dimensionality reduction) more effectively.
However, this increased complexity also poses challenges, including higher computational
costs and a broader search space to be discovered by the inner optimization algorithms. In this
section, we analyze the impact of setting the parameter as P > 1 on the quality of the ARM
pipelines, focusing on the resulting ARM metrics and their corresponding weights, as well as
onthe computational trade offs for the experimental datasets. The results of the selected pre-
processing algorithms are depicted as heatmaps of all the possible combinations. The results
in Tables 9 and 10 suggest that the support and confidence ARM metrics were again included
heavily in the calculation of the fitness function, achieving high values in the majority of the
pipelines for both the higher-level meta-heuristic algorithms. The coverage and inclusion
ARM metrics were also involved in many pipelines, although their average weights were
smaller. There was no notable difference in the selected hyper-parameters when compared to
the previous two experiments.

Since this experiment included selecting more preprocessing methods, their selection
frequency is reported in terms of heatmaps in Figure 6b for the PSO meta-heuristic algo-
rithm and Figure 7b for the DE meta-heuristic algorithm. The selection of the preprocessing
method varied, of course, if we observed a particular dataset, as the data were distributed
differently. However, if we look at the overall selection process, specific combinations
stand out. For the PSO algorithm, the most frequent combinations were {MM, RHC}
and MM, while, for the DE meta-heuristic algorithm, it was {RHC, ZS}, {MM, RHC, ZS},
and RHC. The MM preprocessing method was frequently selected across all datasets in
both algorithms, likely due to its ability to normalize feature values to a standard range
(which enhances the ability of the inner optimization algorithm to explore the search space

Mathematics 2025, 13, 1957 15 of 20

more efficiently). This preprocessing method ensures that all features equally contribute
during the optimization process, mitigating the influence of features with larger numeric
ranges and facilitating better rule generation.

Figures 6a and 7a illustrate the fitness values and the number of generated rules for
the PSO and DE meta-heuristic algorithms. The DE meta-heuristic algorithm produced
ARM pipelines with slightly higher fitness values, while the PSO meta-heuristic algorithm
generated a greater number of rules. It is also evident that the PSO algorithm was selected
the most as the lower-level heuristic algorithm in both scenarios.

(a) (b)

Figure 6. Results of the PSO ARM pipeline optimization using ARM metric weight adaptation
and selecting more preprocessing components, where the averages of the best pipelines in terms
of fitness values, number of generated rules, and the used lower-level heuristic algorithms and
preprocessing methods are reported. (a) Results of the preprocessing components for the PSO higher-
level meta-heuristic algorithm with ARM metric weight adaptation and more preprocessing methods.
(b) Heatmap of the preprocessing components for the PSO higher-level meta-heuristic algorithm with
ARM metric weight adaptation and more preprocessing methods.

(a) (b)

Figure 7. Results for the DE ARM pipeline optimization using ARM metric weight adaptation and
selecting more preprocessing methods, where the averages of the best pipelines in terms of fitness
values, number of generated rules, and the used inner optimization algorithms and preprocess-
ing methods are reported. (a) Results of the preprocessing components for the DE higher-level
meta-heuristic algorithm with ARM metric weight adaptation and more preprocessing methods.
(b) Heatmap of the preprocessing components for the higher-level meta-heuristic algorithm with
ARM metric weight adaptation and more preprocessing methods.

Mathematics 2025, 13, 1957 16 of 20

Table 9. Results for the PSO higher-level meta-heuristic algorithm with ARM metric weight adaptation and selecting more preprocessing methods.

Dataset
Preprocessing Method Hyper-Parameters Metrics & Weights

MM ZS DS RHC KM N a NP MAXFES Supp Conf Cover Amp Incl Comp

Abalone - - - - - - 15.6 ± 8.4 9570.9 ± 1477.9 0.83 ± 0.3017 0.82 ± 0.2421 0.83 ± 0.2819 - 0.65 ± 0.4017 0.76 ± 0.3616
Balance scale - - - - - - 14.8 ± 7.6 7869.1 ± 2986.2 0.69 ± 0.3723 0.74 ± 0.2924 0.48 ± 0.3510 - 0.82 ± 0.2716 0.70 ± 0.2814

Basketball - - - - - - 13.4 ± 6.5 9700.8 ± 907.4 0.73 ± 0.3424 0.83 ± 0.3019 0.88 ± 0.2511 - 0.66 ± 0.3821 0.76 ± 0.3310
Bolts - - - - - - 15.7 ± 7.9 8379.6 ± 2697.1 0.79 ± 0.2925 0.86 ± 0.2418 0.82 ± 0.2414 - 0.76 ± 0.2821 0.79 ± 0.278

Buying - - - - - - 19.3 ± 8.7 9364.9 ± 1770.2 0.80 ± 0.2926 0.88 ± 0.2113 0.79 ± 0.327 - - 0.66 ± 0.232
German - - - - - - 19.4 ± 6.5 6091.4 ± 3015.5 0.61 ± 0.2913 0.67 ± 0.3014 0.51 ± 0.3813 0.76 ± 0.2814 0.66 ± 0.3118 0.54 ± 0.3314
House16 - - - - - - 16.0 ± 8.3 8451.8 ± 2975.0 0.71 ± 0.3324 0.80 ± 0.2922 0.65 ± 0.3217 0.01 ± 0.002 0.48 ± 0.3710 0.52 ± 0.4210

Ionosphere - - - - - - 21.3 ± 8.2 6776.0 ± 3324.5 0.64 ± 0.4123 0.82 ± 0.3214 0.25 ± 0.205 0.76 ± 0.235 0.81 ± 0.163 0.59 ± 0.412
Quake - - - - - - 11.6 ± 4.8 9585.9 ± 899.3 0.91 ± 0.2019 0.87 ± 0.2418 0.64 ± 0.4015 - 0.68 ± 0.3613 0.71 ± 0.3316
Wine - - - - - - 14.4 ± 7.3 8685.9 ± 2585.8 0.82 ± 0.3124 0.86 ± 0.2421 0.69 ± 0.3018 0.33 ± 0.292 0.53 ± 0.3817 0.74 ± 0.3113

16.15 2.86 8447.63 ± 1170.97 0.75 ± 0.0921.80±3.92 0.82 ± 0.0618.40±3.56 0.65 ± 0.1912.90±4.41 0.47 ± 0.325.75±4.92 0.67 ± 0.1115.11±5.40 0.68 ± 0.0910.50±4.92

a No preprocessing of the dataset.

Table 10. Results for the DE higher-level meta-heuristic algorithm with ARM metric weight adaptation and selecting more preprocessing methods.

Dataset
Preprocessing Method Hyper-Parameters Metrics & Weights

MM ZS DS RHC KM N a NP MAXFES Supp Conf Cover Amp Incl Comp

Abalone - - - - - - 11.6 ± 4.2 8989.0 ± 1818.6 0.73 ± 0.2325 0.74 ± 0.2917 0.85 ± 0.2315 - 0.72 ± 0.3021 0.67 ± 0.409
Balance scale - - - - - - 15.0 ± 6.7 7358.0 ± 3076.0 0.61 ± 0.3124 0.74 ± 0.3224 0.44 ± 0.3212 - 0.82 ± 0.2716 0.60 ± 0.2910

Basketball - - - - - - 13.6 ± 5.5 8971.7 ± 1704.6 0.69 ± 0.2725 0.72 ± 0.3319 0.57 ± 0.3313 - 0.74 ± 0.3120 0.61 ± 0.3715
Bolts - - - - - - 15.6 ± 6.5 8468.6 ± 2388.3 0.73 ± 0.2721 0.76 ± 0.2820 0.71 ± 0.3517 0.34 ± 0.173 0.81 ± 0.2326 0.63 ± 0.3610

Buying - - - - - - 15.1 ± 6.3 9024.1 ± 1431.3 0.72 ± 0.3230 0.61 ± 0.3212 0.67 ± 0.332 - - -
German - - - - - - 22.2 ± 7.6 6033.7 ± 2926.3 0.55 ± 0.3311 0.62 ± 0.3322 0.40 ± 0.3514 0.57 ± 0.3215 0.59 ± 0.3113 0.72 ± 0.3211
House16 - - - - - - 15.8 ± 7.3 7880.9 ± 2238.0 0.77 ± 0.2925 0.74 ± 0.2823 0.68 ± 0.2921 - 0.55 ± 0.3613 0.54 ± 0.3814

Ionosphere - - - - - - 16.8 ± 7.3 8059.6 ± 2564.3 0.71 ± 0.3428 0.82 ± 0.2821 0.52 ± 0.365 - 0.53 ± 0.395 -
Quake - - - - - - 11.8 ± 2.8 8982.1 ± 1247.7 0.78 ± 0.2927 0.66 ± 0.3015 0.73 ± 0.2813 0.21 ± 0.001 0.64 ± 0.3618 0.71 ± 0.3018
Wine - - - - - - 14.6 ± 5.9 9342.5 ± 1265.8 0.65 ± 0.3424 0.83 ± 0.2429 0.66 ± 0.3317 0.08 ± 0.001 0.63 ± 0.3322 0.67 ± 0.3211

15.22 ± 2.82 8311.03 ± 963.66 0.69 ± 0.0724.00±4.92 0.72 ± 0.0720.20±4.58 0.62 ± 0.1312.90±5.36 0.30 ± 0.185.00±5.83 0.67 ± 0.1017.11±5.86 0.64 ± 0.0512.25±2.90

a No preprocessing of the dataset.

Mathematics 2025, 13, 1957 17 of 20

4.1.4. Comparison with the VARDE State-of-the-Art Algorithm

The last experiment was reserved for an indirect comparison with the VARDE state-
of-the-art algorithm [30] for ARM, which represents a hybridized version of DE and was
designed specifically for the exploration and exploitation of the ARM search space. Thus,
the best reported variations of VARDE were used in this comparative study. It was not
a direct comparison since the pipelines produced by NiaAutoARM are dataset-specific.
Therefore, for each dataset, we observed which components of the pipeline provided the
best results (i.e., the lower-level heuristic algorithm, preprocessing component and rule
evaluation metrics), and we performed 30 independent runs with these settings. The results
of these dataset-specific independent runs were compared to the results of VARDE using
the Wilcoxon signed rank test.

The results are depicted in Table 11.

Table 11. Results of the Wilxocon test when comparing the NiaAutoARM-generated pipelines
with VARDE.

Method
Baseline WO, P = 1 WO, P > 1

PSO DE PSO DE PSO DE

VARDE_pos_15_2000 [30] 0.03 0.34 0.01 0.08 0.01 0.01
VARDE_neg_15_2000 [30] 0.61 0.17 0.97 0.54 0.75 0.98

As is evident from the table, the pipelines found by the NiaAutoARM provided
significantly better results in some instances compared to the VARDE method. Therefore,
NiaAutoARM was distinguished as an effective framework for ARM.

4.2. Discussion

The results show notable trends in the optimization of ARM pipelines. The PSO
algorithm was selected predominantly over jDE, DE, LSHADE, and ILSHADE as the lower-
level heuristic method. This preference can be attributed to the PSO’s ability to balance
exploration and exploitation effectively, enabling it to navigate the search space efficiently
and avoid premature convergence. In contrast, the other algorithms may converge too
quickly, potentially limiting their effectiveness in identifying diverse high-quality pipelines,
thus making them less suitable for this specific optimization task. Min-max scaling was
the most frequently used preprocessing method, likely due to its simplicity and ability
to standardize data efficiently. Additionally, support and confidence were the dominant
metrics in the generated pipelines, reflecting their fundamental role in ARM.

While the approach exhibits a slightly higher computational complexity due to the
iterative optimization and exploration of diverse preprocessing combinations, this is a
manageable trade-off (see Table 12). The superior results achieved, particularly in com-
parison to the VARDE state-of-the-art hybrid DE method, underscore the robustness of
the approach. Notably, the method operates without requiring prior knowledge of the
algorithms or datasets, making it adaptable and versatile for various applications.

In summary, the NiaAuroARM framework is capable of finding the best association
rules automatically, without any intervention from the user. This makes the framework
aligned with the goals of democratizing ML. However, the basic problem remains unsolved
from the user’s perspective, i.e., how to make explanations and predictions on the basis
of the mined association rules. Therefore, the primary research direction for the future
remains to integrate the NiaAutoARM with emerging technologies, like eXplainable AI
(XAI). On the other hand, the hybridization of meta-heuristics presents a promising research
issue for the future.

Mathematics 2025, 13, 1957 18 of 20

Table 12. The average execution times of both the higher-level meta-heuristic algorithms, which are
needed for finding the best pipelines for each experimental dataset in seconds.

Dataset PSO DE

Abalone 27584.0± 7238.7 23486.5± 4702.6
Balance scale 15356.1± 6617.0 11598.7± 1298.3
Basketball 23442.6± 5271.6 15476.7± 1893.6
Bolts 22325.9± 9694.9 18603.7± 4979.5
Buying 33819.2± 10046.0 34449.2± 4134.3
German 25322.6± 10027.3 25958.7± 3230.3
House 34444.4± 8286.6 34464± 7709.4
Ionosphere 32299.7± 9396.3 40831.1± 7365.6
Quake 17897.9± 4523.5 18393.1± 4162.1
Wine 28541.7± 7341.7 24963.4± 3111.6

5. Conclusions
This paper presents NiaAutoARM, an innovative framework designed for the opti-

mization of the ARM pipelines using stochastic population-based NI algorithms. The frame-
work integrates the selection of the following: a lower-level heuristic, its hyper-parameter
optimization, dataset preprocessing techniques, and searching for the more suitable fitness
function represented as a weighted sum of ARM evaluation metrics (which is where the
weights are the subjects of the adaptation). Extensive evaluations on ten widely used
datasets from the UC Irvine repository underscore the framework’s effectiveness, and
it is particularly useful for users with limited domain expertise. Comparative analysis
against the VARDE state-of-the-art hybrid DE highlights the superior performance of the
proposed framework in generating high-quality ARM pipelines. In general, the obtained
results underscore the effectiveness of NiaAutoARM’s layered metaheuristic design in opti-
mizing full NARM pipelines, offering clear advantages over conventional or single-layer
optimization methods in terms of flexibility, adaptability, and also overall performance.

Our future work aims to address several key areas: First, integrating additional NI al-
gorithms with adaptive parameter tuning could enhance the pipeline optimization process
further. Second, incorporating other advanced preprocessing techniques and alternative
metrics might improve pipeline diversity and domain-specific applicability. Third, explor-
ing parallel and distributed computing strategies could mitigate computational complexity,
making the framework more scalable for larger datasets and more complex mining tasks.

In addition, extending the framework to support multi-objective optimization would
allow a deeper exploration of trade-offs between potentially conflicting metrics, advanc-
ing its utility for real-world applications that demand interpretable and actionable rule
sets. Furthermore, a promising and underexplored direction is to investigate how the
heterogeneity of the attribute type. Specifically, how the varying proportions of numerical
and categorical attributes influence the performance, quality, and interpretability of the
mined association rules. To date, this question has received little systematic attention in
the literature, and examining it could lead to tailored strategies that further enhance the
effectiveness of NiaAutoARM across mixed-attribute datasets.

Author Contributions: Conceptualization, I.F.J. and I.F.; Methodology, U.M. and I.F.J.; Software,
U.M. and I.F.J.; Validation, U.M.; Formal analysis, U.M. and I.F.; Investigation, I.F.J. and I.F.; Writing—
original draft, U.M., I.F.J. and I.F.; Writing—review and editing, U.M., I.F.J. and I.F.; Visualization,
U.M.; Supervision, I.F.; Project administration, I.F.; Funding acquisition, U.M. and I.F.J. All authors
have read and agreed to the published version of the manuscript.

Mathematics 2025, 13, 1957 19 of 20

Funding: Iztok Fister, Jr. wishes to thank the Slovenian Research Agency (Program No. P2-0057) for
their financial support. Uroš Mlakar also wishes to thank the Slovenian Research and Innovation
Agency (Program No. P2-0041) for their financial support.

Data Availability Statement: The data used in this study are available on request from the
corresponding authors. The code of the proposed NiaAutoARM is publicly available on https:
//github.com/firefly-cpp/NiaAutoARM (accessed on 30 April 2025).

Acknowledgments: The authors express their gratitude to Žiga Stupan for his insightful input during
the initial discussions of this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yao, Q.; Wang, M.; Chen, Y.; Dai, W.; Li, Y.F.; Tu, W.W.; Yang, Q.; Yu, Y. Taking human out of learning applications: A survey on

automated machine learning. arXiv 2018, arXiv:1810.13306.
2. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer Nature:

Berlin/Heidelberg, Germany, 2019.
3. He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl.-Based Syst. 2021, 212, 106622. [CrossRef]
4. Conrad, F.; Mälzer, M.; Schwarzenberger, M.; Wiemer, H.; Ihlenfeldt, S. Benchmarking AutoML for regression tasks on small

tabular data in materials design. Sci. Rep. 2022, 12, 19350. [CrossRef]
5. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing, 2nd ed.; Springer Publishing Company: Berlin/Heidelberg,

Germany, 2015.
6. Blum, C.; Merkle, D. Swarm Intelligence: Introduction and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [CrossRef]
7. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
8. Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules in Large Databases. In Proceedings of the 20th International

Conference on Very Large Data Bases, VLDB’94, San Francisco, CA, USA, 12–15 September 1994; pp. 487–499.
9. Han, J.; Cheng, H.; Xin, D.; Yan, X. Frequent Pattern Mining: Current Status and Future Directions. Data Min. Knowl. Discov.

2007, 15, 55–86. [CrossRef]
10. Alatas, B.; Akin, E.; Karci, A. MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules.

Appl. Soft Comput. 2008, 8, 646–656. [CrossRef]
11. Altay, E.V.; Alatas, B. Differential evolution and sine cosine algorithm based novel hybrid multi-objective approaches for

numerical association rule mining. Inf. Sci. 2021, 554, 198–221. [CrossRef]
12. Fister, I.; Iglesias, A.; Galvez, A.; Del Ser, J.; Osaba, E.; Fister, I. Differential evolution for association rule mining using categorical

and numerical attributes. In Proceedings of the Intelligent Data Engineering and Automated Learning–IDEAL 2018: 19th
International Conference, Madrid, Spain, 21–23 November 2018; Proceedings, Part I 19; Springer: Berlin/Heidelberg, Germany,
2018; pp. 79–88.

13. Minaei-Bidgoli, B.; Barmaki, R.; Nasiri, M. Mining numerical association rules via multi-objective genetic algorithms. Inf. Sci.
2013, 233, 15–24. [CrossRef]

14. Heraguemi, K.E.; Kamel, N.; Drias, H. Association rule mining based on bat algorithm. J. Comput. Theor. Nanosci. 2015,
12, 1195–1200. [CrossRef]

15. Kuo, R.J.; Chao, C.M.; Chiu, Y. Application of particle swarm optimization to association rule mining. Appl. Soft Comput. 2011,
11, 326–336. [CrossRef]

16. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st ed.; Series of Books in the
Mathematical Sciences; W. H. Freeman: New York, NY, USA, 1979.

17. Glover, F.; Kochenberger, G.A. (Eds.) Handbook of Metaheuristics; International Series in Operations Research & Management
Science; Springer: Berlin/Heidelberg, Germany, 2003.

18. Grefenstette, J. Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 1986, 16, 122–128.
[CrossRef]

19. Cui, H.; Bai, J. A new hyperparameters optimization method for convolutional neural networks. Pattern Recognit. Lett. 2019,
125, 828–834. [CrossRef]

20. Stang, M.; Meier, C.; Rau, V.; Sax, E. An Evolutionary Approach to Hyper-Parameter Optimization of Neural Networks. In Human
Interaction and Emerging Technologies, Proceedings of the 1st International Conference on Human Interaction and Emerging Technologies
(IHIET 2019), Nice, France, 22–24 August 2019; Ahram, T., Taiar, R., Colson, S., Choplin, A., Eds.; Springer: Cham, Switzerland,
2020; pp. 713–718.

https://github.com/firefly-cpp/NiaAutoARM
https://github.com/firefly-cpp/NiaAutoARM
http://doi.org/10.1016/j.knosys.2020.106622
http://dx.doi.org/10.1038/s41598-022-23327-1
http://dx.doi.org/10.1007/978-3-540-74089-6
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1007/s10618-006-0059-1
http://dx.doi.org/10.1016/j.asoc.2007.05.003
http://dx.doi.org/10.1016/j.ins.2020.12.055
http://dx.doi.org/10.1016/j.ins.2013.01.028
http://dx.doi.org/10.1166/jctn.2015.3873
http://dx.doi.org/10.1016/j.asoc.2009.11.023
http://dx.doi.org/10.1109/TSMC.1986.289288
http://dx.doi.org/10.1016/j.patrec.2019.02.009

Mathematics 2025, 13, 1957 20 of 20

21. Holzinger, A. Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Inform. 2016,
3, 119–131. [CrossRef]

22. Zöller, M.A.; Huber, M.F. Benchmark and survey of automated machine learning frameworks. J. Artif. Intell. Res. 2021, 70, 409–472.
[CrossRef]

23. Escalante, H.J. Automated Machine Learning—A Brief Review at the End of the Early Years. In Automated Design of Machine
Learning and Search Algorithms; Springer: Cham, Switzerland, 2021; pp. 11–28.

24. Musigmann, M.; Akkurt, B.H.; Krähling, H.; Nacul, N.G.; Remonda, L.; Sartoretti, T.; Henssen, D.; Brokinkel, B.; Stummer, W.;
Heindel, W.; et al. Testing the applicability and performance of Auto ML for potential applications in diagnostic neuroradiology.
Sci. Rep. 2022, 12, 13648. [CrossRef]

25. Barreiro, E.; Munteanu, C.R.; Cruz-Monteagudo, M.; Pazos, A.; González-Díaz, H. Net-Net auto machine learning (AutoML)
prediction of complex ecosystems. Sci. Rep. 2018, 8, 12340. [CrossRef]

26. Fister, I.; Zorman, M.; Fister, D.; Fister, I. Continuous optimizers for automatic design and evaluation of classification pipelines.
In Frontier Applications of Nature Inspired Computation; Springer Tracts in Nature-Inspired Computing; Springer: Singapore, 2020;
pp. 281–301.

27. Pečnik, L.; Fister, I.; Fister, I., Jr. NiaAML2: An Improved AutoML Using Nature-Inspired Algorithms. In Proceedings of the
Advances in Swarm Intelligence: 12th International Conference, ICSI 2021, Qingdao, China, 17–21 July 2021; Proceedings, Part II
12; Springer: Berlin/Heidelberg, Germany, 2021; pp. 243–252.

28. Stupan, Ž.; Fister, I. NiaARM: A minimalistic framework for Numerical Association Rule Mining. J. Open Source Softw. 2022,
7, 4448. [CrossRef]

29. Vrbančič, G.; Brezočnik, L.; Mlakar, U.; Fister, D.; Fister, I., Jr. NiaPy: Python microframework for building nature-inspired
algorithms. J. Open Source Softw. 2018, 3, 613. [CrossRef]

30. Mlakar, U.; Fister, I. Variable-Length Differential Evolution for Numerical and Discrete Association Rule Mining. IEEE Access
2023, 12, 4239–4254. [CrossRef]

31. Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ (accessed on 30 October
2024)

32. Telikani, A.; Gandomi, A.H.; Shahbahrami, A. A survey of evolutionary computation for association rule mining. Inf. Sci. 2020,
524, 318–352. [CrossRef]

33. Yan, D.; Zhao, X.; Lin, R.; Bai, D. PPQAR: Parallel PSO for quantitative association rule mining. Peer-to-Peer Netw. Appl. 2019,
12, 1433–1444. [CrossRef]

34. Su, T.; Xu, H.; Zhou, X. Particle swarm optimization-based association rule mining in big data environment. IEEE Access 2019,
7, 161008–161016. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s40708-016-0042-6
http://dx.doi.org/10.1613/jair.1.11854
http://dx.doi.org/10.1038/s41598-022-18028-8
http://dx.doi.org/10.1038/s41598-018-30637-w
http://dx.doi.org/10.21105/joss.04448
http://dx.doi.org/10.21105/joss.00613
http://dx.doi.org/10.1109/ACCESS.2023.3348408
https://archive.ics.uci.edu/
http://dx.doi.org/10.1016/j.ins.2020.02.073
http://dx.doi.org/10.1007/s12083-018-0698-1
http://dx.doi.org/10.1109/ACCESS.2019.2951195

	Introduction
	Materials and Methods
	NI Meta-Heuristics
	AutoML
	NiaAML
	NiaARM

	Proposed Framework: NiaAutoARM
	Higher-Level Meta-Heuristic
	Lower-Level Heuristics
	An Example of Genotype–Phenotype Mapping

	Results
	Experimental Evaluation
	Baseline ARM Pipeline Construction
	Influence of the ARM Metric Weights Adaption on the Quality of ARM Pipeline Construction
	Influence of Selecting More Preprocessing Methods on the Quality of ARM Pipeline Construction
	Comparison with the VARDE State-of-the-Art Algorithm

	Discussion

	Conclusions
	References

