
Advanced Engineering Informatics 47 (2021) 101222

Available online 14 January 2021
1474-0346/© 2020 Elsevier Ltd. All rights reserved.

Modified OFS-RDS bat algorithm for IFS encoding of bitmap fractal
binary images

Akemi Gálvez a,b, Andrés Iglesias a,b,*, José A. Díaz c, Iztok Fister d, Joaquín López e,
Iztok Fister Jr. d

a Department of Information Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, 274-8510 Funabashi, Japan
b Department of Applied Mathematics and Computational Sciences, E.T.S.I. Caminos, Canales y Puertos, University of Cantabria, Avda. de los Castros, s/n, 39005
Santander, Spain
c School of Civil Engineering, Universidad de Cantabria, Avda. de los Castros 44, E-39005 Santander, Spain
d Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor SI-2000, Slovenia
e R&D EgiCAD, School of Civil Engineering, Universidad de Cantabria, Avda. de los Castros 44, 39005 Santander, Spain

A R T I C L E I N F O

Keywords:
Swarm intelligence
Bat algorithm
Fractal compression
Iterated function systems
Bitmap images

A B S T R A C T

This work is an extension of a previous paper (presented at the Cyberworlds 2019 conference) introducing a new
method for fractal compression of bitmap binary images. That work is now extended and enhanced through three
new valuable features: (1) the bat algorithm is replaced by an improved version based on optimal forage strategy
(OFS) and random disturbance strategy (RDS); (2) the inclusion of new similarity metrics; and (3) the consid-
eration of a variable number of contractive maps, whose value can change dynamically over the population and
over the iterations. The first feature improves the search capability of the method, the second one improves the
reconstruction accuracy, and the third one computes the optimal number of contractive maps automatically. This
new scheme is applied to a benchmark of two binary fractal images exhibiting a complex and irregular fractal
shape. The graphical and numerical results show that the method performs very well, being able to reconstruct
the input images with high accuracy. It also computes the optimal number of contractive maps in a fully
automatic way. A comparative work with other alternative methods described in the literature is also carried out.
It shows that the presented method outperforms the previous approaches significantly.

1. Introduction

1.1. Motivation

Image compression has been a very active field of research for de-
cades. However, the increasing volume of traffic and sharing of online
video and image content has led to an impressive resurgence of interest
in computer vision [7,17,40,48] and image processing, including image-
based modeling [12], image segmentation [10,21,31], image classifi-
cation [16,28] and related issues. The primary goal of image compres-
sion is to reduce the cost for storage and/or transmission of digital
images by taking advantage of internal redundancies in the images. This
technology provides efficient storage of digital images as well as fast and
reliable transmission of images among different devices and over the
Internet. There are many techniques available for digital image

compression [23,41,43]. In this paper, we focus on fractal image
compression, a lossy compression technique based on the fractal ge-
ometry that relies on the fact that, very often, some parts of an image
resemble other parts of the same image. This feature is also character-
istic in fractal geometry, as the fractal objects exhibit the property of self-
similarity: they show (at least, approximately) similar patterns at
different scales [15].

The core idea of fractal compression is to identify similar parts within
a digital image and then, compute affine transformations connecting
them, so that the image can be (approximately) reconstructed through
iterative application of such transformations on an initial image [6,18].
This is done through the so-called iterated functions systems (IFS).
Basically, an IFS is a finite set of contractive affine maps {ϕi}i=1,…,η,
defined on a complete metric space, ℳ. These affine maps depend on
several parameters accounting for different 2D geometrical operations

* Corresponding author at: Department of Information Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, 274-8510 Funabashi, Japan.
E-mail address: iglesias@unican.es (A. Iglesias).
URL: http://personales.unican.es/iglesias (A. Iglesias).

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

https://doi.org/10.1016/j.aei.2020.101222
Received 16 April 2020; Received in revised form 14 September 2020; Accepted 24 November 2020

mailto:iglesias@unican.es
http://personales.unican.es/iglesias
www.sciencedirect.com/science/journal/14740346
https://www.elsevier.com/locate/aei
https://doi.org/10.1016/j.aei.2020.101222
https://doi.org/10.1016/j.aei.2020.101222
https://doi.org/10.1016/j.aei.2020.101222
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2020.101222&domain=pdf

Advanced Engineering Informatics 47 (2021) 101222

2

(scaling, rotation, shearing, and translation). The collection of suitable
values of such parameters for all affine maps of the IFS used to recon-
struct a given digital image is called the IFS code of the image.

The iterated function systems were developed by Hutchinson in [30].
He proved that any IFS on a complete metric space has a unique non-
empty compact fixed set (called the attractor of the IFS), whose graph-
ical representation is a fractal image. He also defined an iterative way to
obtain the attractor of an IFS through the Hutchinson operator (see
Section 2 for details).

In a previous paper (presented at the Cyberworlds 2019 conference),
the authors proposed a modified bat algorithm coupled with a local
search heuristics for fractal image compression of bitmap images [20].
The method performs well, with a similarity percentage of about 68%
for the test example in the paper, but was also limited in some ways. For
instance, it does not compute the number of contractive maps (which is
assumed to be an input of the method). On the other hand, although it
outperforms previous methods, its accuracy can still be further
improved. The present contribution is aimed at improving that work, as
explained in next section.

1.2. Main contributions and structure of this paper

In this work, the bat algorithm-based method introduced in our
previous conference paper in [20] is extended and enhanced in several
ways. The main contributions of this paper can be summarized as
follows:

• The local search in [20] is restricted to the neighborhood of the
current best solution, which might be far from the global optimum.
This problem is overcome through a new local search procedure
based on optimal forage strategy (OFS). This strategy promotes the
moves with large benefit during the local search of the method, not
only those around the current best.

• In the method in [20], only new solutions with a better fitness
(positive moves) can be accepted. This limits the exploratory ca-
pacity of the method. To overcome this drawback, a new random
disturbance strategy (RDS) is applied, with the effect that negative
moves can also be accepted. This strategy avoids the method to get
stuck in a local optimum.

• It is convenient to prioritize the exploration in the early stages of the
method, in order to cover the entire search space and identify the
most promising search areas, and to proceed later with the intensi-
fication of the search in those areas. Accordingly, our method in-
cludes a new parameter to switch the behavior between early
exploration and late intensification through new evolution equations
especially tailored for each particular phase.

• In the method in [20], the number of contractive maps (η) is fixed
and assumed to be known. In this paper, the value of η can change
dynamically over the population and over the iterations. Further-
more, our new method computes the optimal value of η automati-
cally and accurately.

• As a consequence of the previous changes, the elitism and the mu-
tation operators of the method in [20] are no longer necessary, so in
our new method they are removed.

• In this work, several similarity functions (i.e., Hamming, intersec-
tion, symmetric difference) and other metrics are considered and
analyzed in order to get a better insight about the method and its
internal operating principles. This analysis provides valuable infor-
mation to identify limitations of some metrics as well as to determine
the best metrics for this problem.

• As a result of all these improvements, we obtain a Hamming simi-
larity percentage of 86% and 92% for the two examples in the paper.
To the best of our knowledge, no previous method has reported such
high similarity values, even although they generally use simpler
examples than those used in this work.

• A comparative analysis with other alternative methods reported in
the literature shows that our method outperforms them by a large
margin for the examples in this work.

This paper is organized as follows: Section 2 discusses the previous
work in the field. The basic concepts and definitions needed to follow
the paper are presented in Section 3. Then, Section 4 describes the
collage theorem, the theoretical basis of the digital image compression
with IFS. The proposed method is explained in detail in Section 5. The
computational experiments and the main graphical and numerical re-
sults are discussed in Section 6. The comparative work of our method
with other approaches described in the literature and the computational
complexity and CPU times are also reported in that section. The paper
closes with the conclusions and some ideas for future work in the field.

2. Previous work

The concept of fractal encoding of images can be traced back to the
seminal work in the 1980s by Michael Barnsley, who obtained several
patents for fractal image compression based on his developments on
iterated function systems (see [5] for details). The theoretical basis of
this work was established a bit earlier by Hutchinson in [30], and then,
in [3], where the famous collage theorem was presented. The use of
fractal transformations to encode images was introduced in [2]. A
popular algorithm for fractal images was published in [4]. This work
was enhanced with the first automatic algorithm in [32], based on a new
concept called partitioned iterated function systems (PIFS). These
methods used exhaustive search strategies and thus, they were compu-
tationally expensive, leading to low encoding speed. A lot of work has
been done to tackle this issue, using quadtrees, rectangular partitions,
and triangular partitions, sometimes in combination with clustering.
The list of proposed methods is very large to be included here. The
interested reader is referred to the review in [42].

Unfortunately, the fractal image compression problem has revealed
to be extremely difficult and, except for some particular cases, no gen-
eral solution has been reported yet. In general, this problem is strongly
affected by the encoding/decoding asymmetry: encoding is extremely
computationally expensive, owing to the need to find self-similarities in
the image. On the contrary, decoding is astonishingly fast. This fact has
made this technology impractical for real-time applications. Many at-
tempts have been done to reduce the huge computational time required
for the encoding phase. They include moment matching [1,19,46],
wavelet transforms [8], and gradient search [47]. However, they are still
computational expensive and only work properly for particular cases.

It has been observed that fractal image compression can be formu-
lated as an optimization problem. Therefore, it is a good candidate for
metaheuristic techniques, such as those typically found in evolutionary
computing and swarm intelligence. Genetic algorithms and genetic
programming have been applied in [35,56] to determine the IFS coding
of fractal bitmap images. Work about fractal compression using PIFS in
combination with genetic algorithms can be found in [49,50,55]. Also,
an evolutionary algorithm has been applied in [11] for fractal coding of
binary images. Fractal image compression with different variations of
the particle swarm optimization can be found in [38,45]. Other exam-
ples of these techniques can be found in [14,22,39,44].

3. Mathematical background

In this section, we provide the basic concepts and definitions needed
to follow the paper. Further details can be found in [5,13,18].

Let (X, d) be a metric space, where X is a set and d a distance defined
on X. A contractive map ϕ on (X, d) is a function ϕ : X→X for which there
is a real number 0⩽k < 1 such that:

d(ϕ(x),ϕ(y))⩽k.d(x, y) ∀x, y ∈ X

An important result is the Banach fixed-point theorem, which states

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

3

that every contractive map on a non-empty complete metric space has a
unique fixed point. Moreover, given any x ∈ X, the sequence x, ϕ(x),
ϕ(ϕ(x)),…resulting from composing ϕ iteratively with itself, converges
to the fixed point.

Let ℳ = (Ω,Ψ) be a complete metric space, where Ω⊂Rn, and Ψ is a
distance on Ω. An IFS (iterated function system) is a finite set {ϕi}i=1,…,η of
contractive affine maps ϕi : Ω⟶Ω defined on ℳ. In this paper, the IFS
will be denoted as 𝒲 ={Ω; ϕ1,…,ϕη}. Since in this paper we are focused
on 2D bitmap images, from now on we consider the complete metric
space (R2,d2), where d2 denotes the Euclidean distance. Therefore, the
affine maps ϕκ are bivariate functions given by:
[

ξ*
1

ξ*
2

]

= ϕκ

[
ξ1
ξ2

]

=

[
θκ

11 θκ
12

θκ
21 θκ

22

][
ξ1
ξ2

]

+

[
σκ

1

σκ
2

]

(1)

This expression can be written in vector notation as: Φκ(Ξ) = Θκ.Ξ +

Σκ, where Θκ is a 2 × 2 matrix describing the rotation, scaling, and
shearing operations and Σκ is a 2D vector describing the translations.
Since ϕκ is contractive, the eigenvalues of Θκ, denoted as λκ

1, λκ
2, hold:

⃒
⃒
⃒λκ

j

⃒
⃒
⃒ < 1 and also we have μκ = |det(Θκ)| < 1. Intuitively, this means that

the map ϕκ shrinks distances between points.
From Eq. (1), we can see that any contractive affine map ϕκ is

uniquely defined by the set of parameters {θκ
11, θκ

12, θκ
21, θκ

22, σκ
1, σκ

2}.
Furthermore, any IFS, say 𝒲, is fully characterized by the collection of
parameters {θκ

ij, σκ
i }i,j=1,2;κ=1,…,η. This set of parameters is called the IFS

code of 𝒲.
Let 𝒞𝒮(Ω) denote the set of all compact (i.e., closed and bounded)

subsets of Ω. Note that the bitmap images are compact subsets of R2. The
Hausdorff metric h on 𝒞𝒮(Ω) is defined as:

h(ℛ,𝒮) = max{dh(ℛ,𝒮), dh(𝒮,ℛ)} (2)

where: dh(ℛ,𝒮) = maxx∈ℛ miny∈𝒮 d2(x,y).
It has been proved that, since (R2, d2) is a complete metric space, so is

(𝒞𝒮(Ω), h) [5]. We can define a transformation, ℋ, called the Hutchinson
operator on 𝒞𝒮(Ω), as:

ℋ
(
ℬ
)
=
⋃η

κ=1
ϕκ

(
ℬ
)

∀ℬ ∈ 𝒞𝒮

(
Ω
)

(3)

This operator defines the join action of all contractive maps ϕκ. Since all
the ϕκ are contractions in (R2, d2),ℋ is also a contraction in (𝒞𝒮(Ω), h)
[30]. Then, according to the Banach fixed-point theorem, ℋ has a unique
fixed point, ℋ(𝒜) = 𝒜. Interestingly, the set 𝒜 (called the attractor of the
IFS) is a fractal image.

Given an IFS with η contractive maps {ϕ1,…,ϕη}, there are several
methods for rendering its corresponding attractor [26]. The most pop-
ular one is the probabilistic algorithm, where each contractive map ϕκ is
associated with a probability ωκ > 0, such that

∑η
κ=1ωκ = 1. Starting

with an compact set Ξ0 ∈ Ω, and proceeding iteratively, one of the maps
of the IFS is randomly chosen at iteration j with probability ωκ to yield
Ξj = ϕκ(Ξj− 1). The process is repeated again for the resulting set, and so
on. It can be proved that {Ξj}j = 𝒜, meaning that this iterative process
can be used to render the attractor [5,25]. The couple (𝒲,℘) comprised
of the IFS, 𝒲, and the set of probabilities ℘ = {ω1,…,ωη}, is called and
IFS with probabilities (IFSP). The initial set Ξ0 can be any compact set.
However, since the maps ϕκ are contractive, it is advisable to take Ξ0 as a
single point for computational efficiency.

The set of probabilities, ℘, plays a significant role for the good per-

formance of the rendering process. Several approaches to compute
suitable values for the ωκ can be found in the literature [15,24]. The
most popular method, called Barnsley’s algorithm (also, chaos game),
consists of taking a probability value ωκ related to the area filled by the
contractive map ϕκ, which is proportional to its contractive factor, μκ =
⃒
⃒det(Θκ)

⃒
⃒ =

⃒
⃒θκ

11.θ
κ
22 − θκ

12.θ
κ
21
⃒
⃒. The method then selects:

ωi =
μi∑η
j=1μj

; i = 1,…, η. (4)

This is also the method used in this paper. Other choices are possible as
well, even leading to more efficient values [25]. However, this problem
is out of the scope of this work and will not be addressed here.

4. Digital image compression with IFS: the collage theorem

The starting point for digital image compression with IFS is the
collage theorem, firstly reported in [3]. Given an IFS, 𝒲 = {Ω; ϕ1,…,ϕη},
with contractivity factor 0 < μ < 1 (given by μ = max

κ=1,…,η
μκ, where μκ is

the contractivity factor of the map ϕκ), and ℒ a non-empty compact
subset ℒ ∈ 𝒞𝒮(Ω), if

H(ℒ,ℋ(ℒ)) = H
(
ℒ,
⋃η

κ=1
ϕκ

(
ℒ
))

⩽∊

for some ∊⩾0, where H(., .) is the Hausdorff metric, then

H(ℒ,𝒜)⩽
∊

1 − μ

where 𝒜 is the attractor of the IFS. This is equivalent to say that:

H(ℒ,𝒜)⩽
1

1 − μ H
(
ℒ,
⋃η

κ=1
ϕκ

(
ℒ
))

.

In practical terms, the collage theorem states that given any (not
necessarily fractal) digital image ℱ , there exists an IFS, say 𝒲, whose
attractor has a graphical representation ℱ′ that approximates ℱ accu-
rately, according to the Hausdorff metric. In other words, any digital
image can be graphically approximated through an IFS.

This theorem defines the basis of any fractal image compression
method. To reconstruct a digital image ℱ , we need to obtain the
collection of parameters of an IFS (i.e. its IFS coding), providing a good
approximation of ℱ by ℋ(ℱ). However, it is enough to approximate ℱ
by ℋ(ℐ), where ℐ is any initial image (note that the attractor of 𝒲 is
independent of the initial image ℐ). Such approximation must be
measured according to a predefined similarity function 𝒮 computing the
graphical distance between ℱ and ℋ(I).

The discussion in previous paragraph means that digital image
compression with IFS can be formulated as the following optimization
problem:

optimize
{Θκ ,Σκ ,ωκ}κ=1,…,η

𝒮(ℱ ,ℋ(I)) (5)

for some similarity function 𝒮. This problem is far from being trivial. To
begin, the problem is continuous, because all free variables in
{Θκ,Σκ,ωκ}i are real-valued. It is also constrained, because the corre-
sponding functions ϕκ have to be contractive. Furthermore, the problem
is multimodal, as there can be several global or local optima of the
similarity function. Finally, the problem can be high-dimensional for
complex images, which might require many contractive maps for ac-

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

4

curate reconstruction. Obviously, this problem cannot be solved through
classical mathematical optimization techniques. Several alternative
techniques have been proposed to tackle this issue, as already described
in Section 2. However, the problem remains open and new (more
powerful) methods are still required to address this problem.

5. The proposed method

The proposed method is presented in this section. Firstly, a brief
overview of the method is described. Then, the different elements of the
method are discussed in detail.

5.1. Overview of the method

The input of our method is a fractal image, ℱ . It is assumed that ℱ is
given as a rectangular binary bitmap image of size M × N (measured in
pixels) on the compact domain Ω = [a, b] × [c, d]⊂R2. Mathematically,
the image is represented by a matrix of 0s and 1s and size M× N, where
value 1 means that the corresponding pixel belongs to the image, and
0 otherwise. The goal is to compute the IFS 𝒲 = {ϕ1,…,ϕη} optimizing
the expression (5). Note that this task also implies to obtain the optimal
number of contractive functions, η (which was assumed to be known in
the previous conference paper). To this aim, we consider an initial
population of potential candidate solutions (called individuals or bats),
as discussed in Section 5.2. Then, the method described in Section 5.4 is
applied to obtain the solution of our optimization problem using the
fitness functions described in Section 5.3. Next sections describe the
different components of the method in detail.

5.2. Representation of individuals and search space

Evolutionary algorithms always need an adequate representation of
the individuals of the population either in the phenotype or in the ge-
notype. In this problem, the phenotype corresponds to a realization of a
particular potential solution leading to the attractor of the correspond-
ing IFS. In this work we consider the genotype, given by the chromo-
somes, a sequence of genes encoding the properties of the individuals. In
this method, the population at iteration t is a set of ℘ individuals (called
bats), {𝒲t

1,𝒲
t
2,…,𝒲t

℘}, where each 𝒲t
ν is a collection of ην contractive

maps:

𝒲 t
ν =

{
ϕt

1,ν,ϕ
t
2,ν,…,ϕt

ην ,ν

} (
ν = 1,…,℘

)
(6)

where:

ϕt
i,ν =

(
θi,ν,t

1,1 , θ
i,ν,t
1,2 , θ

i,ν,t
2,1 , θ

i,ν,t
2,2 , σi,ν,t

1 , σi,ν,t
2
)

(i = 1,…, ην) (7)

subjected to the constraint that every ϕt
i,ν must be contractive. This is

equivalent to say that the following constraints must hold:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
θi,ν,t

1,1
)2

+
(
θi,ν,t

2,1
)2

< 1
(
θi,ν,t

1,2
)2

+
(
θi,ν,t

2,2
)2

< 1
(
θi,ν,t

1,1
)2

+
(
θi,ν,t

1,2
)2

+
(
θi,ν,t

2,1
)2

+
(
θi,ν,t

2,2
)2

< 1 +
(
θi,ν,t

1,1 .θ
i,ν,t
2,2 − θi,ν,t

1,2 .θ
i,ν,t
2,1
)2

(8)

Note that each bat 𝒲t
ν may have a different length, ην. This is in clear

contrast with the work in [20] where all bats are assumed to have the
same length. This new feature provides a mechanism to compute the
optimal value of η.

These bats 𝒲t
ν are initialized with uniform random variables within

the search space, given by the compact domain Ω = [a,b] × [c,d].Without
loss of generality, we can consider the domain to be the unit square, i.e.,
a = c = 0, and b = d = 1. Applying Eq. (1) to the four corner points of
the unit square leads to a set of constraints for the free variables. In
particular:

for

[
ξ*

1

ξ*
2

]

=

[0
0

]

⇒

⎧
⎨

⎩

a⩽σi,ν,t
1 ⩽b

c⩽σi,ν,t
2 ⩽d

for

[
ξ*

1

ξ*
2

]

=

[1
0

]

⇒

⎧
⎨

⎩

a − σi,ν,t
1 ⩽θi,ν,t

1,1 ⩽b − σi,ν,t
1

c − σi,ν,t
1 ⩽θi,ν,t

2,1 ⩽d − σi,ν,t
1

for

[
ξ*

1

ξ*
2

]

=

[0
1

]

⇒

⎧
⎨

⎩

a − σi,ν,t
2 ⩽θi,ν,t

1,2 ⩽b − σi,ν,t
2

c − σi,ν,t
2 ⩽θi,ν,t

2,2 ⩽d − σi,ν,t
2

for

[
ξ*

1

ξ*
2

]

=

[1
1

]

⇒

⎧
⎨

⎩

a⩽θi,ν,t
1,1 + θi,ν,t

2,1 + σi,ν,t
1 ⩽b

c⩽θi,ν,t
1,2 + θi,ν,t

2,2 + σi,ν,t
2 ⩽d

(9)

In conclusion, the individuals in our population must fulfill the con-
straints given by Eqs. (8) and (9). These conditions must be checked at
every iteration step t.

5.3. The fitness function

Eq. (5) requires a similarity function, 𝒮, measuring the distance be-
tween the attractor of the IFS, given by ℋ(I), and the original image ℱ . A
natural choice is given by the Hausdorff distance between both sets,
given by Eq. (2). However, this metric is computational expensive.
Furthermore, it is not fully reliable for our goals, as it may identify as
similar, images that are actually different geometrically. For these rea-
sons, other similarity functions have been proposed in the literature
[11,20]. In this work, we consider three of them, discussed in following
paragraphs.

A classical choice is given by the Hamming distance, Δ. Given two
binary images, ℱ 1 and ℱ 2, of the same size M × N and domain 𝒟, they
can be represented as two binary matrices of 0s and 1s for the two
channel colors. Then, the Hamming distance is given by:

Δ

(

ℱ 1,ℱ 2

)

=
∑

(x,y)∈𝒟

|ℱ 1(x, y) − ℱ 2(x, y)|

where ℱ j(x, y) indicates the value (either 0 or 1) of the pixel (x, y) for the
image ℱ j, j = 1, 2. From this expression, we can define the Hamming
similarity function, 𝒮Δ, as:

𝒮Δ

(

ℱ 1,ℱ 2

)

= 1 −
Δ(ℱ 1,ℱ 2)

M × N
(10)

Note that Δ(ℱ 1,ℱ 2) computes the number of mismatches between both
images, and hence, 𝒮Δ(ℱ 1,ℱ 2) returns the rate of matches relative to the
image size. As a result, values of 𝒮Δ(ℱ 1,ℱ 2) close to 1 mean that the
images are very similar, with the value 1 indicating that they are iden-
tical.

Other possibility is given by the intersection similarity function, 𝒮∩,
given by:

𝒮∩

(

ℱ 1,ℱ 2

)

=
ℱ 1
⋂
ℱ 2▪

ℱ 1
⋃
ℱ 2▪

(11)

where .▪ represents the number of active (black) pixels of the image.
We can also consider a similarity function based on the symmetric

difference between sets, ⊖, given by:

ℱ 1 ⊖ℱ 2 = (ℱ 1 − ℱ 2)
⋃

(ℱ 2 − ℱ 1)

Then, we define the symmetric difference similarity function, 𝒮⊖, as:

𝒮⊖

(

ℱ 1,ℱ 2

)

=
ℱ 1 ⊖ℱ 2▪

ℱ 1
⋃
ℱ 2▪

(12)

Note that the similarity functions 𝒮Δ and 𝒮∩ lead to maximization
problems (the higher, the better), while 𝒮⊖ corresponds to a minimi-

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

5

zation problem. However, we remark that, for any two sets A and B, we
have: A ⊖ B = (A

⋃
B) − (A

⋂
B).Therefore, 𝒮∩ and 𝒮⊖ yield complemen-

tary results, meaning that one of them can be safely omitted. Therefore,
we will report only the results for 𝒮Δ and 𝒮∩, meaning that our problem
in Eq. (5) is always a maximization problem on the interval [0,1].

5.4. Our approach: modified OFS-RDS bat algorithm

Our previous conference paper in [20] addressed the fractal image
compression problem through the bat algorithm, a popular swarm in-
telligence method for optimization. To this aim, the original bat algo-
rithm was enhanced with three additional features: a new population
model with strong elitism, so that the best solutions are preserved to the
next generation; new random individuals and mutation operators, to
improve the exploratory capacity of the swarm; and a local search
heuristics, to strengthen the exploitation phase in the neighborhood of
the local optima at later stages. The results in that paper show that the
method works well but it can still be further improved in several ways. A
critical issue is the optimal number of contractive maps, which is not
computed but assumed to be known. This prevents the method to be
used in real-world applications, for which this a priori knowledge is
almost never available. On the other hand, the similarity error can
arguably be enhanced through further improvement of the local and
global search phases of the bat algorithm.

An interesting variation of the bat algorithm to tackle these issues
has been recently proposed in the literature [9]. In that modification, the
original bat algorithm is combined with two different strategies: firstly,
an optimal forage strategy (OFS) is used to drive the search direction for
each bat; then, a random disturbance strategy (RDS) is applied to
enhance the global search pattern of the method. These new features are
advantageously used in this work, as explained below.

5.4.1. Original bat algorithm
In the original bat algorithm [52–54], there are three evolution

equations for the position, xg
i ; velocity vg

i ; and frequency, f g
i , of the i-th

individual (bat) at generation g, as follows:

f g
i = f g

min + β
(
f g

max − f g
min
)

(13)

vg
i = vg− 1

i +
[
xg− 1

i − xg
*
]

f g
i (14)

xg
i = xg− 1

i + vg
i (15)

where β is a random variable following the uniform distribution on [0,1],
and xg

* denotes the global best position (solution) according to a given
fitness function. These equations are updated iteratively in order to look
for better solutions in the search space. The position vector is used to
encode the potential solutions of the optimization problem under
analysis, while the velocity and frequency provide underlying mecha-
nisms to modify the position during the iterative process. To this goal,
the bat algorithm considers two search patterns for the bats: a global
search, driven with probability rg

i (called the pulse rate), and a local
search with probability 1 − rg

i . The pulse rate is not constant, but changes
over the time according to the equation: rg+1

i = r0
i (1 − e− γg). The global

search is modulated through Eqs. (13)–(15), while the local search is
driven by a local random walk of the form:

xg+1
i = xg

* +∊𝒜g (16)

with ∊ a uniform random variable on [− 1, 1] and 𝒜g =< 𝒜
g
i > being the

average loudness of all the bats at generation g.
Whenever a new solution is better than the previous best one, it is

accepted according to a probability that depends on the value of the
loudness. If the solution is accepted, the loudness decreases, while the
rate of pulse emission decreases. The evolution rule for loudness is:

𝒜
g+1
i = α𝒜g

i where α is a constant. Typically, each bat has different
values for its loudness and pulse emission rate, which are obtained by
randomization by taking an initial loudness 𝒜0

i ∈ (0,2).

5.4.2. OFS-RDS bat algorithm
The paper in [9] proposes a modification of the original bat algo-

rithm based on two observations. The first one is that the local search at
generation g in Eq. (16) is restricted to the neighborhood of the best
solution of the whole swarm, xg

*. If the global optimum is far from this
current best, the local search at that generation becomes essentially
useless. This problem can be overcome through a new local search
procedure inspired by the optimal forage strategy (OFS). This strategy is
driven by a new term called the benefit of the i-th bat, bg

i , given by:

bg
i =

f
(
xg

i
)
− f
(
xg− 1

i
)

⃒
⃒
⃒
⃒xg

i − xg− 1
i

⃒
⃒
⃒
⃒

(17)

This benefit term is computed as the ratio between the energy obtained
when the bat moves from old position xg− 1

i to new position xg
i at iteration

g, given by f(xg
i) − f(xg− 1

i), and the energy invested in the local search,

which depends on the distance between both positions,
⃒
⃒
⃒

⃒
⃒
⃒xg

i − xg− 1
i

⃒
⃒
⃒

⃒
⃒
⃒.

With this strategy, the method promotes the moves with large benefits
during the local search, not merely those based on the current best of the
swarm. Note that it may theoretically happen that xg− 1

i = xg
i in Eq. (17),

so the denominator becomes zero. Furthermore, the numerator is also
zero, so we get a 00 division. In terms of the algorithm, it means that there
is no benefit to move from xg− 1

i to xg
i , so it makes sense to set bg

i = 0 in Eq.
(17). This is what we actually do in our implementation: we avoid this
situation by setting 00 = 0, which reflects well this “no benefit” situation
in moving from xg− 1

i to xg
i .

The second observation is that any new solution is probabilistically
accepted if and only if it is better than the current solution. This limits
the exploratory capacity of the swarm, as only positive moves are
allowed at the short term, while negative ones are forbidden, even if
they become positive at the long term. To overcome this limitation, a
random disturbance strategy (RDS) is applied, in which Eq. (14) is
replaced by:

vg
i = ϱ

(
xg− 1

j − xg− 1
k

)
(18)

where indices j and k are randomly selected from the population, and ϱ is
a uniform random variable on the interval (0,1). The effect of this new
equation is to prevent the bat to move within the line between xg− 1

i and
xg

*, forcing it to explore other areas of the search space.
These modifications lead to a new method called OFS-RDS bat al-

gorithm. It has proved to outperform the original bat algorithm on a
benchmark of 28 functions proposed as the test suite in the IEEE CEC-
2013 competition for real-parameter optimization [9].

5.4.3. Modified OFS-RDS bat algorithm
In order to apply the OFS-RDS bat algorithm to the optimization

problem of this work, some additional modifications with respect to our
previous method in [20] are needed, as follows:

• the elitism of the previous conference paper [20] is advantageous
when a fixed number of contractive maps is used. However, in this
new approach, this number changes dynamically over the genera-
tions, meaning that the global optimum can change drastically,
especially at early stages of the iterative process. In this scenario, this
elitist procedure becomes useless and, therefore, it has been
removed.

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

6

• the population model in the previous conference paper is no longer
required; the exploratory capacities that it offered are now assumed
by the optimal forage and random disturbance strategies.

• the mutation operators in [20] are now replaced by a switching
procedure between Eqs. (14) and (18) ressembling that in [9]. At
early stages of the bat algorithm, say T generations, Eq. (18) is
preferred in order to explore the search space more efficiently,
switching to Eq. (14) for exploitation of the best solution at later
stages of the algorithm.

The resulting method is coupled with a local search heuristics for
further search intensification in the neighborhood of the global opti-
mum. Similar to [20], in this work we apply the Luus-Jaakola local
search procedure [36], as it shows a satisfactory performance. A detailed
explanation can be found in [20] and is omitted here to avoid unnec-
essary duplication of material.

6. Computational experiments and results

6.1. Benchmark and computational procedure

The method described in the previous section has been applied to
two illustrative examples of fractal images. The images, called blocks
and bush, are displayed in Fig. 1(top) left and right, respectively. The
first one was already presented in the conference paper and is used here
for comparative purposes. Both images are generated through the chaos
game algorithm with an IFS comprised of five contractive maps, iden-
tified with colors blue, dark yellow, red, dark pink, and light green for
the blocks image, and peach, beige, green, dark magenta, and mustard,
for the bush fractal. We remark however, that the color is used for better
visualization of the contractive maps but does not play any role in the
method, which is applied exclusively to the binary (black and white)
images, shown in Fig. 1(bottom). The images have been generated with
one million points and processed as bitmap images of size 450 × 450
pixels.

For each example, the input of our method is the bitmap file of the

Fig. 1. Example images of this paper in colored (top) and binary (bottom) versions: (left) blocks; (right) bush. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

7

given fractal image, denoted as ℐ onwards. It consists of a collection of
202,500 pixels, encoded as a numerical binary square matrix of order
450. Numerically, its elements are 1s and 0s, corresponding to the pixels
of the fractal image and the pixels of the background, respectively. They
are shown in Fig. 1(bottom), with the 1s and 0s represented as black and
white pixels, respectively. The number of black and white pixels for the
initial input image ℐ , denoted as ■ℐ and □ℐ respectively, is ■ℐ = 21,
790 and □ℐ = 180,710.

We apply the method described in Section 5 using a population of
100 bats, following the representation described in Section 5.2. Each bat
corresponds to an IFS comprised of η contractive functions. Each
contractive function is subjected to the constraints given by Eqs. (8) and
(9). Different to the work in [20], the value is η is not fixed but allowed
to take integer values between 3 and 12. All bats are initialized with
random uniform variables for the initial population. For the examples in
this paper, we consider the search space to be Ω = [− 2,2] × [− 2,2], i.e.,
a = c = − 2, and b = d = 2. Note that this assumption is equivalent to
solve the problem on the unit square, as there is a simple affine trans-
formation from the unit square to this new square domain. As a result,
100 random initial images are generated for different random numbers
of contractive functions. Then, the method in Section 5.4 is applied for a
given number of generations, set to 𝒢max = 10,000 in this work, as this
value ensures convergence for all examples we tried so far.

Table 1 reports the different parameters of the method and the values
used in this paper. The parameter tuning has been discussed in the
conference paper and is omitted here to avoid duplication of material.
Still, there is a new parameter, T, called switching parameter, to switch
between Eqs. (14) and (18), as described in Section 5.4.3. It is set to T =

8, 500 generations in this paper.

6.2. Results

This section discusses the main results of this paper. Firstly, the
graphical results are shown. Then, the numerical results are reported
and analyzed. Finally, a comparative work with other alternative tech-
niques is discussed.

6.2.1. Graphical results
Since the conference paper already showed the graphical results for

the blocks example, in this section we will focus on the bush example
for our discussion here. Figs. 2–5 show the evolution of the best solution
of the population for the 10,000 iterations with step-size 250, starting
with a random initial image for that example. The images are organized
in two parts: on the left, the attractor of the IFS is depicted, with a
different color for each contractive map; on the right, this colored
attractor is combined with the target image (in black) superimposed on
the attractor for better visualization of the difference between both
images. These images are also shown in two QuickTime videos: Video1.
mov (length: 84 s; size: 1.4 MB) and Video2.mov (length: 82 s; size: 1.8
MB), submitted as accompanying material of this paper.

The first image in Fig. 2 corresponds to one of the 100 random

images in the initial population for the method in this paper. As the
reader can see, this initial random image is very far from the target
image. As shown in the subsequent images of the sequence in Figs. 2–5,
the application of our method reduces this high discrepancy over the
iterations, until reaching a very good approximation of the target image.
Note also that the number of contractive maps, η, indicated by different
colors in the figure, change dynamically over the iterations. For
instance, the initial random image in Fig. 2 (top–left) has η = 7
contractive maps, but this value is increased to η = 8 at iteration g = 500
(Fig. 2, second row–left), and decreased to η = 6 at iteration g = 1000
(Fig. 2, third row–left), where the contractive maps in red and blue from
the previous image have been automatically removed. Whenever a new
contractive map is added, a new color is assigned to the map for better
identification. That is the reason why we can see different variations of
the color palette throughout Figs. 2–5.

From Figs. 2–5 we can see that the method is able to approximate the
input image with increasing fidelity over the generations. This
improvement is visually noticeable by simple observation of the general
shape of the global best solution. At initial stages of the iterative process,
the shape of the global best changes dramatically, which corresponds to
a higher explorative phase, when the method explores the overall search
space looking for promising solutions. This variation decreases over the
iterations, leading to a more exploitative phase at later stages of the
method, when the global shape is slightly modified through small in-
cremental changes in order to enhance local features of the image. As a
result, the global best is getting visually closer to the target image, until
reaching convergence, when the final attractor image does not change
and, consequently, the fitness function value no longer improves.

Fig. 6 summarizes the graphical results of the global best of our
method for the blocks (left) and the bush (right) examples in this
paper. The top row shows the reconstructed images of the input images
in Fig. 1. A simple visual comparison of the original and the recon-
structed images shows that the method performs very well, as the final
reconstructed images are very similar visually to the input images. The
second and third rows of the figure show respectively the union and the
intersection sets (displayed in inverted colors for better visualization) of
the input and the reconstructed images. These images show that the
method is able to capture successfully the major features of the input
images even although they exhibit a complicated and irregular fractal
pattern. These union and intersection sets will be used in next section to
compute the intersection similarity function, 𝒮∩, and other additional
similarity metrics.

Figs. 7–10 (left to right, top to bottom) show the evolution of the
union (left) and the intersection (right) sets of the input and the
approximating fractal images of the bush example for the 10,000 iter-
ations with step-size 250. Note the huge difference between the union
and the intersection sets at the early stages of the method. This differ-
ence is visually decreasing over the iterations, until the global shape of
the input fractal image becomes apparent at later stages of the proced-
ure. Two additional videos, showing respectively the evolution of the
union and the intersection sets for the bush example, are also submitted
as accompanying material of the paper.

6.2.2. Numerical results
The good graphical results described in previous paragraphs are well

supported by the numerical results. Tables 2 and 3 summarize the main
results obtained for the bush and the blocks fractal examples,
respectively. The tables show the results obtained for the global best
solution for the 10,000 generations sampled with step-size 250 (in
rows). For each generation value g within this range, the following data
are reported (in columns): number of generation, g; number of
contractive maps, η, of the best solution at generation g; active (black)
and background (white) pixels of the reconstructed image (labelled as ℛ
onwards), denoted as ■ℛ and □ℛ, respectively; number of pixels with
different binary values for the input image, ℐ and the reconstructed

Table 1
Modified OFS-RDS bat algorithm parameters and values used in this work.

Symbol Meaning Used Value

℘ Population size 100
𝒢max Max. number of iterations 10,000

𝒜0 Initial loudness 0.5

𝒜min minimum loudness 0

r0 Initial pulse rate 0.2

fmax Maximum frequency 1.5
α Multiplicative factor 0.3
γ Exponential factor 0.2
T Switching parameter 8,500

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

8

image, ℛ, denoted as ; value of the Hamming similarity function
(see Eq. (10)), 𝒮Δ (between 0 and 1; the higher, the better); number of
pixels in the intersection and union sets ℐ ∩ ℛ and ℐ ∪ ℛ, denoted as ■∩

and ■∪, respectively; value of the intersection similarity function (see
Eq. (11)), 𝒮∩; and finally, two new metrics for this paper, the rate of
active pixels in the intersection set ℐ ∩ ℛwith respect to the active pixels
of the input image, ℐ , and the reconstructed image, ℛ, denoted as
■∩/■ℐ and ■∩/■ℛ, respectively.

Table 2 provides a lot of information to explain the previous obser-
vations about the graphical results. For instance, the values of η in sec-
ond column show that indeed the method can change automatically the
number of contractive maps over the time in order to get a better

approximation of the input image. These changes do not necessarily lead
to an improvement of the similarity between ℐ and ℛ at the short term.
For instance, the method changed from η = 8 at generation g = 2,000 to
η = 5 at generation g = 2, 250, even although 𝒮Δ decreases from
0.850405 to 0.845353. A similar effect occurs at generations 5, 000,6,
500 and others. These situations are allowed in order to avoid the
method to get stuck in a local optimum and also to explore the search
space more efficiently looking for more promising solutions. This is also
the reason why we also removed the elitism of the previous conference
paper in this enhanced version of the algorithm. Note also that the value
of η in the table changes from 5 to 10 over the generations (the ground
truth for the input image is η = 5, but this knowledge is never used in the

Fig. 2. (l-r, t-b) Evolution of the best solution for 0 to 2,250 iterations (step-size 250).

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

9

method), even although we allow it to take values between 3 and 12
(actually, these values are used for the initial random population, and
they survive for a while, but the table only reports the best solution of
the population). This means that the method is able to automatically
select suitable values for η within a smaller subset of the initial proposal.
We also remark that the value for the global best is never below 5, a clear
indication that the input image cannot be replicated well with fewer
than 5 contractive maps. Finally, we remark that the value of η keeps
constant for the last 1,500 iterations, once convergence is achieved.
Furthermore, this value matches the real value of the input image, a
clear evidence of the strong ability of our method for fractal image
reconstruction. A similar behavior can be observed in Table 3, although

even larger values of η can be obtained for this example. This effect can
be explained by the fact that this fractal image covers a larger area than
the other example, so the method initially assigns more contractive
maps during the exploration phase. This number is then refined at later
stages, where the number of contractive functions is reduced but their
contractivity factors increase in order to compensate for the missing
functions.

The number of black (white) pixels of the reconstructed image, given
by ■ℛ (□ℛ) is a good indicator of the performance of the method.
Obviously, this number should ideally match the value for the input
image, ■ℐ = 21,790 and ■ℐ = 70,334 for the bush and blocks im-
ages, respectively. From third column in Tables 2 and 3, we can see that

Fig. 3. (l-r, t-b) Evolution of the best solution for 2,500 to 4,750 iterations (step-size 250).

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

10

this value oscillates dynamically above and below of this value, until
settling in the values ■ℛ = 23,118 and ■ℛ = 70,814, an error less than
6% and 1%, respectively.

Another valuable indicator is the number of pixels (either black or
white) with different binary values for ℐ and ℛ, , reported in the
fifth column of the tables. This value is quite large at initial generation,
but decreases over the generations, drastically at the beginning and at
slower pace at late stages, until reaching the plateau value at

for the bush example in Table 2. From this
amount, 6,754 pixels correspond to the difference set ℐ − ℛ, while 8,086
belong to the difference set ℛ − ℐ . The value of is used to

compute the Hamming similarity function, one of the best indicators of
the quality of the approximation. Its values are shown in the sixth col-
umn of the table. Note that the final reconstructed image has a Hamming
similarity of 0.926716, an excellent rate of matching of about 92.6%. A
similar behavior is observed for the blocks example in Table 3, with a
final Hamming similarity of 0.859348, a rate of matching of about
85.9%. To our knowledge, no other previous method reported values of
this order, even although some methods consider much simpler images
than those used in our benchmark.

The number of black pixels in the intersection ℐ ∩ ℛ and union ℐ ∩ ℛ

sets is very useful to quantify the degree of similarity of both images (the
reader can see the evolution of the union and the intersection sets for the

Fig. 4. (l-r, t-b) Evolution of the population best for 5,000 to 7,250 iterations (step-size 250).

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

11

10,000 generations with step-size 250 into additional accompanying
QuickTime videos: Video3.mov (length: 82 s; size: 1.5 MB) and Video4.
mov (length: 82 s; size: 0.8 MB). These values, reported in columns 7–8
of the table, are used to compute the intersection similarity function 𝒮∩,
shown in column 9. Note that this value oscillates up and down until
reaching a final value of 𝒮∩ = 0.503650. This value might appear sur-
prising in the light of the very good matching between ℐ and ℛ,
confirmed by our graphical results and other indicators such as 𝒮Δ.
However, it should be taken into account that any minor distortion of
the image (e.g., rotation, scaling, or translation) might induce

substantial changes on the values of this similarity function, even
although the general shape of the image is still well reproduced.
Furthermore, even if these variations occur at a local level, they are
amplified by the self-similar nature of the fractal. As a result, they have a
dramatic effect on the numerical results. On the other hand, we point out
that this metric talks about the black pixels exclusively. As a result, it can
also be strongly affected by the size of the fractal image. To analyze this
effect in detail, we compute ■∩/■ℐ and ■∩/■ℛ, in columns 10 and 11,
respectively. Their final results indicate that the rate of overlapping
between ℐ ∩ ℛ and ℐ (resp. ℛ) is about 69% (resp. 65%) for the black

Fig. 5. (l-r, t-b) Evolution of the population best for 7,500 to 9,750 iterations (step-size 250).

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

12

pixels. These results seem to disagree our previous conclusion of the
good matching between both images. However, a further analysis show
that the similar computations for the white pixels, i.e. □∩/□ℐ and
□∩/□ℛ, show rates of 95.52% and 96.23%, respectively. This obser-
vation is supported by the results for the blocks image, which has a
significant larger amount of black pixels. In this case, the rates ■∩/■ℐ

and ■∩/■ℛ, are about 80% and 79.5%, respectively, leading to a better
value for the intersection similarity function: 𝒮∩ = 0.664187. As a
conclusion, when the number of black pixels of the image is small
compared to the number of white pixels, the 𝒮∩ metric can be somehow

misleading, and it should be complemented with (or even replaced by)
other more reliable indicators, particularly 𝒮Δ.

6.3. Comparative analysis

It is always advisable to carry out a comparative work of the pro-
posed method with other alternative approaches described in the liter-
ature. To this aim, seven different methods are considered: artificial
neural networks, simulated annealing, genetic algorithms, the firefly
algorithm, the original bat algorithm, and two variants of the modified

Fig. 6. Graphical results of our method for the blocks (left) and the bush (right) examples in Fig. 1: (top) best reconstructed images; (middle) union and (bottom)
intersection sets of the input and reconstructed images in inverted binary colors. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

13

bat algorithm introduced in our previous conference paper [20], namely
without and with local search (LS). They are good representatives of
different families of methods: neural networks is one of the most widely
used artificial intelligence methodologies; simulated annealing is a
popular single-particle method; genetic algorithms are a standard
method in the field of evolutionary computation; and firefly and bat
algorithms are popular choices of population-based swarm intelligence
algorithms. Furthermore, all these sets of methods have already been
applied to this problem.

Regarding the configuration and parameter tuning of these alterna-
tive methods, for the neural networks we consider a multilayer per-
ceptron (MLP), which is reported to be a universal function
approximator. In our configuration, the MLP includes 30 neurons (as

many as the actual free variables of the problem) in a single hidden
layer, with the Levenberg–Marquardt back propagation algorithm used
for training [34,37]. Whenever possible, we consider a similar param-
eter tuning as in this paper for a fair comparison of the methods. For
instance, we consider a population of 100 individuals and 10,000 iter-
ations for the genetic algorithms, firefly algorithm, and bat algorithm,
while a total of 106 iterations are considered for simulated annealing to
compensate the fact that only a single particle is considered. In this way,
we consider the same number of function evaluations as with the other
methods.

Table 4 shows the comparative results for the blocks and bush
examples (arranged in columns). The different methods used in the
comparison are listed in rows. For each method, the value of 𝒮Δ is

Fig. 7. (l-r, t-b) Union (left) and intersection (right) sets of the input and approximating fractal images of the bush example for 0 to 2,250 iterations (step-size 250).

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

14

Fig. 8. (l-r, t-b) Union (left) and intersection (right) sets of the input and approximating fractal images of the bush example for 2,500 to 4,750 iterations (step-
size 250).

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

15

reported. The best results are highlighted in bold for easier identifica-
tion. From the table, we can see that the method in this paper out-
performs all other alternative approaches in this comparison.
Furthermore, the improvement rate is really significant, not merely in-
cremental. These results are a good validation of this method with
respect to the current state-of-the-art methods in the field.

6.4. Computational complexity and CPU times

It is well-known that it is not possible to determine the computa-
tional complexity of metaheuristic methods (such as the bat algorithm
used in this paper) on a general basis, as it depends on a number of

factors such as the population size, number of generations, number of
free variables, parameter tuning, landscape of the search space, and so
on. To make things even harder, the metaheuristic methods cannot al-
ways guarantee to find the global optimum. In this situation, the clas-
sical approach is to compute either the number of functions evaluations
or the CPU time of the algorithm. For the examples in this paper and the
parameter tuning described in Section 6.1, the CPU time for a single
execution is about 5–8 h, depending on the size and complexity of the
image. These CPU times have been obtained with Matlab, version 2018a
running on a personal PC with a 3.7 GHz. Intel Core i7 processor and 16
GB. of RAM. Obviously, these CPU times make the method unsuitable for
real-time applications. However, they are quite competitive with respect

Fig. 9. (l-r, t-b) Union (left) and intersection (right) sets of the input and approximating fractal images of the bush example for 5,000 to 7,250 iterations (step-
size 250).

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

16

Fig. 10. (l-r, t-b) Union (left) and intersection (right) sets of the input and the approximating fractal images of the bush example for 7,500 to 9,750 iterations (step-
size 250).

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

17

to other similar approaches, such as those discussed in our comparative
work. Regarding the complexity of the similarity functions, they have a
worst case time complexity of O(M × N) for binary images of size M× N.
As a result, their complexity is linear with the number of pixels of the
image.

7. Conclusions and future work

This paper presents a new method for fractal compression of bitmap
binary images encoded as IFS. The method is based on the application of
a modified bat algorithm to compute all the parameters of the IFS code
of the image automatically. This work follows up our previous paper in
[20] extended and enhanced through three new valuable features:

1. The bat algorithm in the previous conference paper is replaced by an
improved version based on the optimal forage strategy (OFS) and the
random disturbance strategy (RDS). These two strategies improve
the search capability of the method, by promoting large benefit
moves during the local search phase without restricting them to the
neighborhood of the current best, and by allowing some negative
moves, with the goal to prevent the method to get stuck in local
optima. The method also includes a switching procedure for a better
balance between early exploration and late intensification.

2. Opposed to the conference paper, the number of contractive maps, η,
is allowed to change for different individuals in the population and

also to change dynamically over the iterations. Our new method
computes the optimal value of η automatically and accurately.

3. This work considers several similarity functions and other metrics to
improve our understanding of the method and improve its accuracy.

This new method is applied to a benchmark of two binary fractal
images exhibiting a complex and irregular fractal shape. The graphical
and numerical results show that the method performs very well, being
able to reconstruct the input images with a Hamming similarity per-
centage of 86% and 92%, much better than the results obtained by
previous approaches. From these results, we conclude that the method is
really promising and has a lot of potential in the field.

Of course, the method has also some limitations. Perhaps the most
critical one concerns the computation times, which ranges about 4–10 h
for the experiments described here and others not reported here to keep
the paper in manageable size. These CPU times are prohibitive for ap-
plications requiring high-speed encoding. On the contrary, the decoding
time is extremely fast and actually well suited for real-time applications.
On the other hand, the accuracy might be still further improved, at least,
theoretically. Although it is not realistic to expect a perfect matching, we
think that the number of mismatches between the input and the
reconstructed images might be reduced even a little bit more. We are
currently working to improve these features.

Other ideas for future work in the field include the extension of this
method to general black-and-white images containing shades of gray,
the development of methods for effective IFS encoding of color images

Table 2
Numerical results of our method for the bush fractal example (see the main text for details).

g η ■ℛ □ℛ 𝒮Δ ■∩ ■∪ 𝒮∩ ■∩/■ℐ ■∩/■ℛ

0 7 76,876 125,624 75,304 0.628128 11,681 86,985 0.134288 0.536072 0.151946
250 7 34,502 167,998 41,602 0.794558 7,345 48,947 0.150060 0.337081 0.212886
500 8 35,791 166,709 42,223 0.791491 7,679 49,902 0.153882 0.352409 0.214551
750 8 29,185 173,315 35,713 0.823640 7,631 43,344 0.176057 0.350207 0.261470

1,000 6 23,466 179,034 32,600 0.839012 6,328 38,928 0.162557 0.290408 0.269667
1,250 7 28,676 173,824 30,898 0.847417 9,784 40,682 0.240499 0.449013 0.341191
1,500 7 31,412 171,088 29,408 0.854775 11,897 41,305 0.288028 0.545984 0.378741
1,750 7 29,544 172,956 26,860 0.867358 12,237 39,097 0.312991 0.561588 0.414196
2,000 8 17,613 184,887 30,293 0.850405 4,555 34,848 0.130711 0.209041 0.258616
2,250 5 25,378 177,122 31,316 0.845353 7,926 39,242 0.201977 0.363745 0.312318
2,500 7 21,136 181,364 31,512 0.844385 5,707 37,219 0.153336 0.261909 0.270013
2,750 7 26,626 175,874 33,278 0.835664 7,569 40,847 0.185301 0.347361 0.284271
3,000 7 33,603 168,897 35,061 0.826859 10,166 45,227 0.224777 0.466544 0.302533
3,250 6 22,836 179,664 30,792 0.847941 6,917 37,709 0.183431 0.317439 0.302899
3,500 6 20,497 182,003 30,333 0.850207 5,977 36,310 0.164610 0.274300 0.291604
3,750 7 25,409 177,091 32,543 0.839294 7,328 39,871 0.183793 0.336301 0.288402
4,000 7 24,821 177,679 28,069 0.861388 9,271 37,340 0.248286 0.425470 0.373514
4,250 8 19,401 183,099 26,245 0.870395 7,473 33,718 0.221632 0.342955 0.385186
4,500 9 19,923 182,577 25,383 0.874652 8,165 33,548 0.243383 0.374713 0.409828
4,750 9 21,545 180,955 28,811 0.857723 7,262 36,073 0.201314 0.333272 0.337062
5,000 9 17,163 185,337 28,927 0.857151 5,013 33,940 0.147702 0.230060 0.292082
5,250 10 24,647 177,853 31,997 0.841991 7,220 39,217 0.184104 0.331345 0.292936
5,500 9 31,957 170,543 35,299 0.825684 9,224 44,523 0.207174 0.423313 0.288638
5,750 10 36,942 165,558 35,376 0.825304 11,678 47,054 0.248183 0.535934 0.316117
6,000 10 35,116 167,384 31,182 0.846015 12,862 44,044 0.292026 0.590271 0.366272
6,250 10 30,230 172,270 29,804 0.85282 11,108 40,912 0.271512 0.509775 0.367450
6,500 10 25,871 176,629 29,545 0.854099 9,058 38,603 0.234645 0.415695 0.350122
6,750 9 27,978 174,522 31,604 0.843931 9,082 40,686 0.223222 0.416797 0.324612
7,000 8 28,649 173,851 33,277 0.835669 8,581 41,858 0.205003 0.393804 0.299522
7,250 8 24,790 177,710 30,698 0.848405 7,941 38,639 0.205518 0.364433 0.320331
7,500 7 22,282 180,218 27,716 0.863131 8,178 35,894 0.227838 0.375311 0.367023
7,750 6 23,972 178,528 28,344 0.860030 8,709 37,053 0.235042 0.399679 0.363299
8,000 6 25,982 176,518 29,772 0.852978 9,000 38,772 0.232126 0.413034 0.346394
8,250 6 23,415 179,085 26,607 0.868607 9,299 35,906 0.258982 0.426755 0.397139
8,500 5 23,079 179,421 28,999 0.856795 7,935 36,934 0.214843 0.364158 0.343819
8,750 5 15,578 186,922 24,066 0.881156 6,651 30,717 0.216525 0.305232 0.426948
9,000 5 17,144 185,356 21,854 0.892079 8,540 30,394 0.280977 0.391923 0.498133
9,250 5 17,599 184,901 22,087 0.890928 8,651 30,738 0.281443 0.397017 0.491562
9,500 5 23,433 179,067 16,475 0.918642 14,374 30,849 0.465947 0.659662 0.613408
9,750 5 23,123 179,377 14,843 0.926701 15,035 29,878 0.503213 0.689995 0.650218

10,000 5 23,118 179,382 14,840 0.926716 15,040 29,862 0.503650 0.690225 0.650575

A. Gálvez et al.

Advanced Engineering Informatics 47 (2021) 101222

18

for different color spaces, and the development of new approaches to
reduce the computational load in order to make this technology efficient
for image and video storage with regards to video streaming and other
online applications.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

Andrés Iglesias and Akemi Gálvez have received funding from the
project PDE-GIR of the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant
agreement No 778035, the Spanish Ministry of Science, Innovation and
Universities (Computer Science National Program) under grant
TIN2017–89275-R of the Agencia Estatal de Investigación and European
Funds EFRD (AEI/FEDER, UE). Iztok Fister acknowledges financial
support from the Slovenian Research Agency (Grant No. P2-0041). Iztok
Fister Jr. acknowledges financial support from the Slovenian Research
Agency (Grant No. P2-0057).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.aei.2020.101222.

References

[1] S. Abenda, S. Demko, G. Turchetti, Local moments and inverse problem for fractal
measures, Inv. Probl. 8 (1992) 739–750.

[2] M.F. Barnsley, S. Demko, Iterated function systems and the global construction of
fractals, Proc. Roy. Soc. London A399 (1985) 243–275.

[3] M.F. Barnsley, V. Ervin, D. Hardin, J. Lancaster, Solution of an inverse problem for
fractal and other sets, Proc. Natl. Acad. Sci. 83 (1986) 1975–1977.

[4] M.F. Barnsley, A.D. Sloan, A better way to compress images. BYTE Magazine, Jan.
1988, 1988.

Table 3
Numerical results of our method for the blocks fractal example (see the main text for details).

g η ■ℛ □ℛ 𝒮Δ ■∩ ■∪ 𝒮∩ ■∩/■ℐ ■∩/■ℛ

0 6 71,738 130,762 75,850 0.625432 33,111 108,961 0.303879 0.470768 0.461555
250 5 39,994 162,506 71,276 0.648020 19,526 90,802 0.215039 0.277618 0.488223
500 6 41,041 161,459 72,555 0.641704 19,410 91,965 0.211059 0.275969 0.472942
750 7 43,749 158,751 74,477 0.632212 19,803 94,280 0.210045 0.281557 0.452650

1,000 7 47,134 155,366 71,342 0.647694 23,063 94,405 0.244299 0.327907 0.489307
1,250 8 53,603 148,897 70,847 0.650138 26,545 97,392 0.272558 0.377413 0.495215
1,500 8 63,913 138,587 67,871 0.664835 33,188 101,059 0.328402 0.471863 0.519268
1,750 9 74,864 127,636 67,278 0.667763 38,960 106,238 0.366724 0.553928 0.520410
2,000 9 77,051 125,449 68,157 0.663422 39,614 107,771 0.367576 0.563227 0.514127
2,250 9 61,484 141,016 68,472 0.661867 31,673 100,145 0.316271 0.450323 0.515142
2,500 8 61,124 141,376 67,018 0.669047 32,220 99,238 0.324674 0.458101 0.527125
2,750 8 60,638 141,862 67,048 0.668899 31,962 99,010 0.322816 0.454432 0.527095
3,000 9 65,275 137,225 65,867 0.674731 34,871 100,738 0.346155 0.495792 0.534217
3,250 10 73,025 129,475 64,299 0.682474 39,530 103,829 0.380722 0.562033 0.541321
3,500 7 58,583 143,917 64,765 0.680173 32,076 96,841 0.331223 0.456053 0.547531
3,750 8 65,465 137,035 64,379 0.682079 35,710 100,089 0.356782 0.507720 0.545482
4,000 8 66,643 135,857 62,323 0.692232 37,327 99,650 0.374581 0.530711 0.560104
4,250 9 63,706 138,794 62,606 0.690835 35,717 98,323 0.363262 0.507820 0.560654
4,500 9 64,024 138,476 61,844 0.694598 36,257 98,101 0.369588 0.515497 0.566303
4,750 9 72,818 129,682 63,066 0.688563 40,043 103,109 0.388356 0.569326 0.549905
5,000 10 78,712 123,788 61,616 0.695723 43,715 105,331 0.415025 0.621534 0.555379
5,250 11 83,355 119,145 64,265 0.682642 44,712 108,977 0.410288 0.635710 0.536405
5,500 9 75,991 126,509 59,505 0.706148 43,410 102,915 0.421804 0.617198 0.571252
5,750 12 87,587 114,913 64,989 0.679067 46,466 111,455 0.416904 0.660648 0.530513
6,000 10 81,388 121,112 61,344 0.697067 45,189 106,533 0.424178 0.642492 0.555229
6,250 11 82,167 120,333 60,939 0.699067 45,781 106,720 0.428982 0.650909 0.557170
6,500 7 63,364 139,136 58,360 0.711802 37,669 96,029 0.392267 0.535573 0.594486
6,750 6 62,371 140,129 57,395 0.716568 37,655 95,050 0.396160 0.535374 0.603726
7,000 7 61,304 141,196 56,632 0.720336 37,503 94,135 0.398396 0.533213 0.611755
7,250 6 50,287 152,213 60,505 0.701210 30,058 90,563 0.331902 0.427361 0.597729
7,500 6 46,681 155,819 59,951 0.703946 28,532 88,483 0.322457 0.405664 0.611212
7,750 6 64,065 138,435 46,317 0.771274 44,041 90,358 0.487406 0.626169 0.687442
8,000 5 64,964 137,536 47,290 0.766469 44,004 91,294 0.482003 0.625643 0.677360
8,250 6 54,287 148,213 51,699 0.744696 36,461 88,160 0.413578 0.518398 0.671634
8,500 6 67,205 135,295 41,465 0.795235 48,037 89,502 0.536714 0.682984 0.714783
8,750 6 67,349 135,151 44,365 0.780914 46,659 91,024 0.512601 0.663392 0.692794
9,000 6 73,323 129,177 39,645 0.804222 52,006 91,651 0.567435 0.739415 0.709273
9,250 5 70,349 132,151 42,199 0.791610 49,242 91,441 0.538511 0.700117 0.699967
9,500 5 70,081 132,419 36,903 0.817763 51,756 88,659 0.583765 0.735860 0.738517
9,750 5 69,203 133,297 33,907 0.832558 52,815 86,722 0.609015 0.750917 0.763189

10,000 5 70,814 131,686 28,482 0.859348 56,333 84,815 0.664187 0.800936 0.795507

Table 4
Comparative results of 𝒮Δ for the blocks and bush examples with our method
and other alternative approaches (best results in bold).

Method blocks example bush example

Multilayer perceptron [27]: 0.2154 0.3959
Simulated annealing [33]: 0.2671 0.3874
Genetic algorithms [29]: 0.5389 0.6087
Firefly algorithm [51]: 0.4613 0.5389
Original bat algorithm [52]: 0.6245 0.6874
Modified bat algorithm w/o LS [20]: 0.6693 0.7385
Modified bat algorithm with LS [20]: 0.6804 0.7744
Modified OFS-RDS bat algorithm: 0.8617 0.9267

A. Gálvez et al.

https://doi.org/10.1016/j.aei.2020.101222
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0005
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0005
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0010
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0010
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0015
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0015

Advanced Engineering Informatics 47 (2021) 101222

19

[5] M.F. Barnsley, Fractals Everywhere, second ed., Academic Press, San Diego, 1993.
[6] M.F. Barnsley, L.P. Hurd, Fractal Image Compression, AK Peters/CRC Press, 1993.
[7] L. Bergamini, M. Sposato, M. Pellicciari, M. Peruzzini, S. Calderara, J. Schmidt,

Deep learning-based method for vision-guided robotic grasping of unknown
objects, Adv. Eng. Inform. 45 (2020). Article 101052.

[8] K. Berkner, A wavelet-based solution to the inverse problem for fractal
interpolation functions, in: L. Véhel, et al. (Eds.), Fractals in Engineering’97,
Springer Verlag, 1997.

[9] X. Cai, X.Z. Gao, Y. Xue, Improved bat algorithm with optimal forage strategy and
random disturbance strategy, Int. J. Bio-Inspired Comput. 8 (4) (2016) 205–214.

[10] T. Czerniawski, F. Leite, Automated segmentation of RGB-D images into a
comprehensive set of building components using deep learning, Adv. Eng. Inform.
45 (2020). Article 101131.

[11] D. Dasgupta, G. Hernandez, F. Niño, An evolutionary algorithm for fractal coding
of binary images, IEEE Trans. Evol. Comput. 4 (2) (2000) 172–181.

[12] L. Ding, W. Jiang, Y. Zhou, C. Zhou, S. Liu, BIM-based task-level planning for
robotic brick assembly through image-based 3D modeling, Adv. Eng. Inform. 43
(2020). Article 100993.

[13] J.H. Elton, An ergodic theorem for iterated maps, Ergodic Theory Dynam. Syst. 7
(1987) 481–488.

[14] A.K. Evans, M.J. Turner, Specialisation of evolutionary algorithms and data
structures for the IFS inverse problem, in: M.J. Turner (Ed.). Proceedings of the
Second IMA Conference on Image Processing: Mathematical Methods, Algorithms,
and Applications, 1998.

[15] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications,
second ed., John Wiley & Sons, Chichester, England, 2003.

[16] L. Fan, T. Zhang, X. Zhao, H. Wang, M. Zheng, Deep topology network: a
framework based on feedback adjustment learning rate for image classification,
Adv. Eng. Inform. 42 (2019). Article 100935.

[17] W. Fang, B. Zhong, N. Zhao, P.E.D. Love, H. Luo, J. Xue, S. Xu, A deep learning-
based approach for mitigating falls from height with computer vision:
convolutional neural network, Adv. Eng. Inform. 39 (2019) 170–177.

[18] Y. Fisher (Ed.), Fractal Image Compression: Theory and Applications, Springer-
Verlag, Berlin, 1995.

[19] B. Forte, E.R. Vrscay, Solving the inverse problem for measures using iterated
function systems: a new approach, Adv. Appl. Prob. 27 (1995) 800–820.

[20] A. Gálvez, A. Iglesias, Modified bat algorithm with local search for fractal image
compression of bitmap images, in: Proc. of Int. Conf. on Cyberworlds, CW 2019,
IEEE Computer Society Press, Los Alamitos, CA, 2019, 199–206.

[21] A. Gálvez, A. Iglesias, Memetic improved cuckoo search algorithm for automatic B-
spline border approximation of cutaneous melanoma from macroscopic medical
images, Adv. Eng. Inform. 43 (2020). Article 101005.

[22] B. Goentzel, Fractal image compression with the genetic algorithm, Complex. Int. 1
(1994) 111–126.

[23] R.C. Gonzalez, R.E. Woods, Digital Image Processing, fourth ed., Pearson Prentice
Hall, N.J., 2017.

[24] S. Graf, Barnsley’s scheme for the fractal encoding of images, J. Complexity 8
(1992) 72–78.

[25] J.M. Gutiérrez, A. Iglesias, M.A. Rodríguez, A multifractal analysis of IFSP
invariant measures with application to fractal image generation, Fractals 4 (1)
(1996) 17–27.

[26] J.M. Gutiérrez, A. Iglesias, M.A. Rodríguez, V.J. Rodríguez, Generating and
rendering fractal images, Math. J. 7 (1) (1997) 6–13.

[27] S. Haykin, Neural Networks: A Comprehensive Foundation, second ed., Prentice
Hall, 1998.

[28] N.D. Hoang, Image processing based automatic recognition of asphalt pavement
patch using a metaheuristic optimized machine learning approach, Adv. Eng.
Inform. 40 (2019) 110–120.

[29] J.H. Holland, Adaptation in Natural and Artificial Systems, The University of
Michigan Press, Ann Arbor, 1975.

[30] J.E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30 (5) (1981)
713–747.

[31] A. Iglesias, A. Gálvez, A. Avila, Immunological approach for full NURBS
reconstruction of outline curves from noisy data points in medical imaging, IEEE/
ACM Trans. Comput. Biol. Bioinformatics 15 (6) (2017) 1929–1942.

[32] A.E. Jacquin, Image coding based on a fractal theory of iterated contractive image
transformations, IEEE Trans. Image Process. 1 (1) (1992) 18–30.

[33] S. Kirkpatrick, C.D. Gelatt Jr, M.P. Vecchi, Optimization by simulated annealing,
Science 220 (4598) (1983) 671–680.

[34] K. Levenberg, A method for the solution of certain non-linear problems in least
squares, Q. Appl. Math. 2 (2) (1944) 164–168.

[35] E. Lutton, J.L. Véhel, G. Cretin, P. Glevarec, C. Roll, Mixed IFS – resolution of the
inverse problem using genetic programming. INRIA Rapport 2631, 1995.

[36] R. Luus, T.H.I. Jaakola, Optimization by direct search and systematic reduction of
the size of search region, Am. Inst. Chem. Eng. J. (AIChE) 19 (4) (1973) 760–766.

[37] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters,
SIAM J. Appl. Math. 11 (2) (1963) 431–441.

[38] A. Muruganandham, R.S.D. Wahida, Adaptive fractal image compression using
PSO, Procedia Comput. Sci. 1 (2010) 338–344.

[39] D.J. Nettleton, R. Garigliano, Evolutionary algorithms and a fractal inverse
problem, Biosystems 33 (1994) 221–231.

[40] Y. Pi, N.D. Nath, A.M. Behzadan, Convolutional neural networks for object
detection in aerial imagery for disaster response and recovery, Adv. Eng. Inform.
43 (2020). Article 101009.

[41] M. Rabbani, P.W. Jones, Digital Image Compression Techniques. SPIE Tutorial
Texts in Optical Engineering, vol. 7. SPIE Press, 1991.

[42] D. Saupe, R. Hamzaoui, A review of the fractal image compression literature,
Comput. Graphics 28 (4) (1994) 268–276.

[43] K. Sayood, Introduction to Data Compression, fourth ed., Morgan Kaufmann, 2012.
[44] R. Shonkwiler, F. Mendivil, A. Deliu, Genetic algorithms for the 1-D fractal inverse

problem, in: Proceedings of the Fourth International Conference on Genetic
Algorithms, Morgan Kaufmann, 1991, pp. 495–501.

[45] C.C. Tseng, J.G. Hsieh, J.H. Jeng, Fractal image compression using visual-based
particle swarm optimization, Image Vis. Comput. 26 (2008) 1154–1162.

[46] E.R. Vyrscay, Moment and collage methods for the inverse problem of fractal
construction with iterated function systems, in: H.O. Peitgen, et al. (eds.), Fractals
in the Fundamental and Applied Sciences, Elsevier, 1991.

[47] N. Wadstromer, An approach to the inverse IFS problem using the Kantorovich
metric, Fractals 5 (1) (1997) 89–99.

[48] R. Wei, P.E.D. Love, W. Fang, H. Luo, S. Xu, Recognizing people’s identity in
construction sites with computer vision: a spatial and temporal attention pooling
network, Adv. Eng. Inform. 42 (2019). Article 100981.

[49] M.S. Wu, W.C. Teng, J.H. Jeng, J.G. Hsieh, Spatial correlation genetic algorithm for
fractal image compression, Chaos, Solit. Fract. 28 (2) (2006) 497–510.

[50] M.S. Wu, J.H. Jeng, J.G. Hsieh, Schema genetic algorithm for fractal image
compression, Eng. Appl. Artif. Intell. 20 (2007) 531–538.

[51] X.S. Yang, Firefly algorithms for multimodal optimization, Lect. Notes Comput. Sci.
5792 (2009) 169–178.

[52] X.S. Yang, A new metaheuristic bat-inspired algorithm, Stud. Comput. Intell. 284
(2010) 65–74.

[53] X.S. Yang, Bat algorithm for multiobjective optimization, Int. J. Bio-Inspired
Comput. 3 (5) (2011) 267–274.

[54] X.S. Yang, A.H. Gandomi, Bat algorithm: a novel approach for global engineering
optimization, Eng. Comput. 29 (5) (2012) 464–483.

[55] W.X. Yuan, L.F. Ping, W.S. Guo, Fractal image compression based on spatial
correlation and hybrid genetic algorithm, J. Vis. Commun. Image R. 20 (2009)
505–510.

[56] Y. Zheng, G.R. Liu, X.X. Niu, An improved fractal image compression approach by
using iterated function system and genetic algorithm, Comput. Math. Appl. 51
(2006) 1727–1740.

A. Gálvez et al.

http://refhub.elsevier.com/S1474-0346(20)30191-9/h0025
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0030
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0035
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0035
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0035
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0040
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0040
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0040
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0045
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0045
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0050
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0050
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0050
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0055
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0055
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0060
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0060
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0060
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0065
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0065
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0075
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0075
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0080
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0080
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0080
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0085
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0085
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0085
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0090
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0090
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0095
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0095
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0105
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0105
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0105
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0110
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0110
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0115
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0115
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0120
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0120
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0125
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0125
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0125
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0130
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0130
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0135
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0135
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0140
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0140
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0140
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0145
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0145
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0150
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0150
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0155
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0155
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0155
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0160
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0160
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0165
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0165
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0170
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0170
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0180
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0180
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0185
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0185
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0190
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0190
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0195
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0195
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0200
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0200
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0200
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0210
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0210
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0215
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0220
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0220
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0220
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0225
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0225
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0235
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0235
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0240
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0240
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0240
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0245
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0245
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0250
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0250
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0255
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0255
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0260
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0260
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0265
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0265
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0270
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0270
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0275
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0275
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0275
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0280
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0280
http://refhub.elsevier.com/S1474-0346(20)30191-9/h0280

	Modified OFS-RDS bat algorithm for IFS encoding of bitmap fractal binary images
	1 Introduction
	1.1 Motivation
	1.2 Main contributions and structure of this paper

	2 Previous work
	3 Mathematical background
	4 Digital image compression with IFS: the collage theorem
	5 The proposed method
	5.1 Overview of the method
	5.2 Representation of individuals and search space
	5.3 The fitness function
	5.4 Our approach: modified OFS-RDS bat algorithm
	5.4.1 Original bat algorithm
	5.4.2 OFS-RDS bat algorithm
	5.4.3 Modified OFS-RDS bat algorithm

	6 Computational experiments and results
	6.1 Benchmark and computational procedure
	6.2 Results
	6.2.1 Graphical results
	6.2.2 Numerical results

	6.3 Comparative analysis
	6.4 Computational complexity and CPU times

	7 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary material
	References

