
NiaAML2: An Improved AutoML Using
Nature-Inspired Algorithms
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Abstract. Using machine learning methods in the real-world is far from
being easy, especially because of the number of methods on the one hand,
and setting the optimal values of their parameters on the other. There-
fore, a lot of so-called AutoML methods have emerged nowadays that
also enable automatic construction of classification pipelines to users,
who are not experts in this domain. In this study, the NiaAML2 method
is proposed that is capable of constructing the classification pipelines
using nature-inspired algorithms in two phases: pipeline construction,
and hyper-parameter optimization. This method improves the original
NiaAML capable of this construction in one phase. The algorithm was
applied to four UCI ML datasets, while the obtained results encouraged
us to continue with the research.

Keywords: Nature-inspired algorithms · Machine learning ·
AutoML · Classification pipeline

1 Introduction

Finding a Machine Learning (ML) method for solving a certain problem usually
becomes a very difficult task due to several factors, like proper preparation and
data preprocessing, the suitability of the selected ML method for a given problem
and setting the optimal values of hyper-parameters for the selected ML meth-
ods [7,9]. The domain of Automated Machine Learning (AutoML) has emerged
for the sake of simplification and automation of some of the mentioned steps.
This domain deals with the problem of finding the optimal classification pipeline
automatically. The classification pipeline is a sequence of methods or algorithms,
necessary for the successful implementation of the entire ML process, from data
preprocessing to the point, where the results are calculated [8]. By automat-
ing the individual pipeline discovery steps, ML has become more accessible to
the wider community. Researches show that, using the AutoML methods, the
classification pipelines can also be constructed by non-expert users [5,12].

For this purpose, many AutoML methods have been developed such as Auto-
WEKA [11] and Hyperopt-sklearn [1] that both base on Bayesian optimization.
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Auto-sklearn [5] upgraded the idea of Bayesian optimization by adding a meta-
learning step. In the field of AutoML, several methods have been developed
that search for classification pipelines using stochastic population-based nature-
inspired algorithms. The frameworks that use such methods are TPOT [12] and
RECIPE [3], which use genetic algorithms to construct the classification pipeline.
One of the more interesting methods is also the NiaAML method [7], which is
used to find optimal classification pipelines using the stochastic population-based
nature-inspired algorithms.

In this study, an extension of the NiaAML method is presented, i.e., the
improved NiaAMLv2. Indeed, the proposed NiaAMLv2 eliminates the main
weakness of the original method, where the hyper-parameters’ optimization is
performed simultaneously with construction of the classification pipelines in a
single phase. This means that only one instance of nature-inspired algorithm
is needed, where the ML methods and their hyper-parameters are searched for
simultaneously in each generation. The improved version divides the construction
of the pipeline and hyper-parameter optimization into separate phases, where
two nature-inspired instances of algorithms are applied sequentially one after
another, i.e., the former by covering the construction of pipeline and the later
by optimizing the hyper-parameters of the proposed ML-methods. Results of
experiments for both methods are also discussed and compared using the four
datasets from the UCI machine learning repository [4].

The paper is organized as follows. In Sect. 2 stochastic population-based
nature-inspired algorithms are described along with using the NiaAML. The
improved NiaAMLv2 is proposed in Sect. 3, while Sect. 4 describes the experi-
ments and the obtained results. The conclusion of the paper is given in Sect. 5,
where we also outline directions for the future work.

2 Population-Based Nature-Inspired Algorithms for
AutoML

Nowadays, the nature-inspired algorithms present one of the more popular
groups for solving the optimization problems [14]. According to the metaphor
taken from nature, they are divided into four groups [6], where the SI-based
algorithms are a subset of algorithms in the field of biology. This subset
also includes Evolutionary Algorithms (EA) working on the principle of Dar-
win’s evolution [2], which proves that a generation of organisms can survive
in the environment only if they are well adapted to the environmental condi-
tions [2]. Together with SI-based algorithms, they form a class of nature-inspired
algorithms.

A classification pipeline construction can be modeled as a continuous opti-
mization problem that can be solved with a number of optimization algorithms.
Similar as the NiaAML [7], this paper focuses on the interesting approach for
constructing classification pipelines using stochastic population-based nature-
inspired algorithms for solving this problem.
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2.1 NiaAML

NiaAML is distinguished from the other AutoML methods by mapping of real-
valued vectors to classification pipelines. The vectors are evolved using the
stochastic population-based nature-inspired algorithms. Indeed, each individ-
ual of the population represents one of the potential classification pipelines [7].
According to [9], NiaAML belongs to the process of collecting metadata or meta-
learning, which includes: (1) the construction of the classification pipeline, (2)
optimization of the hyper-parameters and (3) evaluation of the model. The con-
struction of the classification pipeline with the NiaAML method demands fol-
lowing three mandatory steps, i.e., selection of: (1) the feature selection, (2) the
feature transformation, and (3) the classifier algorithms. The aforementioned
ML method can be selected from any framework of tools [7].

Individuals representing possible classification pipelines in the NiaAML
method are presented in the optimization algorithm as a real-valued vector [7]:
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where the first three elements are intended for the selection of pipeline compo-
nents, while the variable length of vector D depends on the number of hyper-
parameters used by the components included in the pipeline. Let us notice that
the length of each solution is D+3. Because both observed methods, i.e., NiaAML
and NiaAMLv2, operate on the same set of aforementioned selection components,
the detailed description of these is illustrated in the next section.

Pseudo-code of the proposed algorithm for constructing the classification
pipelines is presented in Algorithm 1, from which it can be see that the
algorithm suits the general form of the SI-based algorithms. After initialization

Algorithm 1. A pseudo-code of the NiaAML method
1: population ← Initialize real valued vectors xi regarding Eq. (1)
2: best pipeline ← Evaluate and select the best (population)
3: while Termination condition not met do
4: for each xi ∈ population do
5: xtrial ← Modify population using variation operators (xi)
6: pipeline ← Construct pipeline (xtrial)
7: Evaluate (pipeline)
8: if pipeline is better than ’Construct pipeline (xi)’ then
9: xi ← xtrial � Replace the worse individual

10: end if
11: if pipeline is better than best pipeline then
12: best pipeline ← pipeline
13: end if
14: end for
15: end while
16: return best pipeline
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and evaluation of initial population (line 1 and 2), each individual undergoes act-
ing the variation operators (line 5) by generation of trial solution. The pipeline
is constructed by appropriate genotype-phenotype mapping based on collection
of selection components (line 6) and evaluated according its quality (line 7). If
the quality of constructed pipeline from the trial is better than the quality of
the target individual, the target is replaced with the trial (lines 8–10).

3 NiaAMLv2

The improved version NiaAMLv2 divides the AutoML process into two phases:
(1) classification pipeline construction, and (2) hyper-parameter optimization. In
line with this, two algorithms are developed for each particular phase. However,
both phases are implemented by a different PSO algorithm.

The first algorithm represents the solutions of the construction process as
real-valued vectors, i.e.:
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which consists of three elements denoting: the Feature Selection Algorithm
(FSA), Feature Transformation Algorithm (FTA), and selection of the CLas-
sification Algorithm (CLA). Indeed, the meaning of the three parameters is
described in Table 1, from which it can be seen that the four stochastic nature-
inspired population-based algorithms can be selected for feature selection, there
are two feature transformation options beside the selection of the no transfor-
mation, and six classification algorithms. The implementations of all the afore-
mentioned components were taken from the Scikit-learn Python library [13].

Table 1. Components of the original NiaAML method.

Component Abbreviation Framework of tools

Feature selection FSA {DE ,PSO ,GWO ,BA}
Feature transformation FTA {NONE ,SCALING,NORMAL}
Classificator CLA {MLP ,LS SVM ,ADA,RF ,ERT ,BAG}

The second algorithm is devoted to the hyper-parameter optimization and,
therefore, represents the solution as a variable vector of real-values drawn from
domains of feasible values randomly, in other words:
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Due to the limitation of the paper, the hyper-parameters for the selected com-
ponents that enter into the optimization are not illustrated explicitly.
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Algorithm 2. A pseudo-code of the NiaAMLv2 method
1: population1 ← Initialize real valued vectors xi from the Eq. (2)
2: population2 ← Initialize real valued vectors yj from the Eq. (3)
3: best pipeline ← Evaluate and select the best(population1,population2)
4: while Termination condition1 not met do
5: for each xi ∈ population1 do
6: xtrial ← Modify using variation operators (xi)
7: while Termination condition2 not met do
8: for each yj ∈ population2 do
9: ytrial ← Modify using variation operators (yj)

10: pipeline ← Construct pipeline (xtrial,ytrial)
11: Evaluate (pipeline)
12: target ← Construct pipeline (xi,yj)
13: if pipeline is better than target then
14: xi ← xtrial

15: yj ← ytrial

16: end if
17: if pipeline is better than best pipeline then
18: best pipeline ← pipeline
19: end if
20: end for
21: end while
22: end for
23: end while
24: return best pipeline

The concept of the NiaAMLv2 is presented in the Algorithm 2. from which
it can be seen that both phases, i.e., algorithms’ selection and hyper-parameter
optimization are launched sequentially one after another by two different nature-
inspired algorithms. Interestingly, both algorithms use the same evaluation func-
tion (function Evaluate), i.e., pipeline accuracy expressed as follows:
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where Accuracy(.) denotes the accuracy of model M
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based on classifica-
tion pipeline xi. Thus, the accuracy is a statistical measure reflecting the bias
between the true and all number of cases, in other words:
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where TP = True Positive, TN = True Negative, FP = False Positive and
FN = False Negative [7]. The task of the optimization is to find models with
the maximum value of accuracy [7].

After we obtained the best pipelines found in both phases, we tested them
using the stratified 10-fold cross validation and compared their results using
accuracy, precision, F1-score and Cohen’s κ metrics.
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4 Experiments and Results

The goal of our experimental work was to show that the proposed NiaAMLv2
is suitable for AutoML, on the one hand, and that it constructs classification
pipelines of quality equal to, if not better than, the original NiaAML. In line
with this, extensive experimental work was conducted, where all experiments
were performed on an HP ProDesk 400 G6 MT computer running Microsoft
Windows 10, an Intel (R) Core (TM) i7-9700 CPU @ 3.00 GHz processor, and 8
GB of installed physical memory.

When running the NiaAMLv2, we used a population of 15 individuals with
300 fitness function evaluations in both optimization steps, while we used a
population of 20 individuals with 400 evaluations with the original NiaAML.
Particle Swarm Optimization (PSO) [10] was used in all cases with the following
parameters: cognitive component and social component set to 2.0, inertia weight
had a value of 0.7 and both minimal and maximal velocities set to 1.5.

During the experimental work, we used four datasets from the UCI Machine
Learning Repository [4]. The list and their characteristics are shown in Table 2,
from which it can be seen that the first two consist of real-valued attributes,
while the other two of mixed ones (i.e., real-valued, integer, and discrete). The
Abalone dataset exposed the highest number of instances. Interestingly, the last
Cylinder bands dataset also included the missing data. To impute missing data
in this dataset, we used an average value for numeric features and a mode for
categorical features. To encode categorical features into numeric, we used one-hot
encoding.

Table 2. Datasets used in the experiment.

Dataset Type of attributes # Instances # Features Missing data

Ecoli Real 336 8 No

Yeast Real 1484 8 No

Abalone Real, integer, categorical 4177 8 No

Cylinder bands Real, integer, categorical 512 39 Yes

The results of the algorithms were compared according to four classification
evaluation metrics: Accuracy, Precision, F1, and Cohen’s Kappa. The accuracy
is already applied as part of the fitness function evaluation and is defined by
using Eq. (5). The other metrics are defined as follows: The precision of the
model M(xi) is defined as ratio between true positive and all number of cases:

Precision (M (xi)) =
TP

TP + FP
. (6)

The F1 metric is calculated using Precision and Recall:

F1 (M (xi)) = 2 · Precision (M (xi)) · Recall (M (xi))
Precision (M (xi)) + Recall (M (xi))

, (7)
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where Recall = TP
TP+FN . Actually, metrics Precision, Recall, and F1 need to be

calculated, when we have to do with the classification to two classe.
The Cohen’s Kappa is defined as follows:

κ (M (xi)) =
n

∑k
i=1 CM i.i −

∑k
i=1 CM i,∗CM ∗,i

n2 − ∑k
i=1 CM i,∗CM ∗,i

, (8)

where CM i,∗ is sum of elements in the i-th row of confusion matrix CM and
CM ∗,i the sum of the i-t columns of the same matrix.

In the remainder of the paper, the results obtained by constructing the opti-
mal classification pipeline are presented in detail.

4.1 The Results of Constructing the Pipeline on UCI-ML Datasets

The presentation of the results obtained by optimization of both AutoML meth-
ods is divided into two parts: In the first part, the optimal classification pipelines
are exposed according to each dataset per specific version of the AutoML
method. The second part is devoted for comparing the results between the origi-
nal NiaAML and the improved NiaAMLv2 according to four classification evalu-
ation metrics (i.e., Accuracy, Precision, F1, and Cohen’s Kappa), and depicted in
the corresponding boxplots. The boxplots show the results of the aforementioned
values of metrics obtained by stratified 10-fold cross validation over pipelines
optimized by both methods. Each of them presents the average value calculated
in each of ten folds.

The boxplots, comparing the results between NiaAml and NiaAMLv2, are
presented in Figs. 1 and 2, where each figure is divided into diagrams illustrating
one of the observed datasets. In the diagrams, the results of the NiaAML method
are presented in the red boxes, while the results of the NiaAMLv2 method in
the blue boxes.

In the case of the Ecoli dataset (Fig. 1(a)), both classification pipelines
selected all features. Despite the fact that a few outliers are visible in both cases,
the classification pipeline obtained by the NiaAMLv2 shows the better results
on average. All features were also selected in the case of the Yeast dataset by
both classification pipelines (Fig. 1(b)). On average, the results were very similar,
but the pipeline obtained by the NiaAMLv2 method had a smaller interquartile
range.

The results of constructing the optimal classification pipelines for the Abalone
dataset by the NiaAMLv2 method removed one feature, while the NiaAML used
only four features. The classification pipeline optimized with the NiaAMLv2
method showed better results overall (Fig. 2(a)). The pipeline optimized with
the NiaAMLv2 method showed better results on average by also optimizing the
Cylinder bands dataset, where there are also some visible outliers (Fig. 2(b)).



250 L. Pečnik et al.

a: Ecoli dataset. b: Yeast dataset.

Fig. 1. Results of the NiaAML and NiaAMLv2 pipelines for the Ecoli and Yeast
datasets.

a: Abalone dataset. b: Cylinder bands dataset.

Fig. 2. Results of the NiaAML and NiaAMLv2 pipelines for the Abalone and Cylinder
bands datasets.

4.2 Time Complexity

The time complexity of the NiaAMLv2 was much higher than the time complex-
ity of the original NiaAML as can be seen in Table 3, where the time complexities
for each observed database in seconds are presented for both AutoML methods.
Moreover, the ratios between time complexities of NiaAML and NiaAMLv2 in
percents have been added to the table. As can be seen from the table, the time
complexity of the proposed AutoML method was more than 100 times higher
than the original one. However, the reason for this must be searched for in sep-
arating of the hyper-parameter optimization into an independent phase.

4.3 Discussion

Based on the results of the experiment, we found out that the classification
pipelines generated by the NiaAMLv2 were slightly better in treating the Ecoli,
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Table 3. Time complexity of optimization.

Nr. Dataset Time [sec] Ratio

NiaAML NiaAMLv2 [%]

1 Ecoli 27.48 29,031.30 0.0945

2 Yeast 93.49 33,127.02 0.2822

3 Cylinder bands 189.23 122,262.46 0.1548

4 Abalone 2,868.90 295,909.65 0.9695
∑

3,538.37 55,4863.14 0.6377

Abalone and Cylinder bands datasets than the pipelines optimized by the orig-
inal NiaAML. On the other hand, we were surprised due to observation that
there were no noticeable differences in comparing the results obtained by the
Yeast dataset. Indeed, we expected that the NiaAMLv2 would give much better
results than NiaAML in all datasets, but this assumption was not justified in all
cases. The reason for such results was most likely in the size of the search spaces
introduced by continuous domains of hyper-parameters, and in the sensitivity of
both methods to occasional discovery of a very good fitness value, presumably
due to a random favorable distribution of data for training and testing pipelines.

5 Conclusion

In this article, we described the NiaAMLv2 method for automatic construction
of classification pipelines that presents an extension of the original NiaAML. The
main weakness of the NiaAML was that this method constructs a classification
pipeline and optimizes the corresponding hyper-parameters simultaneously in
one step. The proposed method separates both mentioned steps in two phases
conducted sequentially one after another. The results of our experiments showed
that the NiaAMLv2 outperformed the results of the original NiaAML by con-
structing the classification pipelines for three of the four UCI ML datasets in
tests, while the achieved results on the other two datasets were similar.

In the further research, a stratified 10-fold cross validation could be used
to provide less sensitivity to occasional discovery of good fitness values due to
a random favorable distribution of data for training and testing pipelines. The
better results would also likely be brought by discretizing the huge continuous
domains of hyper-parameters into more discrete classes, and, thus, getting the
search algorithm more chance to explore this search space more effectively.
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3. de Sá, A.G.C., Pinto, W.J.G.S., Oliveira, L.O.V.B., Pappa, G.L.: RECIPE: a
grammar-based framework for automatically evolving classification pipelines. In:
McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.)
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