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Abstract. Association Rule Mining belongs to one of the more promi-
nent methods in Data Mining, where relations are looked for among
features in a transaction database. Normally, algorithms for Association
Rule Mining mine a lot of association rules, from which it is hard to
extract knowledge. This paper proposes a new visualization method ca-
pable of extracting information hidden in a collection of association rules
using numerical attributes, and presenting them in the form inspired by
prominent cycling races (i.e., the Tour de France). Similar as in the Tour
de France cycling race, where the hill climbers have more chances to
win the race when the race contains more hills to overcome, the virtual
hill slopes, reflecting a probability of one attribute to be more interest-
ing than the other, help a user to understand the relationships among
attributes in a selected association rule. The visualization method was
tested on data obtained during the sports training sessions of a profes-
sional athlete that were processed by the algorithms for Association Rule
Mining using numerical attributes.
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1 Introduction

Association Rule Mining (ARM) [1] is an important part of Machine Learning
that searches for relations among features in a transaction database. The major-
ity of the algorithms for ARM work on categorical features, like Apriori proposed
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by Agrawal [2], Eclat, introduced by Zaki et al. [20], and FP-Growth, developed
by Han et al. [8]. Algorithms for dealing with the numerical features have also
been developed recently [3, 6].

Typically, these algorithms generate a huge number of association rules, from
which it is hard to discover the most important relations. In order to extract
a knowledge from the collection of mined association rules, a lot of tools have
emerged [7] that are able to cope with complex data structures, e.g., instance-
relationship data [5], user generated context [9, 12], and scanner data [14]. On the
other hand, there are a number of papers proposing data visualization methods
as a means for extracting meaningful results from highly complex settings [4].

This paper focuses on the visualization of ARM using numerical features.
Thus, the relationships among these features are visualized using an inspiration
taken from one of the most prominent cycling races in the world, i.e., the Tour
de France (TDF). Similar as in the Tour de France cycling race, where the hill
climbers have more chances to win the race, when the race contains more hills
to overcome, the virtual hill slopes, reflecting a probability of one attribute to
be more interesting than the other, help a user to understand the relationships
among attributes in a selected association rule.

The proposed visualization method was applied on a transaction database
consisting of data obtained by measuring data during the training sessions with a
mobile device worn by a professional cyclist in the past three seasons. The results
of visualization reveal that using the method in the real-world can improve the
interpretation of the mining of the association rules, and direct the user to the
more important ones.

The structure of the paper is as follows. Section 2 highlights the basic in-
formation needed for understanding the subject of the paper. In Section 3, an
algorithm for visualizing the mined association rules is illustrated in detail. The
results of the proposed visualization method are presented in Section 4. The
paper is concluded by Section 5, which summarizes the work performed and
outlines directions for the future.

2 Basic information

This section is focused on the background information necessary for understand-
ing the subject that follows. At first, the principles of TDF serving as an inspi-
ration for visualization are highlighted, followed by describing the problem of
discovering association rules.

2.1 Tour de France

Numerous research articles published in the past support the idea that good hill
climbing abilities are a nuisance for winning the Tour De France (TDF). Climber
specialists (fr. grimpeur), all-rounders (fr. rouleur) and time-trial specialists (fr.
chronoman) usually fight for overall podium positions at the Champs-lyses, con-
trary to the breakaway specialists (fr. baroudeur) and sprinters, who strive for
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glory at individual stages. Good hill climbing abilities come naturally come with
suitable anthropometric stature: According to [16], climbers usually weigh 60-
66 kg, with their BMI (Body Mass Index) reaching 19-20 kg/m2. Compared to
other specialists, climbers perform exceptionally well at maintaining high rela-
tive power output to their weight W/kg. From the characteristics of climbers,
we deduce that steep climbs, where intensity is near maximum, determine (or
are crucial for) the overall winner of TDF, and we further deduce that climbers
are in a favorable role there.

Lucia at al. [10] introduce the TDF historical overview and climbing facts.
Good climbing performance in the Alps and Pyrenees is highly correlated to good
time-trial performance [18], which provides a good chance that a strong climber
will perform solidly at the time-trial, too. Indeed, both are necessary to win the
TDF [17]. However, Rogge et al. [13] agree that good performance at mountain
stages is crucial for a favorable TDF result overall. Torgler [18] further exposes
the difficulties of mountain stages, and emphasizes the high efforts needed to
provide good General Classification (GC); the steep mountainous stages are
supposed to be the most difficult ones among them all and, thus, are decisive for a
successful GC; subsequent climbs with descents are found to be most exhaustive.
It follows that, the more exhaustive the stage, the larger the time differences at
the finish. Sanders and Heijboer [15] supported this idea, by finding out that
mountain stages are of the highest intensity and exercise load among mass-start
stage types. To a higher degree, this is because of the total elevation gain and
highly alternating pace that occurs at hilltops. In our opinion, van Erp et al. [19]
present the most comprehensive empirical study of individual load, intensity
and performance characteristics of a single GC contender. Among many testing
hypotheses, authors state that the most necessary to compete for victory in a
Grand Tour is to achieve the highest power output possible (app. 5.7 - 6.0 W/kg)
at key mountain stages.

Climbing to ”Hors Catgorie” (HC) climbs is extremely specific. Such climbs
are usually of extraordinary distance and elevation, and, thus, require extreme
efforts. At high altitudes, moderate hypoxia can come into play, which tightens
the cyclist’s margins and increases physical fatigue even more. An example of an
HC finish climb is shown in Fig. 1. These facts contribute easily to early exhaus-
tion, or overreaching [10] and thus are critical for good overall GC classification.
The lost time at mountainous stages usually cannot be recovered anymore (cy-
clists can barely limit only the losses).

On the other hand, competing to win the TDF is not only about climbing.
The TDF is extremely psychologically and physically demanding, especially for
GC contenders: (1) These need to be cautious of opponents at all times, (2) No
relaxation days are allowed to them and (3) a single bad day or opponent’s ex-
plosive burst may be devastating. Without mentioning high temperatures, team
spirit, injuries, crashes and technical glitches, the psychological and physical ten-
sion to GC contenders are the highest at the high-intensity phases, such as steep
hills [11].
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Fig. 1: Example of TDF Stage 12, TDF 2015. Image origin: https://commons.

wikimedia.org/wiki/File:Profile_stage_12_Tour_de_France_2015.png, dis-
tributed under: Creative Commons Attribution-Share Alike 4.0 International License

2.2 Association Rule Mining

ARM can be defined formally as follows: Let us assume a set of objects O =
{o1, . . . , oM} and transaction dataset D = {T} are given, where each transaction
T is a subset of objects T ⊆ O. Then, an association rule is defined as an
implication:

X ⇒ Y, (1)

where X ⊂ O, Y ⊂ O, and X ∩ Y = ∅. In order to estimate the quality of a
mined association rule, two measures are defined: A support and a confidence.
The support is defined as:

supp(X) =
|t ∈ T ;X ⊂ t|

|T |
, (2)

while the confidence as:

conf(X ⇒ Y ) =
n(X ∪ Y )

n(X)
, (3)

where function n(.) calculates the number of repetitions of a particular rule
within D, and N = |T | is the total number of transactions in D. Let us emphasize
that two additional variables are defined, i.e., the minimum confidence Cmin and
the minimum support Smin. These variables denote a threshold value limiting
the particular association rule with lower confidence and support from being
taken into consideration.

3 Description of constructing the new visualization
method for ARM

The problem of predicting the winner of the TDF can be defined informally
as follows: Let us assume that cyclist X is a specialist for hill climbing. This
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cyclist started in n from the total N races and overcame a set of elite cyclists
Y1, . . . , Ym−1 M1, . . . ,Mm−1-times, respectively, where m denotes the number of
observed cyclists, i.e., not only hill climbers. Such framework could be applied to
all cyclists in general. Based on these data, the question is, what is the probability
for X to win the TDF this year?

The problem could be solved visually in the sense of the ARM as follows:
The number of races in which the cyclist X started can be expressed as supp(X).
The same is also true for cyclist Yi, where the number of his starts is expressed
as supp(Yi). The numbers of races, where X overcame Yi can be expressed as
conf (X ⇒ Yi). Then, the equivalent relation

supp(X) ≡ conf (X ⇒ Y ) (4)

means that cyclist X overcame cyclist Yi in all races in which they both started.
This relation can be visualized as a rectangular triangle with two sides of equal
length, supp(Yi) and conf (X ⇒ Yi), and the length of diagonal L is expressed
by Pythagoras rule, as follows:

L =

√
supp2(Yi) + conf 2(X ⇒ Yi). (5)

As a result, a sequence of triangles is obtained, where each triangle highlights
the relationship between the two cyclists. If triangles are ordered according to
their supports and put onto a line with spacing proportional to a conf (X ⇒
Yi), and the model triangle with two sides equal to supp(X) is added, the new
visualization method emerges, as presented in Fig. 2.

Fig. 2: Mathematical model of virtual hills, on which the new visualization method is
founded.

As can be seen from Fig. 2, the model triangle representing the triangle with
the largest area, is isosceles, and it is placed on the position L1/2 distant from
the origin of 0. However, the positions Li for i = 0, . . . ,m − 1 are calculated
according to Eq. 5. A corresponding length of the triangle is calculated for each
of the observed cyclists Yi. The position of the triangle on the line is determined



6 I. Fister Jr. et al.

as follows:

posi = L0 +

i−1∑
j=1

(LC j + LLj + LRj) + (LC i + LLi) , (6)

where L0 denotes the diagonal length of the model triangle, LC j ∝ conf (X ⇒
Yj) is the distance between two subsequent triangles, LLj , expressed as follows:

cosα =
supp(Yj)

Lj
, for j = 1, . . . ,m− 1,

LLj = supp(Yj) · cosα =
supp2(Yj)

Lj
,

(7)

while LRj as:

cosβ =
conf (X ⇒ Yj)

Lj
, for j = 1, . . . ,m− 1,

LRj = conf (X ⇒ Yj) · cosβ =
conf 2(X ⇒ Yj)

Lj
.

(8)

The interpretation of these triangles representing hills in the TDF is as fol-
lows: At first, the larger the area of the triangle for cyclist Yi, the more chances
for cyclist X to overcome this in the race. The same relationship is highlighted
in the distance between these triangles. This means that the more the triangle
is away from the model triangle, the higher is the probability that X will be
overcome by Yi. Let us emphasize that the discussion is valid for classical ARM
using numerical attributes, where the mined association rules serve only as a
basis for determining the best features. Thus, the implication relation in the
rule is ignored and redefined by introducing the m − 1 individual implication
relations between pairs of features.

Similar as steep slopes have a crucial role in the TDF cycle race for deter-
mining the final winner, the virtual hill slopes help the user to understand the
relations among features in the transaction database. Indeed, this visualization
method can also be applied for visualizing features in the ARM transaction
databases. Here, the features are taken into consideration instead of cyclists.
On the other hand, interpretation of visualization is also slightly different from
the TDF. Here, we are interested in those relations between features that most
highlights the mined association rules. The larger the area of the triangle Yi, the
closer the relationship between the feature X.

4 Experiments and results

The goal of our experimental work was to show that the mined association rules
can be visualized using the proposed visualization method based on inspiration
taken from the TDF cycling competition. In line with this, two selected associ-
ation rules mined from a corresponding transaction database are visualized.
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The association rules were mined using contemporary approaches using stochas-
tic nature-inspired population-based algorithms, like Differential Evolution [6].
Then, the best mined association rules according to support and confidence are
taken into consideration. In each specific association rule, the feature with the
the best support is searched for. This feature serves as a model, with which all
the other features in the observed rule are compared according to a confidence.

The transaction database consists of seven numerical features, whose domain
of feasible values are illustrated in Table 1. The transaction database consists of

Table 1: Observed numerical features with their domain of values.

Nr. Feature Domain

F-1 Duration [43.15, 80.683]
F-2 Distance [0.00, 56.857]
F-3 Average HR [72, 151]
F-4 Average altitude [0.2278, 1857.256]
F-5 Maximum altitude [0.0, 0.0]
F-6 Calories [20.0, 1209]
F-7 Ascent [0.00, 1541
F-8 Descent [0.00, 1597]

700 transactions representing the results measured by a mobile device worn by a
professional cyclist during the sports training session. These data were obtained
in the last three cycling seasons. In a temporary sense, this means that we can
start to set a get valuable visualization with full predictive power for the current
season after lapse of three seasons. However, this does not mean that the method
cannot be applied before elapsing three seasons, but the obtained results could
be less accurate.

The best two association rules according to support are presented in Table 2,
where they are denoted as visualization scenarios 1-2. Let us emphasize that the

Table 2: Mined numerical features in association rules.

Feature Scenario 1 Scenario 2

Duration [76.67,78.07] [46.95,65.87]
Distance [14.28,26.32] [26.24,53.30]
Average HR [78.79,114.92] [104.12,141.40]
Average altitude [631.70,1809.21] [17.59,547.05]
Calories [774.92,1161.43] [1096.82,1209.00]
Ascent [0.00,10.00] [0.00,74.19]
Descent [0.00,54.19] [0.00,623.88]

association rules are treated without implication relation. Here, the intervals of
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numerical attributes are important for the proposed visualization method only.
On the other hand, the proposed approach is not limited by a huge number
of triangle diagrams, because here we are focused on visualization of the best
association rules according to some criteria that normally have a limited number
of numerical attributes.

Experimental figures were drawn using the Matlab software framework, using
the colored 3-D ribbon plot. All the Figures start at Location = 0 and spread
on the x axis. The height of the triangles is symbolized at the z axis, and the
shades of color are represented by a vertical color-bar. On the other hand, the y
axis does not include any meaning.

The visualization of the two mentioned scenarios are presented in the re-
mainder of the paper.

4.1 Scenario 1

The best association rule is presented in Table 3, where the feature F-2 (i.e.,

Table 3: Scenario 1 in numbers.

Scenario supp(X) conf (X ⇒ Yi)

1
F-2 F-3 F-4 F-8 F-1 F-7 F-6
0.40 0.19 0.16 0.06 0.05 0.02 0.01

”Distance”) is compared with the closest features according to a confidence, i.e.,
”Average HR”, ”Average altitude”, ”Descent”, ”Duration”, ”Ascent”, ”Calo-
ries”.

The corresponding visualization of these data are illustrated in Fig. 3, from
which it can be seen that the feature ”Distance” has higher interdependence
with features ”Average HR” and ”Average altitude” only, but the relationships
among the other features do not have a higher effect on the performance of the
athlete.

4.2 Scenario 2

In this scenario, only six features are incorporated, because the feature R-6 (i.e.,
”Calories”) does not affect the performance of the cyclist in training (Table 4).

Table 4: Scenario 2 in numbers.

Scenario supp(X) conf (X ⇒ Yi)

2
F-8 F-3 F-4 F-1 F-7 F-2 F-6
0.93 0.85 0.75 0.57 0.26 0.22 0.00
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Fig. 3: Visualization of Scenario 1.

As can be seen from Fig. 4, there are six hills, where the former three hills are
comparable with the first one according to the area, while the last two expose
the lower interdependence. Indeed, the higher interdependence is also confirmed
by the larger distances between hills.

5 Conclusion

ARM using numerical attributes of features was rarely applied in practice. The
task of the algorithm for ARM with numerical attributes is to find the proper
boundary values of numerical features. Consequently, these values specify mined
association rules using different values of support and confidence. Thus, the
association rules with the best values of support and their closeness to the other
features are the more interesting for the user. The users suffer from the lack of
information that is hidden in association rules. Obviously, the solution of the
problem presents various visualization tolls for extracting the knowledge hidden
in data.

This paper proposes a new visualization method inspired by the TDF. Sim-
ilar as in the TDF cycle race, where the hill climbers have more chances to win
the race when the race contains more hills to overcome, the virtual hill slopes, re-
flecting a probability of one attribute to be more interesting than the other, help
a user to understand the relationships among attributes in a selected association
rule.

Thus, the relationships between features in the transaction database are il-
lustrated using triangles, representing hills, that need to be overcome by the
cyclists. The first triangle in a sequence is a model, because it contains the
largest area. The other triangles represent the opponents in the following sense:
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Fig. 4: Second visualization.

The larger the area of a definite triangle, the easier it is for the opponent to
overcome. In the ARM sense, this means the following: The larger the triangle,
the closer the feature in the transaction database.

The visualization method was employed on a transaction database consisting
of features characterizing the realized sports training sessions. Two scenarios
were visualized, based on two selected mined association rules. The results of
visualization showed the potential of the method, that is able to illustrate the
hidden relationships in a transaction database in an easy and understandable
way to the user.

In the future, the method could also be broadened for dealing with mixed
attributes, i.e., numerical and categorical. The method should be applied to
another transaction databases.
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ing No. P2-0057). Dušan Fister thanks the financial support from the Slove-
nian Research Agency (Research Core Funding No. P5-0027). J. Del Ser and
E. Osaba would like to thank the Basque Government through EMAITEK and
ELKARTEK (ref. 3KIA) funding grants. J. Del Ser also acknowledges funding
support from the Department of Education of the Basque Government (Consol-
idated Research Group MATHMODE, IT1294-19). Andres Iglesias and Akemi
Galvez acknowledge financial support from the project PDE-GIR of the Euro-
pean Unions Horizon 2020 research and innovation programme under the Marie



Visualization of Numerical Association Rules by Hill Slopes 11

Sklodowska-Curie grant agreement No 778035, and the Spanish Ministry of Sci-
ence, Innovation, and Universities (Computer Science National Program) under
grant #TIN2017-89275-R of the Agencia Estatal de Investigacin and European
Funds EFRD (AEI/FEDER, UE).

References
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