
Nonlinear Dyn (2016) 84:895–914
DOI 10.1007/s11071-015-2537-8

ORIGINAL PAPER

Artificial neural network regression as a local search
heuristic for ensemble strategies in differential evolution

Iztok Fister · Ponnuthurai Nagaratnam Suganthan · Iztok Fister Jr. · Salahuddin M. Kamal ·
Fahad M. Al-Marzouki · Matjaž Perc · Damjan Strnad

Received: 24 April 2015 / Accepted: 28 November 2015 / Published online: 18 December 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Nature frequently serves as an inspiration
for developing new algorithms to solve challenging
real-world problems.Mathematicalmodeling has led to
the development of artificial neural networks (ANNs),
which have proven especially useful for solving prob-
lems such as classification and regression. Moreover,
evolutionary algorithms (EAs), inspired by Darwin’s
natural evolution, have been successfully applied to
solve optimization, modeling, and simulation prob-
lems. Differential evolution (DE) is a particularly well-
known EA that possesses a multitude of strategies for
generating an offspring solution, where the best strat-
egy is not known in advance. In this paper, the ANN
regression is applied as a local search heuristic within
the DE algorithm that tries predicting the best strategy
or attempting to generate a better offspring from an
ensemble of DE strategies. This local search heuristic

I. Fister · I. Fister Jr. · D. Strnad
Faculty of Electrical Engineering and Computer Science,
University of Maribor, Smetanova 17, 2000 Maribor,
Slovenia

P. N. Suganthan
School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore 639798, Singapore

S. M. Kamal · F. M. Al-Marzouki · M. Perc
Department of Physics, Faculty of Sciences, King
Abdulaziz University, Jeddah, Saudi Arabia

M. Perc (B)
Faculty of Natural Sciences and Mathematics, University
of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
e-mail: matjaz.perc@uni-mb.si; matjaz.perc@um.si

is applied to the population of solutions according to a
control parameter that regulates between the time com-
plexity of calculation and the quality of the solution.
The experiments on a CEC 2014 test suite consisting
of 30 benchmark functions reveal the full potential in
developing this idea.

Keywords Nonlinear dynamics · Artificial neural
network · Differential evolution · Regression · Local
search · Ensemble strategies

1 Introduction

Scientists in various research areas that are confronted
with solving tough real-world problems have always
searched for an inspiration in the nature. Nature not
only poses the questions, but also provides answers to
these. In computer sciences, two nature-inspiredmech-
anisms have been widely used: human brains [46] and
Darwinian theory of struggle for survival [7]. The for-
mer inspiration from the nature has led to the emer-
gence of artificial neural networks (ANNs), while the
latter to evolutionary algorithms (EAs). In this paper,
ANN is used as a regression method to enhance the
performance of differential evolution (DE).

Operation of an ANN simulates the electrochemi-
cal activity of brain cells called neurons [46]. The first
mathematicalmodel of neuronswas devised byMcCul-
loch and Pitts [37]. According to their model, a neuron
“fires,” when a linear combination of weighted inputs

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-015-2537-8&domain=pdf

896 I. Fister et al.

exceeds some threshold. Nonlinear response charac-
teristic of a neuron is usually achieved through a sig-
moid transfer function, which transforms the activation
value to neuron output. In the most widely used type
of ANNs, the neurons are organized in layers. The out-
puts of one layer become the weighted inputs to the
next layer, with no interconnections of neurons within
the layer. One of primary practical uses of ANNs is to
perform nonlinear regression on a set of input–output
pairs.Network training is executed in a supervised fash-
ion by introducing the inputs to the network, observing
the output error with respect to the target values, and
adjusting the connection weights to improve the per-
formance in the next round.

On the other hand, DE has become one of the
most prominent EAs for solving tough real-world opti-
mization problems. This population-based method was
introduced by Storn and Price in 1995 [48]. Individu-
als in the population representing the solution of the
problem to be solved are in a form of real-valued vec-
tors that are subjected to the operators of crossover and
mutation. Thus, a population of trial vectors is gener-
ated that compete with their parents for survival. As a
result, when a fitness of the trial vector is better than
or equal to the fitness of its parent at the same index
position in the population, the parent is replaced by the
trial (offspring) solution.

In order to further improve the DE algorithm, its
development has been conducted in several ways. For
example, adapting and self-adapting DEs assume that
the parameters as set at the start of the search process
may not be appropriate in later phases. Therefore,
these parameters are encoded into the solution vec-
tor and undergo operations of crossover and mutation.
Examples of successfully applied adaptive and self-
adaptive DE algorithms are jDE [4] and SaDE [42].
Another kind of DE algorithms tries to improve the
results of the original DE algorithmby using ensembles
of parameters and mutation DE strategies [34,49,50].
A complete survey of DE methods can be found
in [8,51].

Selection of proper DE mutation strategy is prob-
lem specific. Furthermore, the best strategymay change
with the search progress in the same way as other DE
parameters. The problem of adapting the DE mutation
strategy has previously been addressed in [33]. In this
paper, we propose the use of ANN to build an adap-
tive regression model for the best DEmutation strategy
from an ensemble of DE strategies.

In [14], various DE strategies are applied for each
individual, where the best value of element obtained
by all strategies in the DE ensemble is used to predict
the best value of the corresponding trial vector. This
contribution tries to overcome the time complexity of
the ANN regression applied to each individual. Here,
the ANN regression is used as a local search heuristic
applied to a candidate solution according to the control
parameter called probability of regression. The higher
the value of this parameter, the more candidate solu-
tions undergo ANN local search heuristic.

The structure of the remainder of the paper is as
follows: In Sect. 2, we give a short overview of ANN
and DE. Section 3 proposes a new DE algorithm with
ANN-based regression of DE strategies (nnDE). The
experiments and the results are presented in Sect. 4.
The paper concludes with a review of the paper contri-
butions and prospects for future work.

2 Background

2.1 Artificial neural networks

An ANN is a mathematical model of human brain.
It consists of a set of interconnected artificial neu-
rons, which simulate the operation of natural neu-
rons (i.e., brain cells) [45]. The electrochemical sig-
nals in the brain are amplified and propagated along
neuronal chains, whereby each neuron receives a num-
ber of input signals through ramified sensors (den-
drites) and forwards an output signal through its single
extension (axon) [21]. The simplest artificial neuron
model is shown in Fig. 1a. It receives the input vec-
tor x = (x0, . . . , xn) and produces output y using the
following equation [37]:

y = φ

(
n∑

i=0

wi xi

)
(1)

The signal transfer function is programmable through
a set w = (w0, . . . , wn) of weights on the input lines,
where line 0 serves as an interceptwithfixed input value
x0 = −1. A common choice for the transfer function φ

is a Heaviside function or a sigmoid function like tanh.
With respect to the variety of connectivity types that

emerge in different functional areas of the brain, many
different neural network architectures have been pro-
posed in the past. The one that received thewidest prac-

123

Artificial neural network regression as a local search heuristic 897

Fig. 1 An example of an artificial neuron (a), and an artificial neural network (b). a Artificial neuron, b Multilayer perception

tical application and is also employed in the context of
our paper is a feedforward multilayer ANN that con-
sists of neurons organized in several layers (Fig. 1b).
Numerical input signals enter the network on the left
and propagate through layers toward the outputs on
the right. The interlayer signaling works by using the
outputs of layer i as inputs of layer i + 1. An estab-
lished term for such type of ANN is a multilayer per-
ceptron (MLP). All layers except the last output layer
are referred to as hidden layers.

The spectrum of application domains for the ANNs
is wide and includes, among others, applications in
industry and business [54], data mining [3], civil engi-
neering [27], and fire safety [25]. In the field ofmachine
learning, the ANNs are used in classification and
regression tasks [28,30,56].

In its role as nonlinear regressor, the MLP must be
trained using a set of training samples with known
target values. This approach is known as supervised
learning [23]. The training procedure is an iterative
process in which the networkweights are progressively
adjusted such that the discrepancy between the network
outputs and target values is minimized. The common
error measures for network prediction quality are the
mean-squared error (MSE) and the cross-entropy error
(CEE). The best known supervised learning algorithm
for MLP is the back-propagation method, which uses
the gradient of the error function to adapt the weight
vectors. Weight changes are usually performed after
the presentation of each individual training pattern and
the determination of output error, but can be delayed to
after the completion of a cycle of presentations (called
an epoch). The termination criterion for the training is
determined by the allowed error tolerance, maximum
number of training epochs, or one of themore advanced

methods like cross-validation of prediction efficiency
on a separate test set.

In this paper, we propose the use of a two-layer
MLP as an aggregator for an ensemble of DE strate-
gies, where the best member of current population is
the regression target and the trial vectors derived by
different DE strategies are used as training inputs.

2.2 Differential evolution

Differential evolution (DE) belongs to the class of evo-
lutionary algorithms and is appropriate for solving con-
tinuous as well as discrete optimization problems. DE
was introduced by Storn and Price in 1995 [48] and
since then many DE variants have been proposed. The
original DE algorithm is represented by real-valued
vectors and is population-based. TheDE supports oper-
ators, such as mutation, crossover, and selection.

In the basic mutation, two solutions are randomly
selected and their scaled difference is added to the third
solution, as follows:

u(t)
i =x(t)

r0 +F · (x(t)
r1 −x(t)

r2), for i =1 . . .NP, (2)

where F ∈ [0.1, 1.0] denotes the scaling factor that
scales the rate ofmodification,while r0, r1, r2 are ran-
domly selected values in the interval 1 . . .NP and NP
represents the population size. Note that the proposed
interval of values for parameter F was enforced in the
DE community, although Price and Storn proposed the
slightly different interval, i.e., F ∈ [0.0, 2.0].

DE employs a binomial (bin) or exponential (exp)
crossover. The trial vector is built from parameter val-
ues copied from either the mutant vector generated by
Eq. (2) or parent at the same index position i . Mathe-
matically, this crossover can be expressed as follows:

123

898 I. Fister et al.

Table 1 An ensemble of DE strategies (ES)

No. Strategy Mutation expression Crossover

1 Best/1/Exp x (t+1)
i, j = best(t)j + F · (x (t)

r1, j − x (t)
r2, j) Exponential

2 Rand/1/Exp x (t+1)
i, j = x (t)

r1, j + F · (x (t)
r2, j − x (t)

r3, j) Exponential

3 RandToBest/1/Exp x (t+1)
i, j = x (t)

i, j + F · (best(t)i − x (t)
i, j) + F · (x (t)

r1, j − x (t)
r2, j) Exponential

4 Best/2/Exp x (t+1)
i, j = best(t)i + F · (x (t)

r1,i + x (t)
r2,i − x (t)

r3,i − x (t)
r4,i) Exponential

5 Rand/2/Exp x (t+1)
i, j = x (t)

r1,i + F · (x (t)
r2,i + x (t)

r3,i − x (t)
r4,i − x (t)

r5,i) Exponential

6 Best/1/Bin x (t+1)
i, j = best(t)i + F · (x (t)

r1,i − x (t)
r2,i) Binomial

7 Rand/1/Bin x (t+1)
i, j = x (t)

r1, j + F · (x (t)
r2, j − x (t)

r3, j) Binomial

8 RandToBest/1/Bin x (t+1)
i, j = x (t)

i, j + F · (best(t)i − x (t)
i, j) + F · (x (t)

r1, j − x (t)
r2, j) Binomial

9 Best/2/Bin x (t+1)
i, j = best(t)i + F · (x (t)

r1,i + x (t)
r2,i − x (t)

r3,i − x (t)
r4,i) Binomial

10 Rand/2/Bin x (t+1)
i, j = x (t)

r1,i + F · (x (t)
r2,i + x (t)

r3,i − x (t)
r4,i − x (t)

r5,i) Binomial

w
(t)
i, j =

{
u(t)
i, j rand j (0, 1) ≤ CR ∨ j = jrand,

x (t)
i, j otherwise,

(3)

where CR ∈ [0.0, 1.0] controls the fraction of parame-
ters that are copied to the trial solution. The condition
j = jrand ensures that the trial vector differs from the
original solution x(t)

i in at least one element.
Mathematically, the selection can be expressed as

follows:

x(t+1)
i =

{
w(t)
i if f (w(t)

i) ≤ f (x(t)
i),

x(t)
i otherwise .

(4)

Crossover and mutation can be performed in sev-
eral ways in differential evolution. Therefore, a spe-
cific notation was introduced to describe the varieties
of thesemethods (also strategies), in general. For exam-
ple, rand/1/bin denotes that the base vector is randomly
selected, 1 vector difference is added to it, and the
number of modified parameters in the trial/offspring
vector follows a binomial distribution. The other stan-
dard DE strategies are illustrated in Table 1. These
strategies also form an ensemble of DE strategies
(ES).

2.3 An evolution of DE algorithms

Since its introduction in 1995, many variants of DE
algorithm have been developed so far. Zhang et al. [55]
combined differential evolution with particle swarm
optimization, and result was a new algorithm called

DEPSO. Fan and Lampinen [13] added a new trigono-
metric mutation operator to DE in 2003. Lin et al. [31]
developed co-evolutionary hybrid DE. Chakraborty
et al. [6] proposed an improved variant of original
DE/best/1 scheme by utilizing the concept of the local
topological neighborhood of each vector. Scheme tries
to balance exploration and exploitation abilities of DE,
without using additional FES. Qin et al. [42] proposed
a differential evolution algorithm with strategy adapta-
tion. In 2006, Brest [4] proposed the concept of self-
adaptation of control parameters. A new algorithm jDE
was proposed in [4]. Rahnamayan et al. [43] incor-
porated an opposition-based mechanism in DE, while
Das et al. [9] proposed DE using neighborhood-based
mutation operator. Piotrowski [41] combined some
well-known DE approaches and gathered together in
one framework as a new adaptive memetic DE with
global and local neighborhood-based mutation oper-
ators. Han et al. [22] created dynamic group-based
differential evolution using a self-adaptive strategy to
cope with global optimization problems, while Cai and
Wang [5] developed differential evolution with neigh-
borhood and direction information. Neri et al. [38–40]
proposed compact differential evolution (cDE) which
could run also on very limited hardware.

Differential evolution has been used to solve practi-
cal problems such as electromagnetics [44], economic
emission load dispatch problems [2], crop planning
model [1], unit commitment problem [10], short-term
electrical power generation scheduling [52], ANNs
design [20], protein structure prediction [47] and many
more.

123

Artificial neural network regression as a local search heuristic 899

2.3.1 Ensemble DE methods

In the literature, some ensemble DEmethods were pro-
posed. Mallipeddi et al. [34–36] proposed an EPSDE
algorithm (differential evolution algorithmwith ensem-
ble of parameters and mutation strategies) where a
pool of distinct mutation strategies along with a pool
of values for each control parameter coexists through-
out the evolution process and competes to produce off-
spring. Mallipeddi and Suganthan [32] also proposed
differential evolution algorithm with ensemble of pop-
ulations to deal with global numerical optimization.
Fister et al. [17] applied ensemble of DE strategies
to the hybrid bat algorithm [18]. Elsayed et al. [12]
introduced an algorithm framework that uses multi-
ple search operators in each generation. An appropri-
ate mix of search operators is determined adaptively.
LaTorre [29] explored the use of a hybrid memetic
algorithm based on the multiple offspring framework.
Their algorithm combines the explorative/exploitative
strength of two heuristic searchmethods that separately
obtain very competitive results. Vrugt et al. [53] pro-
posed a concept, where different search algorithms run
concurrently and learn from each other through infor-
mation exchange using a common population.

2.3.2 jDE algorithm

In 2006,Brest et al. [4] proposed an effectiveDEvariant
(jDE),where control parameters are changed during the
run. In this case, two parameters, namely scale factor
F and crossover rate CR, are changed during the run.
In jDE, every individual is extended with F and CR:

x (t)
i = (x (t)

i,1, x
(t)
i,2, . . . , x

(t)
i,D, F (t)

i ,CR(t)
i).

jDE are changing parameters F and CR according
to the following equations:

F (t+1)
i =

{
Fl + rand1 ∗ (Fu − Fl) if rand2 < τ1,

F (t)
i otherwise,

(5)

CR(t+1)
i =

{
rand3 if rand4 < τ2,

CR(t)
i otherwise,

(6)

where randi=1...4 ∈ [0, 1] are randomly generated val-
ues, τ1 and τ2 are learning steps, Fl and Fu lower and
upper bound for parameter F .

3 The proposed algorithm

The proposed ANN regression on ensemble of DE
strategies (nnDE) (pseudo-code in Algorithm 1) mod-
ifies the generation of the trial vector in the orig-
inal DE algorithm. The trial vector yi is produced
from the original vector xi by the default DE muta-
tion strategy. A local search step (lines 5–10 in Algo-
rithm 1) is then performed with probability pr . The
regression probability has a great impact on the perfor-
mance of the algorithm, because it controls the num-
ber of local search steps to be launched. Therefore,
it influences the exploration and exploitation of the
evolutionary search process. The higher the proba-
bility of the regression, the more local search steps
are initiated. On the other hand, each local search
demands an additional processor time that may cause
a performance degradation of the algorithm. As a
result, the proper value of this parameter needs to
be found for each specific problem on a case-by-case
basis.

During each local search, a regression ANN is
trained using a training set Ti = {(t(k)i , xbest); k =
1, . . . , P}, where each training pattern consists of an
input vector t(k)i of dimension D and a vector of net-
work target outputs, which is xbest in all cases. Input
vectors t(k)i are derived from the currently processed
population member xi using randomly selected DE
strategies from the ensemble of strategies (ES) col-
lected in Table 1. The neural network thus has D
inputs, 1 + log2 D hidden neurons, and D output neu-
rons.

A trained ANN performs the regression of the best
found solution from the set of trial solutions provided
by the ensemble of DE strategies. When the strategies
agree and the trial solutions are similar, the nonlinear
transformation represented by the trained ANN per-
forms a narrowly directed local search. When this is
not the case, a random search ensues.

After training, the regression vector ri is obtained
by introducing the trial vector yi to the network. The
regression vector replaces the trial and is used in its
place for subsequent fitness comparison with the orig-
inal vector xi . Note that only one fitness evaluation is
spent during this local search step because the genera-
tion of the regression vector is performed in genotypic
and not in phenotypic search space.

123

900 I. Fister et al.

Algorithm 1 The nnDE algorithm
1: Initialize the DE population xi = (xi1, ..., xiD) for i =

1 . . .NP where NP is the population size.
2: repeat
3: for i = 1 to N P do
4: Generate trial vectoryi fromxi usingdefaultDEstrategy;

5: if rand() < pr then
6: Create a training set Ti from vector xi using ES and

target vector xbest;
7: Train theANNusingTi till the number of epochs epoch

exceeded;
8: Build regression vector ri from yi using the trained

ANN;
9: yi = ri ;
10: end if
11: if f (yi) < f (xi) then
12: xi = yi ;
13: if f (yi) < f (xbest) then
14: xbest = yi ;
15: end if
16: end if
17: end for
18: until DE termination condition is met

In general, the efficiency of the local search depends
on two facts [24]: How often it is launched and how
extensively the local search process explores the search
space. The former is controlled with the parameter
pr , while the latter depends on the number of epochs
needed for training the ANN. Typically, a designer
needs to choose between the often launched short-term
and rarely launched long-term local search. The short-
term local search demands a smaller, while the long-
term a larger number of ANN training epochs. In this
study, a rarely launched long-term local search heuris-
tic is tested.

4 Experimental results

The goal of our experimental work is to show that using
the ANN-based regression within the DE (nnDE) and
self-adaptive jDE [4] (nnjDE) can improve the results
of the original DE and jDE algorithms. In line with
this, the comparative study of thementioned algorithms
was performed by solving the CEC 2014 test suite. The
SaDE [42] method was also included in this compar-
ative study. In order to analyze the impact of ANN
regression on the original DE and jDE algorithms, the
following issues were investigated:

– the impact of the regression probability pr and the
number of ANN training epochs epoch,

– the impact of the fitness function evaluations, and
– the impact of problem dimensionality.

A comparative efficiency study of methods with and
without the use of ANN local search was performed,
and their convergence graphs were analyzed. The con-
trol parameters of the DE and nnDE algorithms dur-
ing the test were set as follows: F = 0.5,CR = 0.9,
and NP = 100. The population size parameter NP
was the same for all compared algorithms. The proper
value of this parameter mainly depends on the prob-
lem to be solved and was determined after extensive
experimentation. The jDE and nnjDE algorithms’ para-
meters were set as follows: F ∈ [0.1, 1.0],CR ∈
[0.0, 1.0], τ1 = τ2 = 0.1. As a termination condi-
tion, the number of fitness function evaluations was
used, as specified in the CEC 2014 benchmark suite,
i.e., Tmax = 10000 · D. Each function was optimized
25 times. The ANN training in nnDE and nnjDE was
terminated at 1000 epochs or when the training MSE
dropped below 10−6, whichever occurred first. The
ANN implementation from the OpenCV library was
used that supports a back-propagation method of train-
ing, which was used in our tests with the learning rate
and momentum scale set to 0.5 and 0.1, respectively.

4.1 Test suite

The CEC 2014 test suite (Table 2) consists of 30 bench-
mark functions that are divided into four classes:

– unimodal functions (1–3),
– simple multimodal functions (4–16),
– hybrid functions (17–22),
– composition functions (23–30).

Unimodal functions have a single global optimum
andno local optimums.Unimodal functions in this suite
are non-separable and rotated. Multi-modal functions
are either separable or non-separable. In addition, they
are also rotated or/and shifted. To develop the hybrid
functions, the variables are randomly divided into some
subcomponents, and then, different basic functions are
used for different subcomponents [26]. Composition
functions consist of a sum of two or more basic func-
tions. In this suite, hybrid functions are used as the basic
functions to construct composition functions. Char-
acteristics of these hybrid and composition functions
depend on the characteristics of the basic functions.

The functions of dimensions D = 10, D = 20,
and D = 30 were used in our experiments. The

123

Artificial neural network regression as a local search heuristic 901

Table 2 Summary of the
CEC’14 test functions

No. Functions F∗
i = Fi (x∗)

Unimodal functions 1 Rotated high conditioned elliptic function 100

2 Rotated bent cigar function 200

3 Rotated discus function 300

Simple multimodal functions 4 Shifted and Rotated Rosenbrocks function 400

5 Shifted and rotated Ackleys function 500

6 Shifted and rotated Weierstrass function 600

7 Shifted and rotated Griewanks function 700

8 Shifted Rastrigins function 800

9 Shifted and rotated Rastrigins function 900

10 Shifted Schwefels function 1000

11 Shifted and rotated Schwefels function 1100

12 Shifted and rotated Katsuura function 1200

13 Shifted and rotated HappyCat function 1300

14 Shifted and rotated HGBat function 1400

15 Shifted and rotated expanded Griewanks
plus Rosenbrocks function

1500

16 Shifted and rotated expanded Scaffers F6
function

1600

Hybrid functions 17 Hybrid function 1 (N = 3) 1700

18 Hybrid function 2 (N = 3) 1800

19 Hybrid function 3 (N = 4) 1900

20 Hybrid function 4 (N = 4) 2000

21 Hybrid function 5 (N = 5) 2100

22 Hybrid function 6 (N = 5) 2200

Composition functions 23 Composition function 1 (N = 5) 2300

24 Composition function 2 (N = 3) 2400

25 Composition function 3 (N = 3) 2500

26 Composition function 4 (N = 5) 2600

27 Composition function 5 (N = 5) 2700

28 Composition function 6 (N = 5) 2800

29 Composition function 7 (N = 3) 2900

30 Composition function 8 (N = 3) 3000

search range of the problem variables is limited to
xi ∈ [−100, 100].

4.2 Impacts of the regression probability
and the number of ANN training epochs

The goal of this experiment is twofold. Firstly, we aim
to discover how the parameter pr affects the results
of the nnDE and nnjDE algorithms on the CEC 2014
test suite, and secondly, we want to explore how the
number of ANN training epochs influences the results
of the nnDE algorithm on the same test suite.

In the first experiment, the probability of local
search application was varied in the interval pr ∈
[0.005, 0.05] in steps of 0.005, resulting in ten launch
configurations per problem size D. The results of each
configuration according to five statistical measures
(i.e., minimum, maximum, average, median, and stan-
dard deviation) accumulated over 25 runs for each func-
tion were aggregated into a statistical classifier consist-
ing of 30 × 5 = 150 variables that served as input
to Friedman statistical test. The Friedman test [11]
calculates the average method ranks over all prob-
lem instances (i.e., benchmark functions) for each of
the test configurations. For the case D = 10, Fig. 2

123

902 I. Fister et al.

Fig. 2 Average rank differences of nnDE (a) and nnjDE (b)
algorithms achieved over all problem instances with D = 10 for
different settings of pr . The rank difference is expressed as bar

height and direction. As a result, all bars higher than zero indi-
cate that the corresponding hybrid DE algorithm outperformed
the original DE algorithm in a particular parameter setting

illustrates the differences of average ranks achieved by
nnDE and nnjDE in comparison with the original DE
and jDEmethods, respectively. In the figure, each posi-
tive average rank distancemeans that the corresponding
instance of nnDE and nnjDE outperformed the results
of the original DE and jDE algorithms, and vice versa.
Namely, negative average rank differences indicate that
the original DE and jDE algorithms outperformed the
results achieved by the nnDE and nnjDE algorithms.

Two conclusions can be deduced from the exper-
imental results. Firstly, the obtained results strongly
depend on the probability of regression pr . Secondly,
the best results for D = 10 are obtained when pr =
0.01, which complies with Piotrowski [41] who pro-
posed performing the local search with probability
pr = 0.005 when 100 · D fitness function evaluations
are spent per launch.

In the second experiment, the ANN training epochs
in the nnDE algorithm were varied by epoch ∈
{100, 500, 1000, 2000, 5000} for benchmark functions
of dimensions D = 10, D = 20, and D = 30. Exten-
sive experiments showed that the setting pr = 0.01,
where one local search step is launched in averagewhen
using the population size Np = 100, is not optimal. It
turns out that the optimal value of this parameter lays
in a range pr ∈ (0.0, 0.01]. Therefore, it is varied as
pr ∈ {0.01, 0.005, 0.003} in our tests, which corre-
sponds to one call of the local search heuristic every
one, two, and three generations, respectively.

The average ranks obtained by Friedman nonpara-
metric tests for experiment results obtained by nnDE
with different problem dimensions are illustrated in
Fig. 3. Each graph plots the average rank against the
number ofANN training epochs. Each line corresponds
to one of the tested values of pr .

Two facts can be concluded from the figure, as fol-
lows:

– the smaller the probability of regression, the better
the results,

– the higher the dimensionof the problem, the smaller
the number of epochs required.

in order to obtain the best results when optimizing
the benchmark functions of dimension D = 10, the
number of ANN training epochs epoch = 2000 is
needed, while epoch = 100 is enough to obtain the
best results for dimension D = 30. The number of
ANN training epochs depends on the probability of
regression by optimizing the functions of dimensions
D = 20, i.e., epoch ∈ {100, 500, 1000, 2000, 5000}
and pr ∈ {0.01, 0.005, 0.003}.

Although infrequently executed, the local search
step significantly influences the results of the optimiza-
tion. On the other hand, theANN training starts to dom-
inate the optimization runtime with a growing num-
ber of training epochs. Fortunately, the smaller number
of required epochs and infrequent launching of local
search steps make solving of the problem optimization
tractable in higher dimensions.

123

Artificial neural network regression as a local search heuristic 903

Fig. 3 Influence of the epoch number on the results of the optimization obtained by the nnDE, where each diagram consists of three
curves representing average ranks according to the specific probability of regression pr . a D = 10, b D = 20, c D = 30

4.3 Impact of the fitness function evaluations

One of the more reliable indicators of search stagna-
tion is when the best result is not improved for a long
term. Alternatively, this can also mean that the search
process gets stuck in a local optimum. In order to detect
these undesirable situations during the run of nnDE, the
fitness values were monitored at three different phases
of the search process, i.e., at 1/25, 1/5, and at the final
fitness function evaluation. The results of this test are
collated in Tables 3 and 4 for functions of dimension
D = 20.

As can be seen from Tables 3 and 4, nnjDE success-
fully progressed toward the global optimum according

to all benchmark functions, i.e., no stagnation of the
search process is detected.

4.4 Impact of the problem dimensionality

The goal of this experiment is to discover how the
quality of the results obtained by the nnDE depends
on the dimension of the problem. In line with this,
three different dimensions of the benchmark functions
D ∈ {10, 20, 30} were taken into account. The results
of the tests according to five measures are presented in
Tables 5 and 6.

In this experiment, it was expected that the functions
of the higher dimensions would be harder to optimize,

123

904 I. Fister et al.

Table 3 Results of the nnDE with pr = 0.003 and epoch = 2000 showing an impact of the fitness function evaluations measured after
1
25 , 1

5 , and
1
1 of the maximum fitness function evaluations for dimension D = 20—Part 1/2

Func. FEs Best Worst Mean Median Std

1 8.00E+003 1.54E+006 6.18E+006 3.71E+006 3.44E+006 1.16E+006

4.00E+004 8.94E+002 9.90E+003 3.55E+003 2.85E+003 2.14E+003

2.00E+005 4.69E−012 1.03E−009 1.52E−010 8.89E−011 2.32E−010

2 8.00E+003 1.47E+008 3.67E+008 2.34E+008 2.16E+008 5.95E+007

4.00E+004 1.57E+001 1.08E+002 4.34E+001 4.62E+001 2.24E+001

2.00E+005 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000

3 8.00E+003 2.93E+003 6.51E+003 4.37E+003 4.24E+003 1.01E+003

4.00E+004 5.81E−002 4.50E−001 1.75E−001 1.52E−001 1.03E−001

2.00E+005 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000

4 8.00E+003 4.27E+001 9.92E+001 6.81E+001 6.54E+001 1.59E+001

4.00E+004 1.53E+001 2.32E+001 1.89E+001 1.89E+001 1.73E+000

2.00E+005 0.00E+000 1.42E+001 7.65E+000 1.11E+001 6.19E+000

5 8.00E+003 2.05E+001 2.09E+001 2.07E+001 2.08E+001 9.06E−002

4.00E+004 2.02E+001 2.07E+001 2.05E+001 2.05E+001 1.19E−001

2.00E+005 2.00E+001 2.02E+001 2.01E+001 2.01E+001 4.73E−002

6 8.00E+003 1.08E+001 2.08E+001 1.56E+001 1.56E+001 2.61E+000

4.00E+004 3.50E−001 4.49E+000 2.53E+000 2.68E+000 1.19E+000

2.00E+005 0.00E+000 3.69E+000 2.03E+000 2.10E+000 1.07E+000

7 8.00E+003 2.57E+000 5.63E+000 3.64E+000 3.60E+000 7.26E−001

4.00E+004 1.79E−004 4.94E−001 2.50E−002 1.14E−003 9.81E−002

2.00E+005 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000

8 8.00E+003 8.95E+001 1.38E+002 1.13E+002 1.15E+002 1.32E+001

4.00E+004 8.01E+000 4.02E+001 1.92E+001 1.80E+001 7.89E+000

2.00E+005 4.97E+000 3.19E+001 1.23E+001 1.19E+001 5.18E+000

9 8.00E+003 9.90E+001 1.50E+002 1.23E+002 1.24E+002 1.46E+001

4.00E+004 1.16E+001 4.39E+001 2.48E+001 2.52E+001 9.76E+000

2.00E+005 7.96E+000 3.88E+001 2.03E+001 1.79E+001 8.25E+000

10 8.00E+003 2.75E+003 4.03E+003 3.50E+003 3.55E+003 3.59E+002

4.00E+004 2.39E+002 1.40E+003 5.95E+002 5.85E+002 2.75E+002

2.00E+005 3.07E+001 5.81E+002 2.43E+002 2.67E+002 1.52E+002

11 8.00E+003 2.98E+003 4.31E+003 3.78E+003 3.81E+003 3.80E+002

4.00E+004 1.96E+002 1.43E+003 9.54E+002 1.03E+003 3.09E+002

2.00E+005 2.76E+001 1.29E+003 7.89E+002 8.43E+002 3.52E+002

12 8.00E+003 1.58E+000 2.94E+000 2.39E+000 2.38E+000 3.05E−001

4.00E+004 4.44E−001 1.87E+000 9.91E−001 9.16E−001 4.39E−001

2.00E+005 2.27E−002 1.44E−001 6.30E−002 5.42E−002 3.07E−002

13 8.00E+003 4.19E−001 8.13E−001 5.81E−001 5.79E−001 8.88E−002

4.00E+004 2.45E−001 4.29E−001 3.47E−001 3.46E−001 4.94E−002

2.00E+005 1.21E−001 2.75E−001 1.94E−001 1.87E−001 3.63E−002

123

Artificial neural network regression as a local search heuristic 905

Table 3 continued

Func. FEs Best Worst Mean Median Std

14 8.00E+003 3.31E−001 9.62E−001 4.99E−001 4.69E−001 1.42E−001

4.00E+004 2.20E−001 3.76E−001 3.05E−001 3.06E−001 4.38E−002

2.00E+005 1.61E−001 2.95E−001 2.19E−001 2.15E−001 3.14E−002

15 8.00E+003 1.21E+001 2.89E+001 1.87E+001 1.81E+001 4.15E+000

4.00E+004 6.96E+000 1.06E+001 9.16E+000 9.15E+000 9.22E−001

2.00E+005 1.04E+000 3.06E+000 1.71E+000 1.60E+000 5.15E−001

Table 4 Results of the nnDE with pr = 0.003 and epoch = 2000 showing an impact of the fitness function evaluations measured after
1
25 , 1

5 , and
1
1 of the maximum fitness function evaluations for dimension D = 20—Part 2/2

Func. FEs Best Worst Mean Median Std

16 8.00E+003 8.01E+000 8.91E+000 8.53E+000 8.58E+000 2.33E−001

4.00E+004 5.55E+000 8.00E+000 7.17E+000 7.33E+000 5.72E−001

2.00E+005 2.74E+000 5.21E+000 4.01E+000 3.94E+000 6.80E−001

17 8.00E+003 1.34E+004 1.22E+005 4.39E+004 3.87E+004 2.55E+004

4.00E+004 5.36E+002 1.27E+003 1.02E+003 1.03E+003 1.61E+002

2.00E+005 3.10E+001 6.68E+002 2.85E+002 2.13E+002 2.16E+002

18 8.00E+003 2.26E+003 5.66E+004 2.05E+004 1.81E+004 1.39E+004

4.00E+004 2.89E+001 4.89E+001 3.99E+001 4.06E+001 5.87E+000

2.00E+005 5.05E+000 2.69E+001 2.13E+001 2.27E+001 4.82E+000

19 8.00E+003 6.40E+000 1.12E+001 8.48E+000 8.45E+000 9.21E−001

4.00E+004 3.01E+000 4.72E+000 3.62E+000 3.55E+000 3.75E−001

2.00E+005 1.37E−001 2.61E+000 1.62E+000 1.80E+000 6.43E−001

20 8.00E+003 1.54E+002 3.67E+002 2.38E+002 2.30E+002 5.81E+001

4.00E+004 1.26E+001 3.34E+001 2.62E+001 2.69E+001 5.17E+000

2.00E+005 1.74E+000 1.59E+001 7.41E+000 5.01E+000 4.74E+000

21 8.00E+003 1.94E+003 4.96E+003 3.30E+003 3.44E+003 8.78E+002

4.00E+004 3.41E+002 6.77E+002 5.23E+002 5.27E+002 7.83E+001

2.00E+005 8.92E−001 1.19E+002 1.67E+001 9.53E+000 2.59E+001

22 8.00E+003 1.30E+002 3.80E+002 2.62E+002 2.55E+002 7.24E+001

4.00E+004 2.54E+001 2.80E+002 6.02E+001 3.42E+001 5.57E+001

2.00E+005 6.17E+000 2.72E+002 5.28E+001 3.08E+001 5.52E+001

23 8.00E+003 3.33E+002 3.37E+002 3.35E+002 3.35E+002 1.06E+000

4.00E+004 3.30E+002 3.30E+002 3.30E+002 3.30E+002 3.40E−005

2.00E+005 3.30E+002 3.30E+002 3.30E+002 3.30E+002 5.80E−014

24 8.00E+003 2.18E+002 2.27E+002 2.24E+002 2.24E+002 2.09E+000

4.00E+004 2.05E+002 2.12E+002 2.10E+002 2.11E+002 1.27E+000

2.00E+005 2.00E+002 2.11E+002 2.10E+002 2.10E+002 2.06E+000

25 8.00E+003 2.08E+002 2.15E+002 2.10E+002 2.10E+002 1.71E+000

4.00E+004 2.03E+002 2.04E+002 2.04E+002 2.04E+002 2.19E−001

2.00E+005 2.03E+002 2.04E+002 2.03E+002 2.04E+002 2.74E−001

123

906 I. Fister et al.

Table 4 continued

Func. FEs Best Worst Mean Median Std

26 8.00E+003 1.00E+002 1.01E+002 1.01E+002 1.01E+002 7.53E−002

4.00E+004 1.00E+002 1.00E+002 1.00E+002 1.00E+002 5.66E−002

2.00E+005 1.00E+002 1.00E+002 1.00E+002 1.00E+002 4.69E−002

27 8.00E+003 4.32E+002 8.05E+002 6.39E+002 6.75E+002 1.28E+002

4.00E+004 3.13E+002 4.46E+002 3.77E+002 3.87E+002 3.20E+001

2.00E+005 3.00E+002 4.19E+002 3.65E+002 3.67E+002 3.62E+001

28 8.00E+003 7.09E+002 1.07E+003 8.29E+002 8.12E+002 9.01E+001

4.00E+004 5.51E+002 8.27E+002 6.58E+002 6.30E+002 7.92E+001

2.00E+005 5.34E+002 8.24E+002 6.46E+002 6.22E+002 8.04E+001

29 8.00E+003 1.09E+003 2.14E+004 6.21E+003 3.68E+003 5.49E+003

4.00E+004 2.22E+002 3.27E+002 2.77E+002 2.74E+002 3.74E+001

2.00E+005 2.17E+002 2.49E+002 2.37E+002 2.43E+002 1.18E+001

30 8.00E+003 3.39E+003 3.68E+004 9.61E+003 5.95E+003 9.88E+003

4.00E+004 5.81E+002 1.24E+003 9.31E+002 9.73E+002 1.76E+002

2.00E+005 4.94E+002 7.20E+002 5.79E+002 5.75E+002 6.82E+001

Table 5 Results of the nnDE with pr = 0.003 and epoch ∈ {2000, 2000, 100} showing an impact of the dimensionality of the problem
measured by function dimensions D ∈ {10, 20, 30}, respectively—Part 1/2

Func. Dim. Best Worst Mean Median Std

1 10 0.00E+000 2.84E−014 1.31E−014 1.42E−014 9.98E−015

20 4.69E−012 1.03E−009 1.52E−010 8.89E−011 2.32E−010

30 2.60E+004 1.69E+005 7.36E+004 6.30E+004 4.48E+004

2 10 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000

20 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000

30 0.00E+000 2.84E−014 2.27E−015 0.00E+000 7.87E−015

3 10 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000

20 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000

30 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000

4 10 0.00E+000 9.72E+000 6.36E+000 8.16E+000 3.68E+000

20 0.00E+000 1.42E+001 7.65E+000 1.11E+001 6.19E+000

30 1.14E−002 5.65E+001 4.57E+000 1.42E−001 1.54E+001

5 10 2.00E+001 2.04E+001 2.01E+001 2.00E+001 1.24E−001

20 2.00E+001 2.02E+001 2.01E+001 2.01E+001 4.73E−002

30 2.00E+001 2.01E+001 2.00E+001 2.00E+001 2.81E−002

6 10 0.00E+000 2.66E+000 9.26E−001 8.95E−001 9.10E−001

20 0.00E+000 3.69E+000 2.03E+000 2.10E+000 1.07E+000

30 4.59E−001 1.31E+001 6.18E+000 5.31E+000 3.33E+000

7 10 0.00E+000 3.41E−001 6.76E−002 4.18E−002 7.34E−002

20 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000

30 0.00E+000 9.86E−003 6.90E−004 0.00E+000 2.42E−003

123

Artificial neural network regression as a local search heuristic 907

Table 5 continued

Func. Dim. Best Worst Mean Median Std

8 10 0.00E+000 8.95E+000 2.11E+000 1.99E+000 1.87E+000

20 4.97E+000 3.19E+001 1.23E+001 1.19E+001 5.18E+000

30 1.39E+001 4.68E+001 2.74E+001 2.59E+001 7.99E+000

9 10 1.99E+000 1.89E+001 7.72E+000 6.96E+000 3.80E+000

20 7.96E+000 3.88E+001 2.03E+001 1.79E+001 8.25E+000

30 2.09E+001 7.66E+001 4.08E+001 3.98E+001 1.49E+001

10 10 1.55E+001 6.71E+001 4.11E+001 3.88E+001 1.25E+001

20 3.07E+001 5.81E+002 2.43E+002 2.67E+002 1.52E+002

30 3.71E+002 1.44E+003 7.70E+002 7.36E+002 3.03E+002

11 10 3.60E+000 8.65E+002 3.59E+002 2.73E+002 2.66E+002

20 2.76E+001 1.29E+003 7.89E+002 8.43E+002 3.52E+002

30 1.74E+003 4.37E+003 2.74E+003 2.62E+003 5.99E+002

12 10 2.59E−005 5.77E−002 2.53E−002 2.71E−002 1.55E−002

20 2.27E−002 1.44E−001 6.30E−002 5.42E−002 3.07E−002

30 9.61E−003 1.37E−001 4.76E−002 4.00E−002 2.81E−002

13 10 8.73E−002 1.57E−001 1.23E−001 1.22E−001 2.01E−002

20 1.21E−001 2.75E−001 1.94E−001 1.87E−001 3.63E−002

30 1.30E−001 3.05E−001 2.13E−001 2.20E−001 4.66E−002

14 10 6.33E−002 2.11E−001 1.34E−001 1.37E−001 3.80E−002

20 1.61E−001 2.95E−001 2.19E−001 2.15E−001 3.14E−002

30 1.93E−001 3.40E−001 2.64E−001 2.83E−001 4.02E−002

15 10 2.88E−001 1.67E+000 7.02E−001 6.25E−001 2.97E−001

20 1.04E+000 3.06E+000 1.71E+000 1.60E+000 5.15E−001

30 1.94E+000 5.29E+000 3.41E+000 3.07E+000 1.03E+000

and therefore, the obtained results would be worse. As
amatter of fact, this assumption holds in general except
for functions f7, f11 and f12, where nnDE achieved
better results by optimizing the functions of dimension
D = 20 than by the other dimensions. Interestingly,
the results of optimizing the function f26 are equal by
the all algorithms in test.

4.5 A comparative study

In order to show that the hybridization with ANN
regression improves the results of the original DE and
jDE algorithms, a comparative study was performed.
In this study, the results of the DE and jDE algo-
rithms were compared with the results of nnDE and
nnjDE, i.e., hybridized versions of the DE algorithms
with pr = 0.003 and epoch = 1000. All the men-
tioned algorithms used the parameters as reported at

the beginning of this section. This comparative study
was widened by an additional self-adaptive DE algo-
rithm, i.e., the SaDE using the following parameter set-
tings: F is randomly selected from the normal distrib-
ution N (0.5, 0.3), while CR is randomly drawn from a
normal distribution N (CRmk, 0.1). The variableCRmk

denotes an average value of parameterCR for k-th strat-
egy (four strategies were used in the ensemble strate-
gies) during the last LP = 20 (i.e., learning rate para-
meter) generations. The results according to the mean
and standard deviation obtained by solving the CEC
2014 benchmark functions of dimension D = 30 are
illustrated in Table 7. The best results in the table are
presented in bold.

As it can be seen from Table 7, the nnjDE out-
performs the results of the other observed algorithms
twelve times, SaDE eight times, nnDE and DE four
times, and jDE once. All algorithms achieved the same
results for functions f23 and f26. Note that the nnDE

123

908 I. Fister et al.

Table 6 Results of the nnDE with pr = 0.003 and epoch ∈ {2000, 2000, 100} showing an impact of the dimensionality of the problem
measured by function dimensions D ∈ {10, 20, 30}, respectively—Part 2/2

Func. Dim. Best Worst Mean Median Std

16 10 1.44E−001 3.05E+000 1.61E+000 1.51E+000 7.80E−001

20 2.74E+000 5.21E+000 4.01E+000 3.94E+000 6.80E−001

30 9.55E+000 1.21E+001 1.08E+001 1.09E+001 6.59E−001

17 10 4.23E−005 1.16E+001 2.20E+000 4.16E−001 4.13E+000

20 3.10E+001 6.68E+002 2.85E+002 2.13E+002 2.16E+002

30 7.82E+001 1.26E+003 6.45E+002 5.95E+002 3.05E+002

18 10 1.23E−002 1.28E+000 2.48E−001 2.26E−001 2.58E−001

20 5.05E+000 2.69E+001 2.13E+001 2.27E+001 4.82E+000

30 5.48E+000 1.74E+001 9.92E+000 8.80E+000 3.31E+000

19 10 3.65E−002 8.11E−001 3.12E−001 3.27E−001 2.22E−001

20 1.37E−001 2.61E+000 1.62E+000 1.80E+000 6.43E−001

30 2.32E+000 7.79E+000 3.57E+000 3.26E+000 1.15E+000

20 10 2.05E−004 4.93E−001 1.06E−001 1.81E−002 1.64E−001

20 1.74E+000 1.59E+001 7.41E+000 5.01E+000 4.74E+000

30 4.34E+000 1.78E+001 8.65E+000 8.08E+000 3.39E+000

21 10 2.76E−004 1.12E+000 3.93E−001 3.24E−001 3.47E−001

20 8.92E−001 1.19E+002 1.67E+001 9.53E+000 2.59E+001

30 2.25E+000 6.03E+002 2.61E+002 2.36E+002 2.09E+002

22 10 1.52E−002 9.50E−001 2.85E−001 3.29E−001 2.56E−001

20 6.17E+000 2.72E+002 5.28E+001 3.08E+001 5.52E+001

30 2.07E+001 6.02E+002 3.12E+002 3.13E+002 1.65E+002

23 10 3.29E+002 3.29E+002 3.29E+002 3.29E+002 2.32E−013

20 3.30E+002 3.30E+002 3.30E+002 3.30E+002 5.80E−014

30 3.15E+002 3.15E+002 3.15E+002 3.15E+002 4.67E−002

24 10 1.09E+002 1.26E+002 1.16E+002 1.16E+002 4.54E+000

20 2.00E+002 2.11E+002 2.10E+002 2.10E+002 2.06E+000

30 2.21E+002 2.37E+002 2.25E+002 2.24E+002 3.62E+000

25 10 1.14E+002 2.01E+002 1.83E+002 2.01E+002 3.23E+001

20 2.03E+002 2.04E+002 2.03E+002 2.04E+002 2.74E−001

30 2.02E+002 2.04E+002 2.03E+002 2.03E+002 2.87E−001

26 10 1.00E+002 1.00E+002 1.00E+002 1.00E+002 3.27E−002

20 1.00E+002 1.00E+002 1.00E+002 1.00E+002 4.69E−002

30 1.00E+002 1.00E+002 1.00E+002 1.00E+002 4.99E−002

27 10 1.01E+000 4.00E+002 1.49E+002 2.17E+000 1.86E+002

20 3.00E+002 4.19E+002 3.65E+002 3.67E+002 3.62E+001

30 3.00E+002 4.72E+002 3.78E+002 3.87E+002 5.15E+001

28 10 3.60E+002 4.71E+002 3.75E+002 3.69E+002 2.08E+001

20 5.34E+002 8.24E+002 6.46E+002 6.22E+002 8.04E+001

30 7.91E+002 8.92E+002 8.41E+002 8.33E+002 2.77E+001

123

Artificial neural network regression as a local search heuristic 909

Table 6 continued

Func. Dim. Best Worst Mean Median Std

29 10 1.00E+002 2.23E+002 2.17E+002 2.22E+002 2.45E+001

20 2.17E+002 2.49E+002 2.37E+002 2.43E+002 1.18E+001

30 2.07E+002 7.62E+002 7.02E+002 7.18E+002 1.04E+002

30 10 4.44E+002 4.99E+002 4.66E+002 4.62E+002 1.23E+001

20 4.94E+002 7.20E+002 5.79E+002 5.75E+002 6.82E+001

30 6.37E+002 2.82E+003 1.59E+003 1.45E+003 6.60E+002

Table 7 Comparative study of algorithms DE, nnDE, jDE, nnjDE, and SaDE regarding the mean and standard deviation by dimension
of the functions D = 30

Func. Meas. DE nnDE jDE nnjDE SaDE

f1 Mean 1.01E+005 7.36E+004 6.12E+004 8.94E+004 3.73E+003

StDev 8.98E+004 4.48E+004 7.64E+004 6.70E+004 3.26E+003

f2 Mean 2.27E−015 2.27E−015 2.27E−015 1.14E−015 1.71E−014

StDev 7.87E−015 7.87E−015 7.87E−015 5.68E−015 1.47E−014

f3 Mean 2.05E−014 0.00E+000 4.09E−014 2.27E−015 6.25E−014

StDev 2.78E−014 0.00E+000 2.60E−014 1.14E−014 1.80E−014

f4 Mean 2.84E+000 4.57E+000 8.53E+000 2.51E+000 1.53E−013

StDev 1.26E+001 1.54E+001 2.16E+001 1.17E+001 7.11E−014

f5 Mean 2.09E+001 2.00E+001 2.03E+001 2.00E+001 2.03E+001

StDev 7.67E−002 2.81E−002 3.26E−002 1.47E−002 4.03E−002

f6 Mean 4.12E+000 6.18E+000 5.31E+000 6.90E+000 1.49E+001

StDev 3.11E+000 3.33E+000 4.04E+000 3.50E+000 9.42E−001

f7 Mean 2.96E−004 6.90E−004 2.96E−004 1.77E−003 9.09E−014

StDev 1.48E−003 2.42E−003 1.48E−003 5.25E−003 4.79E−014

f8 Mean 6.52E+001 2.74E+001 1.19E−001 2.48E+001 1.02E−013

StDev 3.17E+001 7.99E+000 3.30E−001 8.47E+000 3.60E−014

f9 Mean 1.74E+002 4.08E+001 3.81E+001 3.58E+001 3.58E+001

StDev 1.08E+001 1.49E+001 5.71E+000 9.11E+000 7.01E+000

f10 Mean 2.14E+003 7.70E+002 3.17E+000 8.55E+002 1.11E+000

StDev 9.80E+002 3.03E+002 3.18E+000 4.02E+002 2.02E+000

f11 Mean 6.70E+003 2.74E+003 2.71E+003 2.76E+003 2.28E+003

StDev 3.24E+002 5.99E+002 2.75E+002 5.20E+002 3.45E+002

f12 Mean 2.40E+000 4.76E−002 4.77E−001 5.47E−002 4.59E−001

StDev 2.97E−001 2.81E−002 5.41E−002 3.15E−002 5.23E−002

f13 Mean 3.18E−001 2.13E−001 2.84E−001 2.47E−001 3.02E−001

StDev 4.30E−002 4.66E−002 3.55E−002 6.40E−002 3.69E−002

f14 Mean 2.73E−001 2.64E−001 3.02E−001 2.88E−001 2.68E−001

StDev 3.06E−002 4.02E−002 4.15E−002 9.92E−002 1.40E−001

f15 Mean 1.48E+001 3.41E+000 5.36E+000 3.74E+000 4.86E+000

StDev 1.13E+000 1.03E+000 7.43E−001 1.23E+000 4.17E−001

123

910 I. Fister et al.

Table 7 continued

Func. Meas. DE nnDE jDE nnjDE SaDE

f16 Mean 1.25E+001 1.08E+001 1.03E+001 1.08E+001 1.03E+001

StDev 2.41E−001 6.59E−001 3.23E−001 7.18E−001 3.42E−001

f17 Mean 1.28E+003 6.45E+002 1.62E+003 7.09E+002 8.55E+002

StDev 3.40E+002 3.05E+002 1.49E+003 3.88E+002 2.80E+002

f18 Mean 5.08E+001 9.92E+000 1.86E+001 1.33E+001 4.92E+001

StDev 1.66E+001 3.31E+000 1.04E+001 6.20E+000 2.57E+001

f19 Mean 4.89E+000 3.57E+000 4.97E+000 3.99E+000 5.26E+000

StDev 8.59E−001 1.15E+000 9.61E−001 1.05E+000 1.15E+000

f20 Mean 1.24E+001 8.65E+000 1.36E+001 9.19E+000 1.85E+001

StDev 6.77E+000 3.39E+000 6.64E+000 3.09E+000 4.14E+000

f21 Mean 2.75E+002 2.61E+002 2.98E+002 3.47E+002 4.31E+002

StDev 2.53E+002 2.09E+002 2.25E+002 1.95E+002 1.32E+002

f22 Mean 1.21E+002 3.12E+002 1.38E+002 3.57E+002 1.65E+002

StDev 1.22E+002 1.65E+002 5.38E+001 2.00E+002 7.11E+001

f23 Mean 3.15E+002 3.15E+002 3.15E+002 3.15E+002 3.15E+002

StDev 9.28E−014 4.67E−002 0.00E+000 4.10E−002 0.00E+000

f24 Mean 2.22E+002 2.25E+002 2.26E+002 2.25E+002 2.25E+002

StDev 7.06E+000 3.62E+000 3.34E+000 1.96E+000 4.31E+000

f25 Mean 2.03E+002 2.03E+002 2.04E+002 2.03E+002 2.03E+002

StDev 2.19E−001 2.87E−001 8.81E−001 3.48E−001 5.52E−001

f26 Mean 1.00E+002 1.00E+002 1.00E+002 1.00E+002 1.00E+002

StDev 4.19E−002 4.99E−002 5.05E−002 6.76E−002 3.55E−002

f27 Mean 3.78E+002 3.78E+002 4.01E+002 3.68E+002 5.46E+002

StDev 8.23E+001 5.15E+001 5.44E+001 4.02E+001 1.11E+002

f28 Mean 8.44E+002 8.41E+002 8.38E+002 8.62E+002 8.08E+002

StDev 4.73E+001 2.77E+001 2.99E+001 4.54E+001 3.78E+001

f29 Mean 6.83E+005 7.02E+002 8.66E+002 1.36E+004 8.41E+005

StDev 2.36E+006 1.04E+002 1.62E+002 4.91E+004 2.66E+006

f30 Mean 1.96E+003 1.59E+003 2.79E+003 1.84E+003 2.34E+003

StDev 1.24E+003 6.60E+002 1.22E+003 1.05E+003 1.38E+003

Fig. 4 Results of the Friedman nonparametric test, where each
diagram illustrates the normalized average rank of the algorithms
in test for the specified dimensions of the benchmark functions.

The closer to one the value of the algorithm’s rank, the more
significant is the specific algorithm. a D = 10, b D = 20, c
D = 30

123

Artificial neural network regression as a local search heuristic 911

Fig. 5 Convergence graphs for six selected functions from the benchmark function suite. a f6 (D = 10), b f8 (D = 10), c f12 (D = 20),
d f18 (D = 20), e f22 (D = 30), f f28 (D = 30)

123

912 I. Fister et al.

and SaDE obtained the same results for the function f9.
However, the statistical analysis takes into account also
the minimum, maximum, median, and standard devi-
ation values. This comparison is therefore more accu-
rate. In summary, the nnDE is thus better for solving
problems of higher dimensions (i.e., D = 30), while
the nnjDE is better for solving the problems of lower
dimensions (i.e., D = 10 and D = 20).

In order to evaluate the quality of the results statisti-
cally, Friedman tests [19] were conducted that compare
the average ranks of the compared algorithms. Thus, a
null hypothesis is placed that states: All algorithms are
equivalent, and therefore, their ranks should be equal.
When the null hypothesis is rejected, the Nemenyi post
hoc test [11] is performed, where the critical differ-
ence is calculated between the average ranks for each
algorithm.

Three Friedman tests were performed regarding the
values of fivemeasures obtained byoptimizing 30 func-
tions of three different dimensions. As a result, each
algorithm in the tests was compared with respect to
150 variables. The tests were conducted at the signif-
icance level 0.05. The results of the Friedman non-
parametric test can be seen in Fig. 4, which is divided
into three diagrams. Each diagram shows the ranks and
confidence intervals (critical differences) for the algo-
rithms under consideration with regard to each prob-
lem dimensionality. Note that a significant difference
between two algorithms is observed if their confidence
intervals denoted as thickened lines in Fig. 4 do not
overlap.

Figure 4a–c shows that the original DE algorithm
was significantly outperformed by all other algorithms
in the test for all problem dimensions. The nnjDE algo-
rithm exhibits the best results in dimensions D = 10
(Fig. 4a) and D = 20 (Fig. 4b), while nnDE dom-
inates the competitors for D = 30 (Fig. 4c). As
demonstrated, the proposed local search heuristic sig-
nificantly improves the results of both original DE and
jDE algorithms, with the exception of the case nnjDE
vs. jDE, where the advantage of nnjDE is not conclu-
sive. Thereby, the assertion set at the beginning of the
section has been successfully confirmed.

4.6 Convergence analysis

Convergence graphs were analyzed for functions f6
and f8 of dimension D = 10, functions f12 and f18

of dimension D = 20, and functions f22 and f28 of
dimension D = 30. The best out of 25 optimization
runs was analyzed. Convergence graphs are illustrated
in Fig. 5 with two diagrams per problem dimension.

The following observations can be seen from these
graphs:

– nnjDE outperforms the results of the original jDE
for optimization of all presented functions, except
f28,

– nnDE outperforms the results of the original DE for
optimization of all presented functions, except f22
and f28,

– all algorithms achieved the similar results for opti-
mization of the function f28.

In summary, the presented results confirmed that
hybridizing the original DE and jDE algorithms with
the ANN regression can improve the results of both.

5 Conclusion

Recently, hybridizing the nature-inspired algorithms
in order to expand its applicability and improve per-
formance has become a popular trend in computa-
tional intelligence [15,16]. This paper proposes the
hybridization of a DE algorithm with an ANN-based
regression as a way to apply the local search heuristic.
The ANN functions as a predictor of the best solu-
tion from a training set of trial vectors produced by an
ensemble of DE strategies.

As a result, two hybrid DE algorithms were devel-
oped, i.e., nnDE representing the hybridization of the
originalDEalgorithmwithANN, and nnjDE represent-
ing the hybridization of the original jDE algorithmwith
ANN. The results of experiments conducted on a CEC
2014 test suite consisting of 30 benchmark functions
have shown that the proposed hybrids substantially out-
perform their original predecessors. Moreover, the per-
formances gap broadened when the dimensionality of
the problem was increased.

The experiments suggest that the quality of results
highly depends on the value of parameter pr , which
determines the probability of local search execution.
Lower values of pr are generally required for higher
problem dimensions.

These preliminary results advocate further investi-
gation of the proposed hybridization in the future. As
the first next step, however, we would like to expand

123

Artificial neural network regression as a local search heuristic 913

our comparative study to other well-known EAs and SI
algorithms. Also, adaptation and self-adaptation of the
parameter pr seem very promising idea for the future.

Acknowledgments This research was supported by the
Slovenian Research Agency (Grant P5-0027) and by the Dean-
ship of Scientific Research, King Abdulaziz University (Grant
76-130-35-HiCi).

References

1. Adeyemo, J., Otieno, F.: Differential evolution algorithm for
solving multi-objective crop planning model. Agric. Water
Manag. 97(6), 848–856 (2010)

2. Bhattacharya, A., Chattopadhyay, P.K.: Solving economic
emission load dispatch problems using hybrid differential
evolution. Appl. Soft Comput. 11(2), 2526–2537 (2011)

3. Bigus, J.P.: Data Mining with Neural Networks: Solving
Business Problems from Application Development to Deci-
sion Support. McGraw-Hill, Inc., New York (1996)

4. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.:
Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems. IEEE
Trans. Evolut. Comput. 10(6), 646–657 (2006)

5. Cai, Y., Wang, J.: Differential evolution with neighborhood
and direction information for numerical optimization. IEEE
Trans. Cybern. 43(6), 2202–2215 (2013)

6. Chakraborty,U.K.,Das, S., Konar,A.:Differential evolution
with local neighborhood. In: IEEE Congress on Evolution-
ary Computation, pp. 2042–2049. IEEE (2006)

7. Darwin, C.: On the Origin of Species. Harvard University
Press, London (1859)

8. Das, S., Suganthan, P.: Differential evolution: a survey of
the state-of-the-art. IEEE Trans. Evolut. Comput. 15(1), 4–
31 (2011)

9. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differ-
ential evolution using a neighborhood-based mutation oper-
ator. IEEE Trans. Evolut. Comput. 13(3), 526–553 (2009)

10. Datta, D., Dutta, S.: A binary-real-coded differential evo-
lution for unit commitment problem. Int. J. Electr. Power
Energy Syst. 42(1), 517–524 (2012)

11. Demšar, J.: Statistical comparisons of classifiers over mul-
tiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

12. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator
based evolutionary algorithms for solving constrained opti-
mization problems. Comput. Oper. Res. 38(12), 1877–1896
(2011)

13. Fan,H.Y., Lampinen, J.: A trigonometricmutation operation
to differential evolution. J. Global Optim. 27(1), 105–129
(2003)

14. Fister, I.J., Suganthan, P.N., Strnad, D., Brest, J., Fister, I.:
Artificial neural network regression on ensemble strategies
in differential evolution. In: MENDEL 2014, 20th Interna-
tional Conference on Soft Computing. University of Tech-
nology, Brno (2014)

15. Fister, I., Fister Jr, I., Yang, X.S., Brest, J.: A comprehensive
reviewof firefly algorithms. SwarmEvolut. Comput. 13, 34–
46 (2013)

16. Fister, I., Rauter, S., Yang, X.S., Ljubič, K., Fister Jr, I.:
Planning the sports training sessions with the bat algorithm.
Neurocomputing 149(Part B), 993–1002 (2015)

17. Fister Jr, I., Fister, D., Fister, I.: Differential evolution strate-
gies with random forest regression in the bat algorithm. In:
Proceeding of the Fifteenth Annual Conference Compan-
ion on Genetic and Evolutionary Computation Conference
Companion 2013, pp. 1703–1706. ACM (2013)

18. Fister Jr, I., Fister, D., Yang, X.S.: A hybrid bat algorithm.
Elektroteh. vestnik 80(1–2), 1–7 (2013)

19. Friedman, M.: A comparison of alternative tests of signifi-
cance for the problem of m rankings. Ann. Math. Stat. 11,
86–92 (1940)

20. Garro, B.A., Sossa, H., Vázquez, R.A.: Design of artificial
neural networks using differential evolution algorithm. In:
Wong,K.W.,Mendis, B.S.U., Bouzerdoum,A. (eds.) Neural
Information Processing. Models and Applications, pp. 201–
208. Springer, Heidelberg (2010)

21. Gershenson, C.: Artificial Neural Networks for Beginners
(2003). arXiv:cs/0308031

22. Han, M.F., Liao, S.H., Chang, J.Y., Lin, C.T.: Dynamic
group-based differential evolution using a self-adaptive
strategy for global optimization problems. Appl. Intell.
39(1), 41–56 (2013)

23. Hecht-Nielsen, R.: Theory of the backpropagation neural
network. In: International Joint Conference on Neural Net-
works, pp. 593–605. IEEE (1989)

24. Holger, H., Thomas, S.: Stochastic Local Search: Founda-
tions & Applications. Morgan Kaufman Inc., Amsterdam
(2004)

25. Hozjan, T., Turk, G., Srpčič, S.: Fire analysis of steel frames
with the use of artificial neural networks. J. Constr. Steel
Res. 63(10), 1396–1403 (2007)

26. J.J. Liang, B.Y.Q., Suganthan, P.N.: Problem definitions and
evaluation criteria for the CEC 2014 special session and
competition on single objective real-parameter numerical
optimization. Technical Report, Zhengzhou University and
Nanyang Technological University (2013)

27. Kartam, N., Flood, I., Garrett, J.H.: Artificial Neural Net-
works for Civil Engineers: Fundamentals and Applications.
American Society of Civil Engineers, New York (1997)

28. Kourentzes, N., Barrow, D.K., Crone, S.F.: Neural network
ensemble operators for time series forecasting. Expert Syst.
Appl. 41(9), 4235–4244 (2014)

29. LaTorre, A., Muelas, S., Peña, J.M.: A mos-based dynamic
memetic differential evolution algorithm for continuous
optimization: a scalability test. Soft Comput. 15(11), 2187–
2199 (2011)

30. Lee, S., Choeh, J.Y.: Predicting the helpfulness of online
reviews usingmultilayer perceptron neural networks. Expert
Syst. Appl. 41(6), 3041–3046 (2014)

31. Lin, Y.C., Hwang, K.S., Wang, F.S.: Co-evolutionary hybrid
differential evolution for mixed-integer optimization prob-
lems. Eng. Optim. 33(6), 663–682 (2001)

32. Mallipeddi, R., Suganthan, P.: Differential evolution algo-
rithm with ensemble of populations for global numerical
optimization. Opsearch 46(2), 184–213 (2009)

33. Mallipeddi, R., Mallipeddi, S., Suganthan, P.N.: Ensemble
strategies with adaptive evolutionary programming. Inf. Sci.
180(9), 1571–1581 (2010)

123

http://arxiv.org/abs/cs/0308031

914 I. Fister et al.

34. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren,
M.F.: Differential evolution algorithm with ensemble of
parameters and mutation strategies. Appl. Soft Comput.
11(2), 1679–1696 (2011)

35. Mallipeddi, R., Suganthan, P.N.: Differential evolution algo-
rithm with ensemble of parameters and mutation and
crossover strategies. In: Panigrahi, B.K., Das, S., Suganthan,
P.N., Dash, S.S. (eds.) Swarm, Evolutionary, and Memetic
Computing, pp. 71–78. Springer, Heidelberg (2010)

36. Mallipeddi, R., Suganthan, P.N.: Ensemble differential evo-
lution algorithm for CEC2011 problems. In: IEEE Congress
on Evolutionary Computation, pp. 1557–1564. IEEE (2011)

37. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas
immanent in nervous activity. Bull. Math. Biophys. 5(4),
115–133 (1943)

38. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact dif-
ferential evolution. IEEE Trans. Evolut. Comput. 15(1), 32–
54 (2011)

39. Neri, F., Iacca, G., Mininno, E.: Disturbed exploitation com-
pact differential evolution for limited memory optimization
problems. Inf. Sci. 181(12), 2469–2487 (2011)

40. Neri, F., Mininno, E.: Memetic compact differential evolu-
tion for Cartesian robot control. IEEE Comput. Intell. Mag.
5(2), 54–65 (2010)

41. Piotrowski, A.P.: Adaptive memetic differential evolution
with global and local neighborhood-based mutation opera-
tors. Inf. Sci. 241, 164–194 (2013)

42. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evo-
lution algorithm for numerical optimization. In: IEEE
Congress on Evolutionary Computation, vol. 2, pp. 1785–
1791. IEEE (2005)

43. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.:
Opposition-based differential evolution. IEEE Trans.
Evolut. Comput. 12(1), 64–79 (2008)

44. Rocca, P., Oliveri, G., Massa, A.: Differential evolution as
applied to electromagnetics. IEEE Antennas Propag. Mag.
53(1), 38–49 (2011)

45. Rojas, R.: Neutral Networks: A Systematic Introduction.
Springer, Berlin (1996)

46. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern
Approach, 3rd edn. Prentice Hall, Englewood Cliffs (2010)

47. Santos, J., Diéguez, M.: Differential evolution for protein
structure prediction using theHPmodel. In: Ferrández, J.M.,
Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) Foundations on
Natural and Artificial Computation, pp. 323–333. Springer,
Heidelberg (2011)

48. Storn, R., Price, K.: Differential evolution-a simple and
efficient heuristic for global optimization over continuous
spaces. J. Global Optim. 11(4), 341–359 (1997)

49. Tvrdìk, J.: Competitive differential evolution. In: MENDEL
2006. 12th international conference on soft computing, pp.
7–12. University of Technology, Brno (2006)

50. Tvrdìk, J.: Differential evolution with competitive setting of
its control parameters. TASK Q. 11, 169–179 (2007)

51. Tvrdìk, J.: Adaptation in differential evolution: a numerical
comparison. Appl. Soft Comput. 9, 1149–1155 (2009)

52. Uyar, A.Ş., Türkay, B., Keleş, A.: A novel differential evo-
lution application to short-term electrical power generation
scheduling. Int. J. Electr. Power Energy Syst. 33(6), 1236–
1242 (2011)

53. Vrugt, J.A., Robinson, B.A., Hyman, J.M.: Self-adaptive
multimethod search for global optimization in real-
parameter spaces. IEEE Trans. Evolut. Comput. 13(2), 243–
259 (2009)

54. Widrow, B., Rumelhart, D.E., Lehr, M.A.: Neural networks:
applications in industry, business and science. Commun.
ACM 37(3), 93–105 (1994)

55. Zhang,W.J., Xie, X.F., et al.: DEPSO: hybrid particle swarm
with differential evolution operator. IEEE Int. Conf. Syst.
Man Cybern. 4, 3816–3821 (2003)

56. Zobaa, A., Reljin, B.: Neural network applications in elec-
trical engineering. Neurocomputing 70(16–18), 2613–2614
(2007)

123

	Artificial neural network regression as a local search heuristic for ensemble strategies in differential evolution
	Abstract
	1 Introduction
	2 Background
	2.1 Artificial neural networks
	2.2 Differential evolution
	2.3 An evolution of DE algorithms
	2.3.1 Ensemble DE methods
	2.3.2 jDE algorithm

	3 The proposed algorithm
	4 Experimental results
	4.1 Test suite
	4.2 Impacts of the regression probability and the number of ANN training epochs
	4.3 Impact of the fitness function evaluations
	4.4 Impact of the problem dimensionality
	4.5 A comparative study
	4.6 Convergence analysis

	5 Conclusion
	Acknowledgments
	References

