
University of Maribor
Faculty of Electrical Engineering and Computer Science

B.Sc. Thesis

Domain-speci�c language for

time measuring on sport

competitions

Author: Iztok Fister, Jr.
Study Program: University, Computer Science and Information Technologies
Mentor: prof. dr. Marjan Mernik
Co-mentor: prof. dr. Barrett R. Bryant

Maribor, June 2011

Univerza v Mariboru

Fakulteta za elektrotehniko, ra£unalni²tvo
in informatiko

Diplomsko delo univerzitetnega ²tudijskega programa

Domensko speci�£ni jezik za

merjenje £asa na ²portnih

tekmovanjih

Avtor: Iztok Fister ml.
�tudijski program: Univerzitetni, Ra£unalni²tvo in informacijske tehnologije
Mentor: prof. dr. Marjan Mernik
Somentor: prof. dr. Barrett R. Bryant

Maribor, Junij 2011

Avtor: Iztok Fister ml.

Naslov: Domensko speci�£ni jezik za merjenje £asa na ²portnih tekmovanjih

UDK: 004.434(043.2)

Klju£ne besede: domensko speci�£ni jeziki, programski jeziki, tehnologija RFID

�tevilo izvodov: 5

Author: Iztok Fister Jr.

Title: Domain-speci�c language for time measuring on sport competitions

UDC: 004.434(043.2)

Keywords: domain-speci�c languages, programming languages, RFID technology

Number of issues: 5

Zahvala

Zahvaljujem se mentorju prof. dr. Marjanu Merniku za pomo£ in vo-
denje pri opravljanju diplomskega dela. Prav tako se zahvaljujem so-
mentorju prof. dr. Barretu R. Bryantu. Posebna zahvala velja star²em,
ki so mi omogo£ili ²tudij.

vi

Abstract

Measuring time in mass sporting competitions is, typically, performed
with a timing system that consists of a measuring technology and a
computer system. The �rst is dedicated to tracking events that are
triggered by competitors and registered by measuring devices (primar-
ily based on RFID technology). The latter enables the processing of
these events. In this paper, the processing of events is performed by
an agent that is controlled by the domain-speci�c language, EasyTime.
EasyTime improves the �exibility of the timing system because it sup-
ports the measuring of time in various sporting competitions, their
quick adaptation to the demands of new sporting competitions and a
reduction in the number of measuring devices. Essentially, we are fo-
cused on the development of a domain speci�c language. In practice,
we made two case studies of using EasyTime by measuring time in two
di�erent sporting competitions. The use of EasyTime showed that it
can be useful for sports clubs and competition organizers by aiding in
the results of smaller sporting competitions, while in larger sporting
competitions it could simplify the con�guration of the timing system.

vii

Contents

1 Introduction 1

2 Programming Languages 4

2.1 GPL . 5

2.2 DSL . 5

2.3 Compiling Programming Languages 8

2.3.1 Lexical Analysis . 8

2.3.2 Syntactical Analysis 9

2.3.3 Semantic Analysis 9

2.4 Compiler Generators . 10

2.4.1 LISA . 11

2.4.2 ANTLR . 12

2.4.3 Yacc/Bison . 12

3 Measuring Time on Sport Competitions 13

3.1 RFID technology . 14

3.2 Case Study 1: Triathlon Competitions 16

3.3 Case Study 2: Time Trials Bicycle 18

4 EasyTime 22

4.1 Domain Analysis . 23

4.2 The Abstract Syntax . 25

4.3 The Concrete Syntax . 27

4.4 Formal Semantics . 29

4.5 The Abstract Machine . 34

4.6 Implementation . 38

viii

CONTENTS ix

5 Practical Experiences 42

5.1 World Championship in Ultra double triathlon 42

5.2 National Championships in a time trial for bicycle 43

5.3 Discussion . 44

6 Conclusion 47

A Abbreviations 55

B EasyTime source code 56

C Raz²irjeni povzetek v slovenskem jeziku 62

C.1 Uvod . 62

C.2 Programski jeziki . 62

C.3 Merjenja £asa na ²portnih tekmovanjih 64

C.3.1 Triatloni . 64

C.3.2 Kronometer . 65

C.4 EasyTime . 65

C.4.1 Razvoj . 65

C.5 Uporaba v praksi . 66

C.6 Zaklju£ek . 66

List of Tables

4.1 Translation of the application domain concepts to a context-

free grammar . 26

4.2 The abstract syntax of EasyTime 27

4.3 Syntactic domains . 27

4.4 The concrete syntax of EasyTime 29

4.5 Semantic domains . 29

4.6 Translation of the program 31

4.7 Translation of measuring places 31

4.8 Meaning of declarations . 32

4.9 Meaning of agents . 32

4.10 Translation of statements 33

4.11 Translation of boolean expressions 33

4.12 Translation of arithmetic expressions 33

4.13 Translated code for EasyTime program in Algorithm 4 . 35

4.14 The abstract machine speci�cation 36

4.15 Translation of the statement (true)→ S 38

4.16 Proving the correctness of the optimization step in Easy-

Time . 38

5.1 Translated code for EasyTime program in Algorithm 8 . 44

x

List of Figures

2.1 LISA GUI. 11

3.1 IRONMAN 70.3 Monaco. 17

3.2 De�nition of control points in a triathlon competition. . 18

3.3 National Championship in time trial (bicycle). 20

4.1 The feature diagram of EasyTime. 23

xi

Chapter 1

Introduction

Domain-speci�c languages (DSLs) are tailored to the application do-

mains and have de�nite advantages over the general-purpose languages

(GPLs) in a speci�c domain. These advantages are especially clear in

their greater expressive power and, therefore, higher productivity, the

ease of use, easier veri�cation and optimization [42] [15] [16] [38] [29]

[33]. In this thesis, we have developed the domain-speci�c language

EasyTime for measuring time in sporting competitions.

In the past, a measuring time in sporting competitions was per-

formed by timekeepers that measured time manually. The times from

a timer were assigned to the starting number of competitors and were

then sorted according to the �nal results and categories. When RFID

(Radio Frequency Identi�cation) technology appeared, the cost of mea-

suring technology decreased [14] [54] and became accessible to a wider

range of users (e.g. sporting clubs, organizers of sporting competitions,

etc.). At the same time, these users began to compete with the estab-

lished monopolies [61] by measuring time in the smaller sporting com-

petitions. To automatically monitor results in sporting competitions,

a timing system consisting of a measuring technology and a computer

system is necessary. The measuring technology is capable of events

tracking and is typically based on the RFID technology. A competitor

triggers an event with a RFID tag when they cross over an antenna �eld

that is covered by a measuring device. This tag is normally strapped

to a the leg of the competitor.

1 INTRODUCTION 2

The computer system enables the processing of the results into a

database, which is then sorted according to the �nal results and then

printed. However, the main question remains how to connect the mea-

suring technology and the computer system into the integrated timing

system. For this functionality, we have proposed an agent that runs on

a database server and enables a connection with the measuring device,

obtaining events, assigning these to the results of the competitors and

recording them into a database. Moreover, this agent is controlled by

EasyTime, which can additionally improve the �exibility of the timing

system. This �exibility means that the timing system can be used by:

measuring many kinds of sporting competitions, quick and simple con-

�guration for any kinds of sporting competitions, and a reduction in

the number of measuring devices needed.

The problem that we have solved is not new. Many specialized

companies provide reliable and secure solutions for measuring time in

sporting competitions. Unfortunately, these are usually very expensive,

primarily because of costly measuring technology. Indeed, because of

keeping of their monopoly position on the market, there are few pa-

pers to treat this topic in existing literature. However, many parts of

these solutions have been published in literature that deals with RFID

technology [20] [26].

In this thesis, we focused on the development of the domain-speci�c

language EasyTime. This development was divided into three phases:

domain analysis - the de�nition of EasyTime concepts and terminol-

ogy, DSL design - the de�nition of EasyTime language speci�cations

(syntax and semantics), and DSL implementation - building the Easy-

Time compiler using the LISA tool [28] [43] [40]. LISA automatically

generates a compiler from formal attribute grammar-based language

speci�cations. While many DSLs have been developed in the past [42]

only a few of them have been developed rigorously with a formal seman-

tics approach. Notable examples are found in [11] [60] [41]. Finally,

the timing system based on EasyTime was tested in a real competi-

tions. Two case studies will be presented to illustrate how EasyTime

1 INTRODUCTION 3

behaves in the real-world. In the �rst case study, we dealt with a time

trial for bicycle competition, while for the second case study a triathlon

competition was chosen, as it is one of the most challenging events to

measure. In fact, tackling such a competition involves measuring three

di�erent disciplines, and stretches out over a signi�cant period of time.

The structure of the rest of the thesis is as follows: in Chapter

2 we describe a basics of programming languages. We focus on dif-

ferences between general-purpose languages and domain-speci�c lan-

guages. The chapter is �nished with a compiling of programming lan-

guages. In Chapter 3, we introduce problem of measuring time in sport

competitions. In line with this, two case studies from real-world are

taken into consideration, i.e., triathlons and time trial bicycle. Devel-

opment and implementation of EasyTime is presented Chapter 4. In

Chapter 5, we illustrate practical experiences using EasyTime. The

last chapter summarizes conclusions of performed work and indicates

directions for the future work. Abbreviations, Easytime source code

and extended abstract in Slovene language are included in appendix.

Chapter 2

Programming Languages

A programming language is an interface between a user and a computer.

This interface is de�ned by the grammar that describes the syntax of

how keywords, names and symbols are used to build constructions, such

as expressions and statements, as well as the semantics that describe

what the computer should do for each construct. The theory of com-

puter languages is one of the most surveyed topics in computer science.

Currently, there are more than 3,500 computer languages [12] [6] [4] [8]

[9]. For programmers, it is virtually impossible to be familiar with all of

these. Some computer languages are intended for quick solutions, some

are for prototyping and others are for bigger projects. Programming

languages have many formal de�nitions. We used informal de�nitions

of programming languages [53] [44], as follows:

� a programming language is a language for creating computer pro-

grams that contains calculations, or algorithms with the possibil-

ity of control of external devices such as printers, robots, etc...

� a programming language maintains communication with humans,

� a programming language allows instructions to be given that per-

form computing procedures, which are easy for humans and com-

puters to read,

� a programming language is the basic tool of a programmer.

2.1 GPL 5

A programming language needs to be universal. It must allow one

to formally describe every solvable task. Programs are processed by

compilers and interpreters that translate the program into a form that

can be executed by another program, or have it executed immediately.

Programming languages are divided into general-purpose languages

and domain-speci�c languages.

2.1 GPL

Among GPLs, there are dedicated languages, whose expression power

goes beyond the speci�c domain. With these languages, we can develop

programs for an arbitrary domain [13] [19]. The most popular GPLs

are:

� Python,

� Ruby,

� C++,

� Java,

� Pascal,

� PHP.

2.2 DSL

DSLs are languages tailored to a speci�c application domain. DSL

is a small, usually declarative, language that o�ers expressive power

focused on a particular problem domain. In many cases, DSL programs

are translated to calls into a common subroutine library; the DSL can

be viewed as a means to hide the details of that library. These libraries

contain subroutines that perform related tasks in well-de�ned domains

such as di�erential equations, graphics, user-interfaces and databases.

The subroutine library is the classical method for packaging reusable

domain-knowledge. The most popular DSL languages are:

2.2 DSL 6

� BNF notation,

� Hyper Text Markup Language (HTML) for World Wide Web

(WWW),

� LaTeX word processing software,

� Make software,

� SQL database queries.

As with other languages, DSLs have both advantages and disadvan-

tages. The most important advantages of DSLs are the following:

� DSLs allow solutions to be expressed in an idiom and at the level

of the problem domain abstraction. Consequently, domain ex-

perts themselves can understand, validate, modify, and often even

develop DSL programs.

� DSL programs are concise, self-documenting to a large extent, and

can be reused for di�erent purposes. DSLs enhance productivity,

reliability, maintainability and portability.

� DSLs embody domain knowledge, and thus enable the conser-

vation and reuse of this knowledge; DSLs allow validation and

optimization at the domain level.

� DSLs improve testability.

The disadvantages of DSLs are the following:

� the costs of designing, implementing and maintaining a DSL,

� the costs of education for DSL users,

� the limited availability of DSLs,

� the di�culty of �nding the proper scope for a DSL,

� the di�culty of balancing between domain-speci�city, and general-

purpose programming language constructs,

2.2 DSL 7

� the potential loss of e�ciency when compared with hand-coded

software.

Domain-speci�c languages are used in numerous �elds:

� pharmacy: simulations, calculations, cure productions,

� bioinformatics: protein structure prediction, applications,

� software engineering: �nancial products, behavior control and co-

ordination, software architectures, and databases,

� systems software: description and analysis of abstract syntax

trees, video device driver speci�cations, cache coherence proto-

cols, data structures in C, and operating system specialization,

� multi-media: web computing, image manipulation, 3D animation,

and drawing,

� telecommunications: string and tree languages for model check-

ing, communication protocols, telecommunication switches, and

signature computing,

� sport applications: simulations, time measuring, competitor track-

ing,

� science applications: optimization, measuring, calculations,

� computer graphics: triangulations, surfaces and functions.

The development of DSLs is a complicated process. The process

typically consists of three phases, i.e.:

� Analysis,

� Design,

� Implementation.

2.3 COMPILING PROGRAMMING LANGUAGES 8

2.3 Compiling Programming Languages

The program in a source code cannot be executed directly. Before ex-

ecution, we have to compile the source code into a machine code. This

translation is performed by a compiler [2]. The compiler is a computer

program that compiles source code written in a programming language

into a computer machine language. The result of the compiling is an

executable �le [56].

The name compiler is primarily used for programs that translate

source code from a high-level programming language to the low level

programming language. Compiling consists of three stages [53] [21]:

� lexical analysis,

� syntactical analysis and

� semantic analysis.

In the next subsections, these stages will be brie�y discussed.

2.3.1 Lexical Analysis

The lexical analysis is the �rst task to analyze the source program

that looks for lexical symbols. The lexical symbols include the names

of identi�ers, character strings, numbers, operators, separator and re-

server words. A program designed to conduct a lexical analysis of the

source code is called a lexical analyzer. Its mission is to provide termi-

nal symbols for the syntactical analyzer. For the realization of a lexical

analyzer �nite-state-automata are usually used. The �nite-state ma-

chine enables the transition of one state to another, according to the

current input [39]. The transition always starts in the initial state and

ends in the �nal stage.

2.3 COMPILING PROGRAMMING LANGUAGES 9

2.3.2 Syntactical Analysis

The syntactical analyzer determines a structure of sentences written in

a speci�c language. The input of the syntactic analysis is a sequence of

symbols, where a lexical analyzer breaks the code. The output is a de-

scription of the syntactic structure of the original program. A syntactic

analysis can be performed in several ways, but all ways are equivalent

to a derivation tree. The analysis procedure needs to satisfy certain

conditions dictated by simplicity and practicality. These conditions are

as follows:

� unambiguous grammar,

� reading the input line from left to right, and

� a deterministic process of syntactic analysis - execution without

backtracking.

The part of the compiler that performs a syntactic analysis is known

as a parser or syntactic analyzer. In general, the parsers are realized

in two ways:

� a top-down parser, and

� a bottom-up parser.

The former starts from the initial symbol and tries to build a deriva-

tion tree. The latter starts from the leaves of the tree (terminal sym-

bols) and tries to move towards the root of the tree.

2.3.3 Semantic Analysis

Syntactic analysis enables the identi�cation of programming language

constructs, i.e., whether a sequence of input symbols is correct or not.

However, it ignores the meaning of sentences. To interpret the mean-

ing of sentences, semantic analysis is used. The semantic information is

obtained by extending the context-free grammar which de�nes the syn-

tactic structure of the program with the context-sensitive information

2.4 COMPILER GENERATORS 10

by appending attributes to each non-terminal symbol. In this manner,

an attribute grammar is obtained. Normally, the attribute grammar is

represented in an abstract syntax tree, where attributes move via the

branches of trees from the leaves towards the root and vice versa [7].

Attributes are usually divided into two groups:

� synthesized,

� inherited.

Synthesized attributes are used to pass semantic information up

the parse tree, while inherited attributes help pass semantic informa-

tion down and across it. For instance, when constructing a language

translation tool, such as a compiler, it may be used to assign semantic

values to syntax constructions. Also, it is possible to validate the se-

mantic checks associated with a grammar, representing the rules of a

language not explicitly imparted by the syntax de�nition [1].

2.4 Compiler Generators

The Compiler generators are programs that convert a formal descrip-

tion of a programming language into a compiler for that language. The

language description may take many forms, but usually contain a large

amount of program code. Several recent compiler generators accept

descriptions in terms of attribute grammars or denotational semantics

[35] [58] [49]. Some of the most popular compiler generators are:

� LISA,

� Antlr, and

� Yacc/Bison.

In the next subsections, these generators are brie�y presented.

2.4 COMPILER GENERATORS 11

2.4.1 LISA

LISA(Language Implementation System based on Attribute Grammars)
is a compiler-compiler, i.e., a system that automatically generates a
compiler/interpreter from formal attribute grammar-based language
speci�cations. LISA was developed at the University of Maribor in
the late 1990s [40]. The LISA tool produces highly e�cient source
code for the scanner/parser/interpreter/compiler in Java. The lexical
and syntactical parts of a language speci�cation use well known for-
mal methods, such as regular expressions and BNF. The semantics are
further de�ned with attribute grammars. The graphical user interface
(GUI) of LISA (Figure 2.1) is written in Java. Moreover, the LISA tool
provides a Web-Service user interface. The main features of LISA are
the following:

Figure 2.1: LISA GUI.

� LISA works on all platforms, since it is written in Java,

� a textual or visual environment,

� an Integrated Development Environment (IDE), where users can
specify, generate, compile and execute programs on the �y,

� visual presentations for di�erent structures, such as �nite-state-
automata, BNF, dependency graph, syntax tree, etc...

2.4 COMPILER GENERATORS 12

� modular and incremental language development.

2.4.2 ANTLR

ANTLR (ANother Tool for Language Recognition) is a parser gener-
ator that uses LL(*) parsing. The tool was developed in 1989. [48].
Currently, professor Terence Parr at the University of San Francisco
is a maintainer of ANTLR. ANTLR is still under active development.
The tool takes a grammar as an input and generates a source code for a
syntax recognizer. The speci�ed language uses a context free grammar,
which is expressed using an Extended Backus-Naur Form (EBNF) [10]
[47]. ANTLR allows for the generation of:

� parsers,

� lexers,

� tree parsers, and

� combined lexer parsers.

ANTLR is free software published under a BSD-license. The tool
works on all computer platforms.

2.4.3 Yacc/Bison

Yacc is a parser generator developed by Stephen C. Johnson for the
Unix operating system [31]. Generating results in a parser based on
analytic grammar written in a notation similar to BNF [27] [30]. A
newer version of Yacc is Bison. It is a parser generator that was de-
veloped by the GNU project [18]. Bison is a parser generator that
reads the speci�cations of a context-free language, providing warnings
about any parsing ambiguities, and then generates a parser (either in
C, C++, or Java), which reads sequences of tokens and decides whether
the sequence conforms to the syntax speci�ed by the grammar. Bison
generates LALR parsers (i.e., a type of parser de�ned as a Look-Ahead
LR parser) that are based on a �nite-state-automata concept. Cur-
rently, Bison is free software. It can be obtained either as source code
or in executable formats and works across all computer platforms.

Chapter 3

Measuring Time on Sport

Competitions

In practice, time in sporting competitions can be measured manually

(with a classical or computer timer) or automatically (with a measur-
ing device). In this thesis, the computer timer is a computer program
that was developed to meet the needs of manually measuring time. For
measuring time, it exploits a processor tact. The processor tact is the
speed, with which the processor executes computer instructions. The
computer timer is capable of generating events - similar to a measuring
device. However, in this case, the event is triggered by an operator
pressing the suitable key on the keyboard, while the measuring de-
vice detects the event automatically. Generated events are in triplets
Ev = ⟨#,MP,TIME⟩, where # denotes the starting number of the
competitor, MP the measuring place, where the event happened and
TIME the timestamp registered by the computer at the moment when
the competitor crossed the measuring place and represents the number
of seconds since 1.1.1970 at 0:0:0. However, the starting number of
the competitor remains unde�ned at the time that the event is regis-
tered and needs to be entered at a later stage. For the reliable event
tracking, two operators are needed: the �rst for events generating and
the second for manually recording the competitors' starting numbers
according to the order in which they cross the measuring place. Events
that consist of pairs ⟨Ev,#⟩ needs to be recorded to a database via �le
transfer protocol [25].

3.1 RFID TECHNOLOGY 14

For automatic time measuring devices are used today. Typically,

these are based on RFID technology [20] that is discussed in the next

section in more details.

3.1 RFID technology

An identi�cation is performed with an electromagnetic wave motion in

the range of a radio frequency by RFID technology [32]. This technol-

ogy is not new and consists of the following elements:

� RFID tags that keep identi�cation numbers, and

� a reader of the RFID tags.

The main characteristics of this technology are:

� no contact between tag and reader is needed for recognizing of

RFID tags,

� the identi�cation number in tags can be modi�ed.

The most commonly, the active and passive RFID technologies are

used today. For the active RFID technology, no electrical power is

needed. Furthermore, the tags can be read from large distances (more

than 100 meters) and they can keep more information than passive

RFID technology. However, the main weakness of this technology is

the use of batteries that needs to be regularly charged. In this way, the

technology is more expensive as well.

Passive RFID technology works by inducing the electrical power

on the RFID tag. This causes the transmission of the identi�cation

number to the receiving antenna of the measuring device. In addition,

the timestamp of the event registration is recorded by the measuring

device. On the other hand, the passive RFID tag does not use its own

power supply. The primarily weakness of this technology is that the

reading ability decreases in conjunction with the distance of the RFID

tag from the reader.

3.1 RFID TECHNOLOGY 15

The measuring device consists of a RFID tags reader, processor, pri-

mary storage, liquid crystal display (LCD) and a numerical keyboard.

All of these elements are enclosed in a waterproof casing and secured

from the mechanical damage. More antenna �elds can be connected to

the measuring device. Furthermore, it can be connected to the local

area network (LAN) with an ethernet adapter. The measuring device

can be controlled via keyboard and LCD display. Typically, the main

control functions that are available by the measuring device are:

� read of real time,

� setup of real time,

� start of event registration,

� end of event registration,

� read of events online,

� read of events o�ine.

The measuring device connected to the LAN can also be controlled via

a control program running on a workstation. This program accesses the

device via TCP/IP sockets with a suitable protocol [59]. Usually, the

measuring device supports a Telnet protocol that is easy to implement.

On the other hand, the commands can also be transferred to the device

as a text stream.

In the timing system, each antenna �eld represents ameasuring place

(MP). In fact, the measuring place represents the special antenna in

the mat. An event is triggered by the competitor crossing over the

mat with a passive RFID tag. The event is a quadruplet Ev2 =
⟨#,RFID,MP,TIME⟩. Typically, the courses in sporting competi-

tions are divided into multiple control points (CP), where the organiz-

ers needs to track the measured time. This time can be intermediate

or final. The location of the control points depend on the kind of com-

petition and the con�guration of the course in which the competition

takes place.

3.2 CASE STUDY 1: TRIATHLON COMPETITIONS 16

In order to illustrate, how to use the proposed measuring technol-

ogy in the real-world two case studies are taken. The �rst case study

presents a scheme of time measuring in triathlon competition, while

the second a scheme of the time trial bicycle.

3.2 Case Study 1: Triathlon Competitions

The triathlon is a modern sporting event involving the completion of

three continuous and sequential endurance disciplines [57] [50], i.e., the

swimming (Fig. 3.1), cycling and running. Triathletes compete for

the fastest overall course completion time, including transitions times,

where they move from swimming to bicycling (transition 1) and from

bicycling to running (transition 2). Transition area is the place, where

triathletes prepare himself for the next discipline. In the transition area

1 competitor take o� swimming wetsuit and take a bike. In transition

area 2 competitor let a bike, take shoes, and start to run. Triathlon

races vary in distance. According to the organizations International

Triathlon Union (ITU) and European Triathlon Union (ETU) the main

international race distances are standardized, as follows:

� sprint distance (i.e., 750 m swim, 20 km bike, 5 km run),

� olympic distance (i.e., 1.5 km swim, 40 km bike, 10 km run),

� half Ironman (i.e., 1.9 km, 90 km, 21.1 km),

� full Ironman (i.e., 3.8 km, 180 km, 42.2 km),

� Ultra Triathlon (i.e., n * IRONMAN, where n = 2, 3,...).

Ironman is one of the long-distance triathlon series organised by

the World Triathlon Corporation (WTC). It consists of 3.8 km swim-

ming, 180 km bicycling and 42.2 km running. Ironman's are limited

in time. Normally, the competitors have 17 hours to �nish the race.

Simultaneously with Ironman, Ultra Triathlon series that are organized

by International Ultra Triathlon Association (IUTA) have been rising

as well. Because of long duration, these races are very complicated for

3.2 CASE STUDY 1: TRIATHLON COMPETITIONS 17

Figure 3.1: IRONMAN 70.3 Monaco.

measuring. Therefore, special time keeping companies for time mea-

suring are need by organizers of sporting competitions. Most races

consists of short laps, which also complicate the time measuring.

The measuring time in the triathlon is divided into nine control

points. In Fig. 3.2, the scheme of the World Championship 2009 in

ultra double triathlon is illustrated, where the swimming course is di-

vided into 20 laps, the bicycling course into 105 laps and the running

course into 55 laps. The summary time of a competitor consists of

�ve �nal times (the swimming time SWIM (CP2), the �rst transition

time TA1 (CP3), the bicycling time BIKE (CP5), the second transi-

tion time TA2 (CP6) and the running time (CP8)) as well as three

intermediate times (the intermediate swimming time (CP1), the in-

termediate bicycling time (CP4) and the intermediate running time

(CP7)). By intermediate times, the number of laps ROUND_x as well

as the achieved result INTER_x is measured. Here, x = 1,2,3 denotes

a particular discipline.

Suppose that for measuring time in a triathlon competition in Fig. 3.2

that one measuring device with two measuring places (MP3 and MP4)

3.3 CASE STUDY 2: TIME TRIALS BICYCLE 18

Figure 3.2: De�nition of control points in a triathlon competition.

is available and that the competition is performed at one location. In
this case, the last crossing over MP3 can represent the CP5 time, the
�rst crossing over MP4 the CP6 time, and the last crossing over MP4
the �nal result (CP8). The measuring places MP1 and MP2 can be
measured manually. In line with this, the number of control points
can be reduced by three if the control points are correctly located and
the timing system is used. Therefore, 162 events per competitor (or
87.6%) can be measured with one measuring device. When we consider
that the measuring technology for swimming in lakes and seas remains
expensive and that swimming is measured by referees manually, in this
competition 98% of all events can be measured.

As can be seen from this scenario, each registered event on par-
ticular measuring place can have a di�erent meaning according to a
moment in which it is issued. For example, the each last event on
MP3 represents the �nish time BIKE, while all others 104 events up-
date the lap counter INTER_2. However, this di�erent meaning of
events can be described with DSL that enables the automatic con�gu-
ration of measuring devices according to requests of particular sporting
competition.

3.3 Case Study 2: Time Trials Bicycle

A time trial bicycle is a road bicycle discipline race in which riders race
alone against the clock. Thereby, slip-streaming is prohibited [5] [62].

3.3 CASE STUDY 2: TIME TRIALS BICYCLE 19

The time trial bicycle is supported by the organization International

Cycling Union (UCI). Time trial bicycle is also referred to as "the race

of truth" by the competitors because that race can only be won by the

strongest and the most endurance riders. That race is involved on all

big races (e.g., Tour de France, Giro, Vuelta, etc). There exist also

track-based time trials where riders compete in velodromes, and team

time trials bicycle.

Measuring time in a national championship in a time trial for bicycle

2010 was not as complicated as measuring time in a triathlon, but

still has other speci�c qualities that need to be carefully noted. At

�rst, a competitor must overcome the time trial course on a bicycle

alone. The bicycle is designed especially for this discipline. Then,

if two competitors ride bicycles one after the other more times than

the rules of the Cycling Federation allow, then the last competitor is

disquali�ed. This occurrence is also known by the name of drafting.

Finally, the starting time of each competitor is determined in advance.

As a result, when the competitor does not come to the start at a

predetermined time, they are also disquali�ed.

Competitors in these competitions are classi�ed into categories ac-

cording to their age and sex. According to the regulations of the

Cycling Federation, competitors are divided into four age groups, as

follows:

� age under 17 (U-17),

� age under 19 (U-19),

� age under 23 (U-23),

� age over 23 (Elite).

Typically, each category is characterized by the length of the course,

i.e. the older the age category, the longer the course. On the other

hand, the length of courses for female competitors are shorter than

the lengths of those for men in the same age group. Normally, women

classi�ed in the category U-19 take part in courses of the same length

3.3 CASE STUDY 2: TIME TRIALS BICYCLE 20

as men in the U-17 category. Likewise, the female category U-23 is

equivalent to the men's category U-19, etc. The female category U-17

is usually associated with the female category U-19.

In the bicycle time trial, the round courses divided into laps are

used for organizational and e�ciency reasons. Typically, organizers

of time trial bicycle competitions adapt the length of course to the

youngest category, i.e. male U-17. The competitors of this category

need to accomplish one lap. Then, the number of laps is increased for

increasing age categories. In the end, professional competitors, who

appear in the male Elite category must overcome four laps.

The measuring time in national championships in time trial bicycles

is illustrated by Fig. 3.3, where organizers for the time trial course

assess the 5 kilometer long raw section of a two-lane highway and close

it for all tra�c for the duration of the competition. An advantage of

such a set up is that organizers can minimize the number of referees

on the course because these can be placed in the turning round only.

Note that the turning round is exactly half of the course distance away

from the start.

Figure 3.3: National Championship in time trial (bicycle).

Suppose that for the measurements in Fig. 3.3 one measuring device

with two measuring places is available. Indeed, this device is placed on

a �nishing point that captures one lane of the highway, i.e. right side.

The other lane is occupied by the starting point. In fact, this location

3.3 CASE STUDY 2: TIME TRIALS BICYCLE 21

is used as the second turning point for those competitors that must

�nish more than one lap. However, the �rst turning round is controlled

by the referees. Furthermore, both measuring places are connected

together and, in fact, constitute one measuring place. In other words,

each competitor crosses over two antenna mats because of the higher

speed involved with bicycling, which means that the probability of

registration could be insecure. In this way, the reliability of event

registration is assured.

Once again, the usage of DSL can simplify the con�guration of

measuring devices.

Chapter 4

EasyTime

Measuring time in mass sporting competitions is, typically, performed

with a timing system that consists of a measuring technology and a

computer system [22] [23] [24]. The �rst is dedicated to tracking events

that are triggered by competitors and registered by measuring devices

(primarily based on RFID technology). The latter enables the process-

ing of these events. In order to automate a measuring time in sporting

competitions, the processing of events is performed by an agent that

is controlled by the domain-speci�c language, EasyTime. EasyTime

improves the �exibility of the timing system because it supports the

measuring of time in various sporting competitions, their quick adap-

tation to the demands of new sporting competitions and a reduction in

the number of measuring devices. In this thesis, we are focused on the

development of this domain-speci�c language that was tested in real-

world, i.e., by measuring time in two sporting competitions presented

in section 3.2 and section 3.3.

Development of domain-speci�c language Easytime is divided into

three phases, as follows:

� domain analysis using feature diagrams,

� DSL design that includes de�nitions of:

� abstract syntax,

� formal semantics,

4.1 DOMAIN ANALYSIS 23

� abstract machine.

� implementation.

In the next sections, the particular phases are discussed in detail.

4.1 Domain Analysis

A prerequisite for the design of a DSL is the detailed analysis and

structuring of the application domain [17]. The analysis of the appli-

cation domain is provided by a domain analysis. The results of the

domain analysis are obtained in a feature model [55]. A key element of

the feature model is a feature diagram (FD) that, in a graphical way,

describes the dependency between features. The FD is represented as

a tree with nodes as rectangles and arcs connecting the nodes. Nodes

determine the features, while arcs determine the relationships between

them. The nodes can be mandatory or optional. The �rst is denoted

by closed dots, whilst the latter is denoted by open dots. The sample

FD of EasyTime is illustrated in Fig. 4.1.

Figure 4.1: The feature diagram of EasyTime.

From the FD in Fig. 4.1, it can be seen that the time measurements

for the concept Race consists of Events, Transition area, Control

points, Measuring places and Agents. All sub-features except for

Transition area (as denoted by an open dot on arc) are mandatory

because they are connected by the relation all (no semicircle joins

the arcs from feature to its sub-features). The Events may either

4.1 DOMAIN ANALYSIS 24

be swimming, cycling or running or any combination of these three

sub-features as indicated by the closed semicircle denoting the rela-

tion more-of . The Control points consist of three mandatory sub-

features: start, number of laps and finish that are connected by the

relation and. With the Measuring places the time may be updated

(update time) and/or laps may be decremented (decrement laps).

Therefore, these sub-features are connected by the relation more-of .

The Agents may be automatic or manual, but not both. The open

semicircle indicates a one-of relation. Finally, the number of possi-

ble race instances is 84: 7(Events)×2(Transition area)×1(Control

points)×3(Measuring places)×2(Agents).
The FDs reveal important concepts and their structures (in the

sense of how the concept can be broken down into features and sub-

features). In our case, a competition (or race) consists of events (swim-

ming, cycling, running, etc.). Each event has a start and a �nish line

and at least one lap. This concept is embodied in the control point

concept. Between events, transition areas are placed. At each control

point, the time is measured and/or the lap is decremented by a mea-

suring place. Measuring places are controlled by agents, which can be

manual or automatic. The manual control of agents means that events

are measured with manual timers, while the automatic control of these

events is captured by measuring devices. In fact, events are assembled

in �les and batch processed by the manual agent. In line with au-

tomatic control, events are generated stochastically by the measuring

devices and processed online. In both cases, the agent needs to wait ei-

ther on the batch of events assembled into �les or on the stochastically

generated events obtained from the measuring device that is accessible

through the local area network with an appropriate IP address.

On the other hand, FD also reveals commonalities (common fea-

tures which always exist in a system) and variabilities (optional fea-

tures which may or may not exist in a system). The latter are very

important in the next phase of DSL development, since the list of vari-

ations indicates precisely what information is required to specify an

4.2 THE ABSTRACT SYNTAX 25

instance of a system; this information must be directly speci�ed in or
be derivable from DSL programs, while commonalities should be built
into a DSL execution environment through a set of common opera-
tions and primitives (e.g., types) of a language. From FD the variation
points can be easily identi�ed (optional, one-of and more-of features).
Overall, during domain analysis, the following information is usually
gathered: terminology, concepts, and common and variable properties
of concepts and their interdependencies. Although this is extremely
useful information, further steps in DSL development are not at all
obvious. In the next step, the design phase of DSL development syn-
tax and semantics are de�ned formally or informally. In an informal
design, the speci�cation is usually in some form of natural language,
often containing a set of illustrative DSL programs, while a formal de-
sign generally consists of a speci�cation written in some of the available
formal de�nition methods (e.g., regular expressions and grammars for
syntax speci�cations, and attribute grammars, denotational semantics,
operational semantics, and abstract state machines for semantic speci-
�cations). Hence, designing a language involves de�ning the constructs
in the language and providing the semantics, preferably formal, to the
language.

4.2 The Abstract Syntax

During the domain analysis we identi�ed several concepts in the appli-
cation domain that needed to be mapped into DSL syntax and seman-
tics. Here, we can notice correspondence between concepts/features in
an application domain and non-terminals in a context-free grammar
(CFG). First, at a higher abstraction level, non-terminal symbols are
used to describe di�erent concepts in the programming language (e.g.,
an expression or a declaration in a general-purpose programming lan-
guage, or an agent in our EasyTime DSL). On the other hand, at a
more concrete level, non-terminal and terminal symbols are used to
describe the structure of a concept (e.g., an expression consists on two
operands separated by an operator symbol, or an agent speci�cation in

4.2 THE ABSTRACT SYNTAX 26

EasyTime consists of the agent's number identi�cation, the type of the

agent and the source of the events). Therefore, both the concepts and

the relations between them, belonging to the speci�c problem domain,

can be captured in a context-free grammar. Table 4.1 represents the

mapping between application domain concepts and non-terminals in

context-free grammars, which appears on the left hand side (LHS) of

CFG production. The non-terminals' structure which appears on the

right-hand side (RHS) of CFG productions is also shown in Table 4.1.

Table 4.1: Translation of the application domain concepts to a context-free
grammar

Application domain concepts LHS non-term. RHS structure

Race P Description of agents; control points; measuring
places.

Events (swimming, cycling, None Measuring time is independent from the type of an
running) event. However, good attribute's identi�er in control

points description will resemble the type of an event.

Transition area times None Can be computed as di�erence between events �nal
and starting times.

Control points (start, number D Description of attributes where start and �nish time
of laps, �nish) will be stored as well as remaining laps.

Measuring places (update time, M Measuring place id; agent id, which will control this
decrement lap) measuring place; speci�c actions which will be per-

formed at this measuring place (e.g., decrement lap).

Agents (automatic, manual) A Agent id; agent type (automatic, manual); agent
source (�le, ip).

The abstract syntax of EasyTime, which is based on Table 4.1, is

presented in Table 4.2, whereas the syntactic domains of variables are

presented in Table 4.3. An EasyTime program P consists of the agents

declaration A, attribute declarations D, and speci�cation of measur-

ing places M . The agent declaration A speci�es the agent's number

identi�cation n; the type of the agent (manual or auto) and the source

of the events (�le or IP address). An EasyTime program might have

many agent declarations. The declaration D speci�es the attributes of

a database that will be created as well as the initial values of those

attributes for each runner. Note that runners are not speci�ed in an

EasyTime program. However, to generate a code and a database, the

runners will be provided during the compilation process. The measur-

ing places M specify the identi�cation numbers of the measuring place

n1, the agent's identi�cation number n2, and the statements S which

are going to be executed at measuring place n1 and will be under the

4.3 THE CONCRETE SYNTAX 27

control of agent n2. An EasyTime program might specify many measur-

ing places. Among the statements S we can identify simple statements

such as the decrement attribute x (dec x), update attribute x (upd x),

and assignment statement (x ∶= a), as well as the conditional statement

((b)→ S) and compound statement (S1;S2). The arithmetic expression

a can be a number (n) or an attribute (x). The boolean expression b

can be: literals true and false, or a compound expression using either

the operator equal (=) or the operator not equal (! =).

Table 4.2: The abstract syntax of EasyTime

P ::= A D M
A ::= n manual file | n auto ip | A1;A2

D ::= var x ∶= a | D1;D2

M ::= mp[n1] → agnt[n2] S | M1;M2

S ::= dec x | upd x | x ∶= a | (b)→ S | S1;S2
b ::= true | false | a1 = a2 | a1! = a2
a ::= n | x

Table 4.3: Syntactic domains

P ∈ Pgm A ∈ Adec
D ∈ Dec M ∈ MeasPlace

S ∈ Stm b ∈ Bexp
a ∈ Aexp n ∈ Num
x ∈ Var file ∈ FileSpec
ip ∈ IpAddress

4.3 The Concrete Syntax

After the abstract syntax is de�ned, the next step is to de�ne the mean-

ing of language constructs. In other words, the language semantics. In

parallel, a language designer often experiments with various forms of

concrete syntaxes to see how various constructs might look. For exam-

ple, the agent's description, one manual and another automatic, might

be described using concrete syntax such as (Algorithm 1):

4.3 THE CONCRETE SYNTAX 28

Algorithm 1 EasyTime agents description
1: 1 manual "abc.res";
2: 2 auto 192.168.225.100;

The EasyTime program consists of a description of agents, at-
tributes where the results of control points are stored or laps decre-
mented, and a description of measuring points. After the agent's de-
scription, the attributes are de�ned. These descriptions using concrete
syntax might be as follows (Algorithm 2):

Algorithm 2 EasyTime attributes description
1: var ROUND2 := 105;
2: var INTER2 :=0;
3: var BIKE := 0;

A measuring place is marked with an identi�cation number, the
agent's id, which controls this measuring place, and the actions that
will be executed at this measuring place. Again, a concrete example
of such a description, where measuring place 3 is controlled by agent
2, is shown in Algorithm 3. Note that each time a competitor crosses
this measuring place the following actions are executed: updating the
attribute INTER2, decrementing a lap represented by the attribute
ROUND2, and updating the attribute BIKE (�nal time of bicycling)
if the attribute ROUND2 is zero.

Algorithm 3 EasyTime measuring place description
1: mp[3] → agnt[2] {
2: (true) → upd INTER2;
3: (true) → dec ROUND2;
4: (ROUND2 == 0) → upd BIKE;
5: }

When a language designer is satis�ed with the look and feel of
the language's syntax, and possible additional constraints from domain
experts or language end-users are ful�lled, the concrete syntax can
be �nalized. This process can be executed in parallel with de�ning
language semantics. In Table 4.4, the EasyTime concrete syntax is
given. In Fig. 4, a complete example of the EasyTime program for
measuring time in a triathlon is also presented.

4.4 FORMAL SEMANTICS 29

Table 4.4: The concrete syntax of EasyTime

PROGRAM ::= AGENTS DECS MES_PLACES
AGENTS ::= AGENTS AGENT | ε
AGENT ::= #Int auto #ip ; | #Int manual #�le ;
DECS ::= DECS DEC | ε
DEC ::= var #Id ∶= #Int ;
MES_PLACES ::= MES_PLACE MES_PLACES | MES_PLACE
MES_PLACE ::= mp[#Int] − > agnt [#Int] { STMTS }
STMTS ::= STMT STMTS | STMT
STMT ::= dec #Id ; | upd #Id ; | #Id ∶= EXPR ; | (LEXPR) − > STMT
LEXPR ::= true | false | EXPR == EXPR | EXPR != EXPR
EXPR ::= #Int | #Id

4.4 Formal Semantics

The translation of an EasyTime program into a code that is going to

be executed on several abstract machines (AM), described in subsec-

tion 3.5, is given through semantic translation functions (e.g., CP,CM).

Those semantic translation functions employ several semantic domains,

which are presented in Table 4.5. Among classical semantic domains

[45] such as: sets Integer, Truth-Value, and the function State, we

are also using mathematical entities that represent agents (Agents),

runners (Runners), and a database (DataBase). The functionAgents

will map the agent's identi�cation number to the agent's type (man-

ual or auto) and the agent's source (�le or IP address). Runners

is a database that contains the runner's data (identi�cation number,

RFID, last and �rst name). Note that the attributes of this database

are �xed. On the other hand, DataBase is a database where the run-

ner's results will be stored. The structure of this database is determined

by the EasyTime program.

Table 4.5: Semantic domains

Integer={. . . − 3,−2,−1,0,1,2,3 . . .} n ∈ Integer
Truth-Value={true, false}
State=Var→Integer s ∈ State
AType={manual, auto}
Agents=Integer→AType × (FileSpec ∪ IpAddress) ag ∈Agents
Runners=(Id ×RFID ×LastName × FirstName)∗ r ∈ Runners
DataBase=(Id × V ar1 × V ar2 × . . . × V arn)∗ db ∈ DataBase

4.4 FORMAL SEMANTICS 30

Algorithm 4 EasyTime program for measuring time in a triathlon
1: 1 manual "abc.res";
2: 2 auto 192.168.225.100;
3:
4: var ROUND1 := 20;
5: var INTER1 := 0;
6: var SWIM := 0;
7: var TRANS1 :=0;
8: var ROUND2 := 105;
9: var INTER2 :=0;
10: var BIKE := 0;
11: var TRANS2 :=0;
12: var ROUND3 := 55;
13: var INTER3 := 0;
14: var RUN := 0;
15:
16: mp[1] → agnt[1] {
17: (true) → upd SWIM;
18: (true) → dec ROUND1;
19: }
20: mp[2] → agnt[1] {
21: (true) → upd TRANS1;
22: }
23: mp[3] → agnt[2] {
24: (true) → upd INTER2;
25: (true) → dec ROUND2;
26: (ROUND2 == 0) → upd BIKE;
27: }
28: mp[4] → agnt[2] {
29: (true) → upd INTER3;
30: (ROUND3 == 55) → upd TRANS2;
31: (true) → dec ROUND3;
32: (ROUND3 == 0) → upd RUN;
33: }

The translation of an EasyTime program into an AM code is spec-
i�ed in Table 4.6. The translation function CP takes two inputs:
p ∈ Pgm and r ∈ Runners. The result is a triplet: a code c ∈ Code
that is going to be executed on a particular AM with the identi�cation
number n ∈ Integer, as well as the database db ∈ DataBase, where
the runner's results will be stored. The code and the AM's identi�ca-
tion number are obtained by applying the translation function CM on
the measuring places M . Meanwhile, the database db is obtained from
attributes speci�ed in the declaration part D and from r ∈Runners.

The translation of measuring placesM ∈MeasPlace produces code
and the AM's identi�cation number (Table 4.7). There are two di�erent
syntactic constructs for M : the de�nition of measuring place n1 and
an agent n2 that controls this measuring place with the corresponding
statements S, as well as a sequence of measuring places M1;M2. In

4.4 FORMAL SEMANTICS 31

Table 4.6: Translation of the program

CP ∶ Pgm→Runners → Code × Integer × DataBase
CP⟦A D M⟧r = let s = D⟦D⟧:

db =create&insertDB(s, r)
in (CM⟦M⟧(A⟦A⟧), db)

the former case, the translation function CM �rst generates the WAIT
instruction and then call the translation function CS over statements
S. The instruction WAIT i waits for an event by some of the com-
petitors i. When the event is registered on the measuring place it is
sent to the appropriate AM j. Note that the received event is a triplet
⟨i,RFID,TIME⟩. The parameter i identi�es the competitor by the
starting number but it can be zero when the event is registered on
the measuring device. In that case, the correct starting number of the
competitors is obtained by looking up of the database via the RFID

parameter. Furthermore, the translation function CM is applied over
M1 and M2.

Table 4.7: Translation of measuring places

CM:MeasPlace → Agents → Code × Integer
CM⟦mp[n1]→ agnt[n2]S⟧ag = (WAIT i ∶ CS⟦S⟧(ag,n2), n1)
CM⟦M1;M2⟧ag = CM⟦M1⟧ag ∶ CM⟦M2⟧ag

Declarations are not directly translated into code. The meaning
of the declaration is updating the State, which is a function from
attributes to values (Table 4.8). We simply store attributes and their
initial values into this semantic entity. These are needed to create and
initialize a database for storing a runner's results.

Similarly, an agent's declaration is also not translated into code.
The purpose of the agent's declaration is updating the Agents, which
is a mapping from the agent's identi�cation number into the agent's
type and the agent's source (�le or IP address). The meaning of the
agent's declaration Adec is given in Table 4.9.

4.4 FORMAL SEMANTICS 32

Table 4.8: Meaning of declarations

D:Dec→State → State

D⟦var x ∶= a⟧s = s[x→ a]
D⟦D1,D2⟧s = D⟦D2⟧(D⟦D1⟧s)

Table 4.9: Meaning of agents

A:Adec → Agents → Agents

A⟦n manual file⟧ag = ag[n→ (manual, file)]
A⟦n auto ip⟧ag = ag[n→ (auto, ip)]
A⟦A1,A2⟧ag = A⟦A2⟧(A⟦A1⟧ag)

The translation of the statements Stm into AM code is speci�ed

in Table 4.10. Since the update statement (upd x) also requires infor-

mation about the type of agent n, the translation function CS takes as

its input the statements Stm as well as Agents and the agent's iden-

ti�cation number. The update statement (upd x) is translated into

the instructions FETCH y : STORE x, where y is the current runner's

time obtained either from a �le (agent's type is manual) or IP address

(agent's type is automatic). Informally, the instruction FETCH y ac-

cesses the current runner's time, and the instruction STORE x stores

this value into attribute x.

Other translations of statements are straightforward. The assign-

ment statement x ∶= a is translated into a sequence of the translation

function CA⟦a⟧ followed by the instruction STORE x. The predicate

statement (b) → S is translated into the translation function CB⟦b⟧
followed by the instruction BRANCH enabling branching between two

instruction sets based on a logical condition. The translation is fol-

lowed by a call of the translation function CS⟦S⟧ that is executed if the
Boolean expression returns the value true and the instruction NOOP

(no operation) that is executed in another case. In the end, the com-

pound statement S1;S2 is translated into the sequence of translation

functions CS⟦S1⟧ and CS⟦S2⟧.

4.4 FORMAL SEMANTICS 33

Table 4.10: Translation of statements

CS:Stm→ Agents × Integer → Code

CS⟦ dec x⟧(ag,n) = FETCH x:DEC:STORE x
CS⟦ upd x⟧(ag,n) = FETCH y:STORE x where

y = { access�le(ag(n) ↓ 2) if ag(n) ↓ 1 =manual
connect(ag(n) ↓ 2) if ag(n) ↓ 1 = automatic

CS⟦x ∶= a⟧(ag,n) = CA⟦a⟧:STORE x
CS⟦(b)→ S⟧(ag,n) = CB⟦b⟧:BRANCH(CS⟦S⟧(ag,n),NOOP)
CS⟦S1;S2⟧(ag,n) = CS⟦S1⟧(ag,n) ∶ CS⟦S2⟧(ag,n)

The translation of boolean expressions into AM code are speci�ed

in Table 4.11. The Boolean expressions true and false are straight-

forward because these are translated to the corresponding instructions

TRUE and FALSE, while the Boolean expression equal a1 = a2 and not

equal a1! = a2 are translated to the sequence of corresponding trans-

lation functions CA⟦a1⟧ and CA⟦a2⟧ followed by the suitable logical

instruction EQ and NEQ.

Finally, the arithmetical expressions are translated into AM code

as illustrated in Table 4.12, where the constant n is translated into the

instruction PUSH n, which pushes the value n onto a stack, and the

attribute x is translated to the instruction FETCH x, which accesses

the attribute x.

Table 4.11: Translation of boolean expressions

CB:Bexp → Code

CB⟦true⟧ = TRUE
CB⟦false⟧ = FALSE
CB⟦a1 = a2⟧ = CA⟦a2⟧ ∶ CA⟦a1⟧:EQ
CB⟦a1! = a2⟧ = CA⟦a2⟧ ∶ CA⟦a1⟧:NEQ

Table 4.12: Translation of arithmetic expressions

CA:Aexp → Code

CA⟦n⟧ = PUSH n
CA⟦x⟧ = FETCH x

An example of generated code is presented in Figure 4.13, where

the source code of the EasyTime program in Algorithm 4 is compiled.

4.5 THE ABSTRACT MACHINE 34

The informal interpretation of the generated code for measuring place

3 is as follows: The program begins with an instruction WAIT i that

waits for the event of some competitors i. When the event is regis-

tered at the measuring place 3 the appropriate AM j = 3 is woken from

the wait state and the event is received via the instruction FETCH

connect(ip). Then, the timestamp of the event, which is put onto

the stack, is stored into the database attribute INTER2 by instruc-

tion STORE INTER2. The decrement of lap counter ROUND2 is

performed by a sequence of three instructions, i.e. FETCH ROUND2,

DEC and STORE ROUND2. That is, the lap counter ROUND2 is

put onto the stack, then decremented and at last, stored back into the

database attribute. Next, the interpretation of the conditional state-

ment follows. It consists of predicate testing followed by an operation.

The predicate testing represents the sequence of instructions PUSH 0,

FETCH ROUND2 and EQ followed by the instruction BRANCH. In

other words, a constant 0 and value of attribute ROUND2 is put onto

the stack. Then, the logical instruction EQ is executed that enters the

value true or false depending on the result of the logical operation. If

the value of the logical operation on the top of stack is true the fol-

lowing sequence of instructions FETCH connect(ip), STORE BIKE is

executed. Otherwise the instruction NOOP is executed. The net e�ect

of these instructions is that the attribute BIKE will be updated only

when ROUND2 becomes zero.

However, an informal description of instructions (e.g., FETCH,

STORE, BRANCH, NOOP) does not allow formal reasoning and might

complicate the implementation of the abstract machine. Therefore, a

formal description of the abstract machine is provided in the next sub-

section.

4.5 The Abstract Machine

The abstract machine (AM) [45] is con�gured in the form of < c, e, db, i >,
where:

4.5 THE ABSTRACT MACHINE 35

Table 4.13: Translated code for EasyTime program in Algorithm 4

(WAIT i FETCH access�le("abc.res") STORE SWIM
FETCH ROUND1 DEC STORE ROUND1, 1)

(WAIT i FETCH access�le("abc.res") STORE TRANS1, 2)

(WAIT i FETCH connect(192.168.225.100) STORE INTER2
FETCH ROUND2 DEC STORE ROUND2
PUSH 0 FETCH ROUND2 EQ
BRANCH(FETCH connect(192.168.225.100) STORE BIKE, NOOP), 3)

(WAIT i FETCH connect(192.168.225.100) STORE INTER3
PUSH 55 FETCH ROUND3 EQ
BRANCH(FETCH connect(192.168.225.100) STORE TRANS2, NOOP)
FETCH ROUND3 DEC STORE ROUND3
PUSH 0 FETCH ROUND3 EQ
BRANCH(FETCH connect(192.168.225.100) STORE RUN, NOOP), 4)

� c is a sequence of instructions to be executed, i.e. a code segment,

� e is the evaluation stack to evaluate arithmetic and boolean ex-

pressions (formally, Stack = (Int ∪ Bool)∗, where Int denotes

integers and Bool = {true, false} denotes boolean values),

� db is the database (formally, db ∈ DataBase, where DataBase=
(Id × V ar1 × . . . × V arn)∗),

� i is the starting number of a competitor.

Therefore, the con�guration is described as < c, e, db, i > ∈ Code ×
Stack × DataBase × Int. The con�guration of AM is similar to

those described in [45], except with the 3rd (db) and 4th component

(i) of AM. The database db is a collection of rows, each containing

the number of a runner (identi�cation number i) and the results of

this runner at various control points. The results are stored in the

database's attributes V ar1 to V arn. The attributes V ar1 to V arn

as well as the database db, are created after the compilation of the

EasyTime program, which also speci�es the attributes of the database

db. A sequence of instructions is always executed in the environment

where the values of the attributes are stored in the database db and the

4.5 THE ABSTRACT MACHINE 36

4th component (i) represents the runner's starting number. The AM

instruction set is:

c ::= inst ∶ c | ε
inst ::= PUSH n | TRUE | FALSE

| EQ | NEQ | DEC
| WAIT i | FETCH x | FETCH connect(ip) | FETCH accessfile(fn)
| STORE x | NOOP | BRANCH(c, c)

Table 4.14: The abstract machine speci�cation

⟨PUSH n ∶ c, e, db, j⟩ ▷ ⟨c,n ∶ e, db, j⟩
⟨TRUE ∶ c, e, db, j⟩ ▷ ⟨c, true ∶ e, db, j⟩
⟨FALSE ∶ c, e, db, j⟩ ▷ ⟨c, false ∶ e, db, j⟩
⟨EQ ∶ c, z1 ∶ z2 ∶ e, db, j⟩ ▷ ⟨c, (z1 == z2) ∶ e, db, j⟩ if z1, z2 ∈ Int

⟨NEQ ∶ c, z1 ∶ z2 ∶ e, db, j⟩ ▷ ⟨c, (z1! = z2) ∶ e, db, j⟩ if z1, z2 ∈ Int

⟨DEC ∶ c, z ∶ e, db, j⟩ ▷ ⟨c, (z − 1) ∶ e, db, j⟩ if z ∈ Int
⟨WAIT i ∶ c, e, db, j⟩ ▷ ⟨c, e, db, i⟩
⟨FETCH x ∶ c, e, db, j⟩ ▷ ⟨c, select x from db where Id = j ∶ e, db, j⟩
⟨FETCH accessfile(fn) ∶ c, e, db, j⟩ ▷ ⟨c, time ∶ e, db, j⟩
⟨FETCH connect(ip) ∶ c, e, db, j⟩ ▷ ⟨c, time ∶ e, db, j⟩
⟨STORE x ∶ c, z ∶ e, db, j⟩ ▷ ⟨c, e,update db set x = z where Id = j, j⟩ if z ∈ Int
⟨NOOP ∶ c, e, db, j⟩ ▷ ⟨c, e, db, j⟩

⟨BRANCH(c1, c2) ∶ c, t ∶ e, db, j⟩ ▷ {
⟨c1 ∶ c, e, db, j⟩
⟨c2 ∶ c, e, db, j⟩

if t = true
otherwise

The abstract machine speci�cation is given by operational seman-

tics (Table 4.14). The meaning of most AM instructions is straightfor-

ward. Here, we would like to emphasize the meaning of the instructions

WAIT i, FETCH x, FETCH connect(ip), FETCH accessfile(fn), and
STORE x. The instruction WAIT i puts AM into a waiting state un-

til a runner's starting number i is not signaled and stored into the

4th component of AM. The instruction FETCH x under the current

evaluation stack e, the database db, and the runner's identi�cation

number j pushes a new value onto the evaluation stack e. A new value

is the value of the attribute x stored in the database db for the cur-

rent runner j. The instruction FETCH connect(ip) receives an event

from the corresponding measuring point via TCP/IP socket (i.e. IP

address, protocol TCP or IP and port), while the instruction FETCH

accessfile(fn) gets an event via normal operating systems �le opera-

tions (open, read, close). In both cases, the corresponding timestamp

of an event is set onto the stack. The instruction FETCH x does not

4.5 THE ABSTRACT MACHINE 37

change the database db and the runner j. On the other hand, the in-
struction STORE x changes the database db. It removes the value z

from the top of the evaluation stack e and updates the attribute x with
the value z for the current runner j.

In summary, the instructions can be divided into arithmetical in-
structions (DEC, PUSH), logical instructions (TRUE, FALSE, EQ,
NEQ), input/output (I/O) instructions (WAIT, FETCH, STORE) and
control instructions (BRANCH, NOOP). The arithmetical-logical in-
structions operate on the stack segment. The I/O instructions enable
the AM to communicate with the I/O devices (measuring devices and
computer timers) and the database. The control instructions are dedi-
cated to controlling the program �ow. This set also includes the branch
instruction BRANCH and instruction NOOP that increments the in-
struction counter only.

The bene�ts of formal semantics in the design phase not only re�ect
on the easier implementation of a DSL, but formal semantics is also very
helpful in proving various algebraic properties and validating various
optimization steps. For example, by using formal semantics we can
show that the meaning of the statement (true)→ S is equivalent to the
statement S. In other words, we would like to prove that (true)→ S ≡
S. We can show this property by showing that the generated code has
the same semantics. The generated code for the statement (true)→ S

is TRUE : BRANCH(CS⟦S⟧(ag, n),NOOP) (Table 4.15), while the
generated code for the statement S is CS⟦S⟧(ag, n). In order to show
that the meaning of both generated codes is the same, we need to prove
that TRUE:BRANCH(S1, S2) ≡ S1 (the statement S2 is not important
here and can be any sequence of instructions (e.g., NOOP)). Proving
this property is easy once we have de�ned the operational semantics
for AM (Table 4.16).

Thus, we show that the instructions TRUE:BRANCH(S1, S2) yield
the same con�guration as the instruction S1, but requires two addi-
tional transitions. This is the formal proof, so that we can safely and
more e�ciently translate the statement (true)→ S into the statement
S and thereby optimize the generated code, which will be executed
faster on AM.

4.6 IMPLEMENTATION 38

Table 4.15: Translation of the statement (true)→ S

CS⟦true→ S⟧(ag,n) = CB⟦true⟧ ∶ BRANCH(CS⟦S⟧(ag,n),NOOP)
= TRUE:BRANCH(CS⟦S⟧(ag,n),NOOP)

Table 4.16: Proving the correctness of the optimization step in EasyTime

⟨TRUE ∶ BRANCH(S1, S2) ∶ c, e, db, j⟩ ▷ (by true rule)
⟨BRANCH(S1, S2) ∶ c,TRUE ∶ e, db, j⟩ ▷ (by branch rule)
⟨S1 ∶ c, e, db, j⟩

4.6 Implementation

Various implementation techniques to implement a DSL exist, such
as: preprocessing, embedding, compiler/interpreter, compiler genera-
tor, extensible compiler/interpreter, commercial o�-the-shelf, and hy-
brid approaches [42]. A study by Kosar et al. [38] revealed that not
only implementation e�ort must be taken into account when choos-
ing a suitable implementation technique, but even more important is
the e�ort needed for an end-user to rapidly write correct programs
using the produced DSL. If only DSL implementation e�ort is taken
into consideration, then the most e�cient implementation technique is
embedding. However, the embedding approach might have signi�cant
penalties when end-user e�ort is taken into account (e.g., DSL program
size, closeness to original notation, debugging and error reporting). To
minimize end-user e�ort building a DSL compiler [3] is most often a
good solution, but at the same time the most costly from an imple-
mentation point of view. However, the implementation e�ort can be
greatly reduced, but not as much as with embedding, especially if com-
piler generators (e.g., LISA [43], ANTLR [48], Silver [65], YAJCO [51])
are used. For this reason, the EasyTime compiler was automatically
generated using the compiler/generator tool LISA, which has proven
itself useful in many other DSL projects [28] [52] [64].

LISA speci�cations are based on attribute grammars [36] [46] and
consist of:

4.6 IMPLEMENTATION 39

� lexical regular de�nitions,

� attribute de�nitions,

� rules which are generalized syntax rules that encapsulate semantic

rules, and

� operations on semantic domains.

Lexical speci�cations for EasyTime are straightforward. The nota-

tion used in LISA is similar to those used in other compiler generators.

Algorithm 5 Lexical speci�cations for EasyTime in LISA
1: lexicon
2: {
3: Int [0-9]+

4: Id [a-zA-Z][a-zA-Z0-9]*

5: Keywords mp | agnt | dec | upd | true | false

6: �le /"[a-z]+/.[a-z][a-z][a-z]/"

7: ip [0-9][0-9][0-9]/.[0-9][0-9][0-9]/.[0-9][0-9][0-9]/.[0-9][0-9][0-9]

8: Operator == | != | := | /+ | /* | /− | /= | <= | / − / >

9: Separator /; | /(| /) | /[| /] | /{ | /}

10: ignore [/0x09/0x0A/0x0D/]+

11: }

While LISA automatically infers whether an attribute is inherited

or synthesized [36] [46], the type of an attribute must be speci�ed

(Algorithm 6). Most of the attributes are derived from semantic spec-

i�cations (see Section 3.4). For example, the attribute code repre-

sents generated code using translation functions, the attribute outAG

is the synthesized attribute and inAG the inherited attribute represent-

ing agents (ag from semantic speci�cations). Similarly, the attributes

inState and outState represent the state s from semantic speci�cations.

Algorithm 6 Attributes in LISA
1: attributes String *.code;
2: Bu�eredWriter PROGRAM.�le;
3: Hashtable *.outAG,*.inAG;
4: Hashtable *.inState, *.outState;
5: int *.number, *.value;
6: String *.type, *.y;
7: String *.�le_ip, *.name;
8: int *.n;
9: boolean *.ok;

4.6 IMPLEMENTATION 40

The most interesting part of LISA speci�cations consists of gen-

eralized syntax rules that also encapsulate semantic rules. EasyTime

rules strictly follow semantic speci�cations from Section 3.4. Readers

are invited to compare the speci�cations in Algorithm 7 with Table

4.7. During the conversion from the abstract syntax to the concrete

syntax (Section 3.3) the production in the abstract syntax M1;M2 de-

noting a sequence of measuring places is translated to the following

production in the concrete syntax: MES_PLACES ∶∶=MES_PLACE

MES_PLACES ∣ MES_PLACE . The translation function CM⟦M1⟧
ag ∶ CM⟦M2⟧ag translates into code the �rst construct M1 before the

translation of the second construct M2 is performed. This functions is

described in LISA as MES_PLACES [0].code = MES_PLACE .code+
′′/n′′ +MES_PLACES [1].code with the following meaning: The code

for the �rst construct MES_PLACE is simply concatenated with the

code from the second construct MES_PLACES[1]. While the ab-

stract syntax for the de�nition of measuring placemp[n1]→ agnt[n2]S
is translated to the following production in the concrete syntax: MES_

PLACE ∶∶= mp [#Int] − > agnt [#Int] { STMTS }. The trans-
lation function (WAIT i ∶ CS⟦S⟧(ag, n2), n1) is described in LISA as

MES_PLACE.code = ′′WAIT i ′′+ STMTS.code+ ′′,′′ + #Int[0].
value()+′′)′′.

Algorithm 7 Semantic Rules in LISA
1: attributes String *.code;
2: rule Mes_places {
3: MES_PLACES ::= MES_PLACE MES_PLACES compute {
4: ... // some rules are omitted
5: MES_PLACES[0].code = MES_PLACE.code + ′′/n′′ + MES_PLACES[1].code;
6: };
7: MES_PLACES ::= MES_PLACE compute {
8: ... // some rules are omitted
9: MES_PLACES.code = MES_PLACE.code;
10: };
11: }
12:
13: rule Mes_place {
14: MES_PLACE ::= mp [#Int] − > agnt [#Int] { STMTS } compute {
15: ... // some rules are omitted
16: MES_PLACE.code= ′′WAIT i ′′ + STMTS.code + ′′, ′′ + #Int[0].value() + ′′)′′;
17: };
18: }

4.6 IMPLEMENTATION 41

Overall, building a DSL compiler using various compiler-generator

tools drastically reduce implementation e�orts [37], while the main-

tainability of DSL implementation is also improved [34].

Chapter 5

Practical Experiences

The goal of this section is to acquaint the reader with the practical

experiences that were obtained by using of EasyTime. We have there-

fore selected two case studies (as presented in Section 3.2 and 3.3 of

EasyTime applications):

� A World Championship in an ultra double triathlon (Slovenia

2009) and

� A National Championship in time trial bicycle (Slovenia 2010).

In the rest of this section, these applications are presented in detail

and a short analysis of the work conducted is given at the end of section.

5.1 World Championship in Ultra double triathlon

Many sta� about measuring time in triathlons we learned at the World

Championships in the ultra double triathlon in 2009. The rules of this

competition are presented in Subsection 3.2. An architecture of the

timing system for measuring time in that competition, i.e. the posi-

tioning of measuring devices and corresponding measuring places, and

determining of control points, is illustrated in the same subsection as

well. Additionally, the source program in EasyTime is illustrated in

Algorithm 4. Remember that the measurements were performed using

one measuring device with two measuring places, and two computer

timers. Two agents took care of the connection between measurement

5.2 NATIONAL CHAMPIONSHIPS IN A TIME TRIAL FOR BICYCLE 43

technology and the computer system. The �rst automatically retrieved

events from two antenna mats, while the second retrieved events from

two computer timers manually. Agents ran in parallel as threads. How-

ever, each agent executed its own program code - in contrast to the bi-

cycle time trial. The main characteristic of this triathlon was its long

duration, as the best competitors needed almost 21 hours to �nish all

three disciplines.

5.2 National Championships in a time trial for bi-

cycle

To manipulate the measurements for the case study 2, the source pro-

gram in EasyTime illustrated in Algorithm 8 was developed.

Algorithm 8 EasyTime program for measuring time in a time trial for
bicycle
1: 1 auto 192.168.225.100;
2:
3: var ROUND1 := 2;
4: var INTER1 := 0;
5: var INTER2 :=0;
6: var INTER3 := 0;
7: var BIKE := 0;
8:
9: mp[1] → agnt[1] {
10: dec ROUND1;
11: (ROUND1 == 3) → upd INTER3;
12: (ROUND1 == 2) → upd INTER2;
13: (ROUND1 == 1) → upd INTER1;
14: (ROUND1 == 0) → upd BIKE;
15: }
16: mp[2] → agnt[1] {
17: dec ROUND1;
18: (ROUND1 == 3) → upd INTER3;
19: (ROUND1 == 2) → upd INTER2;
20: (ROUND1 == 1) → upd INTER1;
21: (ROUND1 == 0) → upd BIKE;
22: }

As can be seen in Algorithm 8, for measuring time in time trial

competitions requires only one agent. It transfers events from both

measuring places. In addition to one �nishing time, organizers also

wish to have the intermediate times of each competitor. Therefore,

we de�ned �ve attributes: the lap counter ROUND1, the intermediate

5.3 DISCUSSION 44

times INTER1, INTER2, INTER3, and the �nish time BIKE. How-

ever, the presence of intermediate times depends on the category of

the competitors. For example, if the competitor belongs to male U-

17, female U-17 and U-19, they do not have any intermediate times.

On the other hand, the Elite competitor has three intermediate times.

Indeed, the registering of intermediate times is controlled by the at-

tribute ROUND1 that determines the number of laps to overcome. If

the attribute is initialized to ROUND1=1, then only �nishing time will

be measured. That is, this attribute needs to be set to a correct value

before a new category can be started. Fortunately, some break time

is taken between categories, in which the EasyTime program can be

adjusted.

This program is also interesting from the process point of view. In

other words, both processes representing measuring places run simul-

taneously and execute the same piece of program code. Note that the

event cannot be generated by the measuring device twice, i.e. only the

�rst registration is taken into account.

The generated code of the EasyTime source program in Algorithm 8

is presented in Table 5.1.

Table 5.1: Translated code for EasyTime program in Algorithm 8

(WAIT i FETCH connect(192.168.225.100) FETCH ROUND1 DEC STORE ROUND1
PUSH 3 FETCH ROUND1 EQ BRANCH(FETCH connect(192.168.225.100) STORE INTER3, NOOP)
PUSH 2 FETCH ROUND1 EQ BRANCH(FETCH connect(192.168.225.100) STORE INTER2, NOOP)
PUSH 1 FETCH ROUND1 EQ BRANCH(FETCH connect(192.168.225.100) STORE INTER1, NOOP)
PUSH 0 FETCH ROUND1 EQ BRANCH(FETCH connect(192.168.225.100) STORE BIKE, NOOP), 1)

(WAIT i FETCH connect(192.168.225.100) FETCH ROUND1 DEC STORE ROUND1
PUSH 3 FETCH ROUND1 EQ BRANCH(FETCH connect(192.168.225.100) STORE INTER3, NOOP)
PUSH 2 FETCH ROUND1 EQ BRANCH(FETCH connect(192.168.225.100) STORE INTER2, NOOP)
PUSH 1 FETCH ROUND1 EQ BRANCH(FETCH connect(192.168.225.100) STORE INTER1, NOOP)
PUSH 0 FETCH ROUND1 EQ BRANCH(FETCH connect(192.168.225.100) STORE BIKE, NOOP), 2)

5.3 Discussion

In this section, an analysis of the conducted work is discussed from the

aspect of EasyTime usage. Therefore, two case studies were taken into

account.

5.3 DISCUSSION 45

In the case study 1, the main weakness was the measuring tech-
nology. Although the manual measuring of time showed very good
results, this solution demanded the activation of an additional number
of people. On the other hand, the measuring devices automated the
measuring process but carry with them a purchasing cost. The measur-
ing device with two antenna mats constituted the weakest link of the
chain in this case study. The �rst antenna mat was used for bicycling,
while the second for running. With bicycling, the antenna mat can be
unreliable. Here, three problems were detected:

� wrong installation of the RFID tag by a competitor,

� a poorly marked antenna mat that could therefore be missed,

� too high speed of bicycles over the mat.

All mentioned problems have been solved with parallel manual events
tracking. Because the number of competitors on the track is small (less
than 50) this was an acceptable solution. Moreover, the timing system
represents a support tool for referees and not their substitution. That
is, the parallel manual measurements still remain at most competitions.
However, the most di�cult problem for these kinds of competitions are
the long duration.

From an EasyTime point of view, we did not discover any de�cien-
cies. Fortunately, in triathlon competitions the same lengths of courses
were used irrespective of category.

The case study 2 demonstrated that the measuring device, on which
the timing technology is based, works perfectly, i.e. all events were
successfully registered. However, what if the measuring device breaks
down? In that case, only the manual tracking of results can solve the
problem. In this respect, the timing technology needs a redundancy.

From an EasyTime point of view, the following weakness can be
noted: for each category a recompiling of the EasyTime program is
needed. As a result, a restart of the agents must be done. However,
this can be regarded as a minor issue. On the other hand, it shows the
�exibility of EasyTime.

5.3 DISCUSSION 46

In summary, EasyTime allows domain-users capable to program

the timing system alone. That is, there is no need for specialized

programmers any more. In line with this, our goal of giving domain-

users an e�cient and easy-to-use tool for measuring time in sports

competitions, was ful�lled.

Chapter 6

Conclusion

In this thesis we developed domain-speci�c language named Easytime.

We presented entire development of domain-speci�c language with all

stages. This DSL achieved good results in practical solutions. Because

of e�ciency it has been quickly adopted to anxious races. Usage of

DSL Easytime is very simple. Also people who are not programmers

can simply use it. As a matter of fact they can quickly learn how to

operate with Easytime. In the future we want to create domain-speci�c

modelling language which would more simplify adaptation to various

sporting competitions.

Bibliography

[1] Aho, A.V. and Ullman J.D., The theory of parsing, translation,

and compiling (Volume I: Parsing). Prentice Hall PTR, Upper

Saddle River, NY, USA, 1972

[2] Aho, A.V. and Ullman J.D., The theory of parsing, translation,

and compiling (Volume II: Compiling). Prentice Hall PTR, Upper

Saddle River, NY, USA, 1972

[3] Aho, A., V., Lam, M., S., Sethi, R., Ullman, J., D., Compilers:

Principles, Techniques, and Tools with Gradiance. Prentice Hall,

Upper Saddle River, NJ, 2007

[4] Appel, A., W., Modern compiler implementation in Java. Cam-

bridge University Press, 1997

[5] Armstrong, L., Jenkins, S. Every second counts Broadway, New

York, 2003

[6] Arnold, K., Gosling, J., The Java Programming Language.

Addison-Wesley, 1996

[7] Bakker, J. de, Vink, E. de, Control �ow semantics. MIT Press,

1996

[8] Barret, W., A., Couch, J., D., Compiler construction - Theory

and practice. Science research associates, 1979

[9] Bergin, T., J., Gibson, R., G., History of programming languages.

Addison-Wesley, 1996

BIBLIOGRAPHY 49

[10] Bovet, J., Parr, T., ANTLRWorks: an ANTLR grammar

development environment. Software practice and experience,

38(12):1305-1332, 2008.

[11] Cardelli, L. and Davies R., Service Combinators for Web Com-

putings. IEEE Transactions on Software Engineering, 25:309-316,

1999.

[12] Cardelli, L., Wegner, P., On understanding types, data abstrac-

tion and polymorhism. ACM Computing Surveys, 17(4), 1985.

[13] Cezzar, R., A guide to programming languages. Artech House,

1995

[14] Champion Chip, ChampionChip2010.

http://www.championchip.com, 20. Dec 2010

[15] Deursen van, A. and Klint, P., Little languages: little mainte-

nance. Journal of Software Maintenance, 10(2):75-92, 1998.

[16] Deursen van, A. and Klint, P. and Visser, J., Domain-speci�c

languages: An annotated bibliography. ACM Sigplan Notices,

35(6):26-36, 2000.

[17] Deursen van, A. and Klint P., Domain-speci�c language design

requires feature descriptions Journal of Computing and Informa-

tion Technology, 10:1-17, 2002.

[18] Donnelly C., Stallman R., Bison: The Yacc-compatible parser

generator. Free Software Foundation, December 1990.

[19] Ellis, M., A., Stroustrup, B., The annotated C++ reference man-

ual. Addison-Wesley, 1990

[20] Finkenzeller, K., RFID Handbook. John Willey, Chichester, UK,

2010

[21] Fister, I., Jezik CCS za paralelno programiranje BS.c Thesis, Uni-

versity of Ljubljana, 1983

BIBLIOGRAPHY 50

[22] Fister, I., Jr., Fister, I., Mernik, M., Brest, J., Design and im-

plementation of domain-speci�c language EasyTime. Computer
languages, systems and structures, Article accepted for publica-
tion 28 April 2011, doi: 10.1016/j.cl.2011.04.001.

[23] Fister, I., Jr., Fister, I., Measuring time in sports competition

with the domain-speci�c language EasyTime. Electrotechnical re-
view. Ljubljana, 2011, In press.

[24] Fister, I., Jr., Fister, I., Uporaba domensko speci�£nega jezika

pri merjenju £asa na ²portnih tekmovanjih. Zbornik devetna-
jste mednarodne Elektrotehni²ke in ra£unalni²ke konference ERK
2010, Portoroº, Slovenija, 2010, 409-410.

[25] Forouzan, B., TCP/IP Protocol Suite. McGraw-Hill, New York,
NY, USA, 2009

[26] Glover, B. and Bhatt, H., RFID Essentials., O'Reilly Media, Inc.,
Sebastopol, USA, 2006

[27] Harford AG, Heuring VP, Main MG, A new parsing method for

non-LR(1) grammars. Software-practice & experience, 22(5):419-
437, 1992.

[28] Henriques, P. and Varanda Pereira, M.J. and Mernik, M. and
Leni£, M. and Gray, J. and Wu, H., Automatic generation of

language-based tools using LISA. IEEE Proceedings - Software
Engineering, 152(2):54-69, 2005.

[29] Hudak, P., Modular domain speci�c languages and tools. Pro-
ceedings of Fifth International Conference on Software Reuse,
134-142, 1998.

[30] Joel E. Denny, Brian A. Malloy, The IELR(1) algorithm for

generating minimal LR(1) parser tables for non-LR(1) gram-

mars with con�ict resolution. Science of Computer Programming,
Special Section on the Programming Languages Track at the
23rd ACM Symposium on Applied Computing - ACM SAC 08
75(11):943-979, 2010.

BIBLIOGRAPHY 51

[31] Johnson, SC., YACC-yet another compiler compiler. Computing
Science Technical Report 32, AT&T Bell Laboratories, Murray
Hill, NJ, July 1975

[32] Juels, A., RFID Security and privacy: A research survey. IEEE
Journal on Selected Areas in Communications, 24(2):394, 2006.

[33] Kieburtz, R.B. and McKinney, L. and Bell, J.M. and Hook, J.
and Kotov, A. and Lewis, J. and Oliva, D.P. and Sheard, T. and
Smith, I. and Walton, L., A software engineering experiment in

software component generation. Proceedings of the 18th Interna-
tional Conference on Software Engineering, 542-553, 1996.

[34] Klint, P. and van der Storm, T. and Vinju, J., On the impact of

DSL tools on the maintainability of language implementations.

Proceedings of the Tenth Workshop on Language Descriptions,
Tools and Applications, LDTA 10, 2010, 10:1-9.

[35] Klint, P., A meta-environment for generating programming en-

vironments. ACM transactions on software engineering and
methodology, 2(2):176-201, 1993.

[36] Knuth, D., Mathematical Systems Theory. Mathematical Sys-
tems Theory, 2(2):127-145, 1968.

[37] Kosar, T. and Oliveira, N. and Mernik, M. and Varanda Pereira,
M.J. and �repin²ek, M. and da Cruz, D. and Henriques, P.R.,
Comparing General-Purpose and Domain-Speci�c Languages:

An Empirical Study. Computer Science and Information Systems,
7(2):247-264, 2010.

[38] Kosar, T. and Martinez Lopez, P.E. and Barrientos, P.A. and
Mernik, M., A preliminary study on various implementation ap-

proaches of domain-speci�c language. Information and Software
Technology, 50(5):390-405, 2008.

[39] Lesk, M., E., Schmidt, E., Lex - A lexical analyzer generator. Bell
Laboratories, Murray Hill, New Jersey 07974

BIBLIOGRAPHY 52

[40] LISA, Lisa2010. http://labraj.uni-mb.si//lisa, 20. Dec 2010

[41] Mauw, S. and Wiersma, W. and Willemse, T., Language-driven

system design. International Journal of Software Engineering and

Knowledge Engineering, 6(14):625-664, 2004.

[42] Mernik, M. and Heering, J. and Sloane, A., When and how

to develop domain-speci�c languages. ACM computing surveys,

37(4):316-344, 2005.

[43] Mernik, M. and �umer, V., Incremental programming language

development. Computer Languages, Systems and Structures,

31(1): 1-16, 2005.

[44] Mernik, M., Ponovno uporabni semanti£ni opis pri na£rtovanju

in implementaciji programskih jezikov. Ph.D Thesis, University

of Maribor, 1998

[45] Nielson, H.R. and Nielson, F., Semantics with Applications: A

Formal Introduction. John Wiley & Sons, New York, NY, USA,

1992

[46] Paakki, J., Attribute Grammar Paradigms - A High-Level

Methodology in Language Implementation. ACM computing sur-

veys, 27(2):196-255, 1995.

[47] Parr T. J., Quong R. W., ANTLR: A predicated-LL(k) parser

generator. Software-Practice and experience, 25(7):789-810, 1995

[48] Parr, T., The De�nitive ANTLR Reference: Building Domain-

Speci�c Languages. Pragmatic Bookshelf, 2007

[49] Paulson, L., A semantics-directed compiler generator. Proceed-

ings of the 9th ACM SIGPLAN-SIGACT symposium on Princi-

ples of programming languages, 224-233, 1982

[50] Petschnig, S., 10 Jahre IRONMAN Triathlon Austria. Meyer &

Meyer Verlag, 2007

BIBLIOGRAPHY 53

[51] Porubän, J. and Forgá£, M. and Sabo, M. and Behálek, M., An-

notation Based Parser Generator. Computer Science and Infor-

mation Systems, 7(2):291-307, 2010.

[52] Rebernak, D. and Mernik, M. and Wu, H. and Gray, J., Domain-

speci�c aspect languages for modularizing crosscutting concerns

in grammars. IET Software, 3(3):184-200, 2009.

[53] Rebernak, D., Aspektno usmerjene atributne gramatike. Ph.D

Thesis, University of Maribor, 2009

[54] RFID Time System, RFIDTechnology2010.

http://www.r�dtiming.com, 20. Dec 2010

[55] Schobbens, P.-Y. and Heymans, P. and Trigaux, J.-C. and Bon-

temps, Y., Generic semantics of feature diagrams. Computer

Networks, 51:456-479, 2007.

[56] Sloane, AM., Debugging eli-generated compilers with Noosa.

Compiler Construction 1999, Amsterdam, The Netherlands, 1999

[57] Speedy, D.B., Noakes, T.D., Kimber, N.E., Rogers, I.R., Thomp-

son, J.M.D., Boswell, D.R., Ross, J.J., Campbell, R.G.D., Gal-

lagher, P.G., Kuttner, J.A., Fluid balance during and after an

ironman triathlon, Clinical Journal of Sport Medicine 11(1):44-

50, 2001

[58] Sprinkle, J. and Mernik, M. and Tolvanen, J-P. and Spinellis,

D., What kinds of nails need a domain-speci�c hammer?. IEEE

Software, 26(4):15-18, 2009.

[59] Tanenbaum, A., S., Computer Networks (Second edition). Pren-

tice Hall, Englewood Cli�s, NJ, 1989

[60] Thibault, S. and Marlet, R. and Consel, C., Domain-speci�c lan-

guages: from design to implementation - application to video de-

vice drivers generation. IEEE Transactions on Software Engineer-

ing, 25(3):363-377, 1999.

BIBLIOGRAPHY 54

[61] Timing Ljubljana, Timing2010. http://www.timingljubljana.si,

20. Dec 2010

[62] Wenzel, K., Wenzel, R. Bike racing 101 Human Kinetics, Cham-

paign, IL, 2003

[63] Wirth, N., Algorithms + Data Structures = Programs., Prentice

Hall PTR, Upper Saddle River, NY, USA, 1978

[64] Wu, H. and Gray, J.G. and Mernik, M., Grammar-driven gen-

eration of domain-speci�c language debuggers. Software practice

and experience, 38(10):1073-1103, 2008.

[65] Wyk van, E. and Bodin, D. and Gao, J. and Krishnan, L., Silver:

an Extensible Attribute Grammar System. Science of Computer

Programming, 75(1-2):39-54, 2010.

Appendix A

Abbreviations

DSL - domain-speci�c language

GPL - general-purpose language

GUI - graphical user interface

RFID - radio frequency identi�cation

LCD - liquid crystal display

LAN - local area network

TCP/IP - transmission control protocol and the internet protocol

MP - measuring place

CP - control point

ITU - international triathlon union

ETU - european triathlon union

IUTA - international ultra triathlon association

UCI - international cycling union

WTC - world triathlon corporation

Appendix B

EasyTime source code

language EasyTime

{

lexicon

{

Int [0-9]+

Id [a-zA-Z][a-zA-Z0-9]*

Keyword1 mp | agnt

Keyword2 dec

Keyword4 upd

Keyword3 true | false

file \"[a-z]+\.[a-z][a-z][a-z]\"

ip [0-9][0-9][0-9]\.[0-9][0-9][0-9]

\.[0-9][0-9][0-9]\.[0-9][0-9][0-9]

Operator == | != | := | \+ | * | \- | \= | <= | \-\>

Separator \; | \(| \) | \[| \] | \{ | \}

ignore [\0x09\0x0A\0x0D\]+

}

attributes String *.code;

BufferedWriter PROGRAM.file;

Hashtable *.outAG,*.inAG;

Hashtable *.inState, *.outState;

int *.number, *.value;

String *.type, *.y;

String *.file_ip, *.name;

int *.n;

boolean *.ok;

rule Start {

PROGRAM ::= AGENTS DECS MES_PLACES compute {

AGENTS.inAG = new Hashtable();

DECS.inState = new Hashtable();

MES_PLACES.inAG = AGENTS.outAG;

MES_PLACES.inState = DECS.outState;

PROGRAM.code = MES_PLACES.ok ? "\n" +

MES_PLACES.code + "\n" : "ERROR";

PROGRAM.file = open_append ("EasyTime_code.txt",

PROGRAM.code, "\n");

B EASYTIME SOURCE CODE 57

PROGRAM.outAG = AGENTS.outAG;

PROGRAM.outState = DECS.outState;

};

}

rule Agents {

AGENTS ::= AGENTS AGENT compute {

AGENTS[1].inAG = AGENTS[0].inAG;

AGENTS[0].outAG = insert(AGENTS[1].outAG,

new Agent(AGENT.number, AGENT.type, AGENT.file_ip));

}

| epsilon compute {

AGENTS.outAG = AGENTS.inAG;

};

}

rule Agent {

AGENT ::= #Int auto #ip \; compute {

AGENT.number = Integer.valueOf(#Int[0].value()).intValue();

AGENT.type = "auto";

AGENT.file_ip = #ip.value();

};

AGENT ::= #Int manual #file \; compute {

AGENT.number = Integer.valueOf(#Int[0].value()).intValue();

AGENT.type = "manual";

AGENT.file_ip = #file.value();

};

}

rule Decs {

DECS ::= DECS DEC compute {

DECS[1].inState = DECS[0].inState;

DECS[0].outState = put(DECS[1].outState, DEC.name, DEC.value);

};

DECS ::= epsilon compute {

DECS.outState = DECS.inState;

};

}

rule Dec {

DEC ::= var #Id \:\= #Int \; compute {

DEC.name = #Id.value();

DEC.value = Integer.valueOf(#Int.value()).intValue();

};

}

rule Mes_places {

MES_PLACES ::= MES_PLACE MES_PLACES compute {

MES_PLACE.inAG = MES_PLACES[0].inAG;

MES_PLACES[1].inAG = MES_PLACES[0].inAG;

MES_PLACE.inState = MES_PLACES[0].inState;

MES_PLACES[1].inState = MES_PLACES[0].inState;

MES_PLACES[0].ok = MES_PLACE.ok && MES_PLACES[1].ok;

MES_PLACES[0].code = MES_PLACE.code +

B EASYTIME SOURCE CODE 58

"\n" + MES_PLACES[1].code;

};

MES_PLACES ::= MES_PLACE compute {

MES_PLACE.inAG = MES_PLACES.inAG;

MES_PLACE.inState = MES_PLACES.inState;

MES_PLACES.ok = MES_PLACE.ok;

MES_PLACES.code = MES_PLACE.code;

};

}

rule MES_PLACE {

MES_PLACE ::= mp \[#Int \] \-\> agnt \[#Int \] \{ STMTS \} compute {

STMTS.inAG = MES_PLACE.inAG;

STMTS.inState = MES_PLACE.inState;

STMTS.n = Integer.valueOf(#Int[1].value()).intValue();

MES_PLACE.ok = STMTS.ok;

MES_PLACE.code= "(WAIT i " + STMTS.code + ", " + #Int[0].value() + ")";

};

}

rule Stmts {

STMTS ::= STMT STMTS compute {

STMT.n = STMTS[0].n;

STMTS[1].n = STMTS[0].n;

STMT.inAG = STMTS[0].inAG;

STMTS[1].inAG = STMTS[0].inAG;

STMT.inState = STMTS[0].inState;

STMTS[1].inState = STMTS[0].inState;

STMTS[0].ok = STMT.ok && STMTS[1].ok;

STMTS[0].code = STMT.code + "\n" + STMTS[1].code;

} |

STMT compute {

STMT.n = STMTS[0].n;

STMT.inAG = STMTS[0].inAG;

STMT.inState = STMTS[0].inState;

STMTS.ok = STMT.ok;

STMTS.code = STMT.code;

};

}

rule Statement {

STMT ::= dec #Id \; compute {

STMT.y = ((Agent)STMT.inAG.get(STMT.n)).getType().equals("manual") ?

"accessfile(" + ((Agent)STMT.inAG.get(STMT.n)).getFile_ip() + ")" :

"connect(" + ((Agent)STMT.inAG.get(STMT.n)).getFile_ip() + ")";

STMT.ok = STMT.inState.containsKey(#Id.value());

STMT.code = " FETCH " + #Id.value() +" DEC STORE " + #Id.value();

};

STMT ::= upd #Id \; compute {

STMT.y = ((Agent)STMT.inAG.get(STMT.n)).getType().equals("manual") ?

"accessfile(" + ((Agent)STMT.inAG.get(STMT.n)).getFile_ip() + ")" :

"connect(" + ((Agent)STMT.inAG.get(STMT.n)).getFile_ip() + ")";

STMT.ok = STMT.inState.containsKey(#Id.value());

STMT.code = " FETCH " + STMT.y + " STORE " + #Id.value();

B EASYTIME SOURCE CODE 59

};

STMT ::= #Id \:\= EXPR \; compute {

STMT.y = ((Agent)STMT.inAG.get(STMT.n)).getType().equals("manual") ?

"accessfile(" + ((Agent)STMT.inAG.get(STMT.n)).getFile_ip() + ")" :

"connect(" + ((Agent)STMT.inAG.get(STMT.n)).getFile_ip() + ")";

STMT.ok = STMT.inState.containsKey(#Id.value()) && EXPR.ok;

STMT.code = EXPR.code + " STORE " + #Id.value();

EXPR.inState = STMT.inState;

};

STMT ::= \(LEXPR \) \-\> STMT compute {

STMT.y = ((Agent)STMT.inAG.get(STMT.n)).getType().equals("manual") ?

"accessfile(" + ((Agent)STMT.inAG.get(STMT.n)).getFile_ip() + ")" :

"connect(" + ((Agent)STMT.inAG.get(STMT.n)).getFile_ip() + ")";

STMT[1].n = STMT[0].n;

STMT[1].inAG = STMT[0].inAG;

STMT[1].inState = STMT[0].inState;

STMT[0].ok = STMT[1].ok && LEXPR.ok;

LEXPR.inState = STMT[0].inState;

STMT.code = LEXPR.code + "BRANCH(" + STMT[1].code + ", NOOP)";

};

}

rule Lexpr {

LEXPR ::= true compute {

LEXPR.code = "TRUE ";

LEXPR.ok = true;

};

LEXPR ::= false compute {

LEXPR.code = "FALSE ";

LEXPR.ok = true;

};

LEXPR ::= EXPR == EXPR compute {

LEXPR.code = EXPR[1].code + " " + EXPR[0].code + " EQ ";

LEXPR.ok = EXPR[0].ok && EXPR[1].ok;

EXPR[0].inState = LEXPR.inState;

EXPR[1].inState = LEXPR.inState;

};

LEXPR ::= EXPR != EXPR compute {

LEXPR.code = EXPR[1].code + " " + EXPR[0].code + " NEQ ";

LEXPR.ok = EXPR[0].ok && EXPR[1].ok;

EXPR[0].inState = LEXPR.inState;

EXPR[1].inState = LEXPR.inState;

};

}

rule Expr {

EXPR ::= #Int compute {

EXPR.code = "PUSH " + #Int.value() + " ";

EXPR.ok = true;

} |

#Id compute {

EXPR.code = "FETCH " + #Id.value()+ " ";

EXPR.ok = EXPR.inState.containsKey(#Id.value());

};

B EASYTIME SOURCE CODE 60

}

method M_Agent {

class Agent {

int number;

String type;

String file_ip;

Agent (int number, String type, String file_ip) {

this. number = number;

this. type = type;

this. file_ip = file_ip;

}

public String toString(){

return "(" + this.number + ", " + this.type + ", " + this.file_ip + ")";

}

public int getNumber(){

return this.number;

}

public String getType(){

return this.type;

}

public String getFile_ip(){

return this.file_ip;

}

}

}

method M_Insert {

import java.util.*;

Hashtable insert (Hashtable aAgents, Agent aAgent) {

aAgents = (Hashtable)aAgents.clone();

Agent hAgent=(Agent)aAgents.get(aAgent.getNumber());

if (hAgent==null)

aAgents.put(aAgent.getNumber(), aAgent);

else

System.out.println("Agent" + aAgent.getNumber() + "is already defined");

return aAgents;

} // java method

}// Lisa method

method Environment {

import java.util.*;

public Hashtable put(Hashtable env, String name, int val) {

env = (Hashtable)env.clone();

env.put(name, new Integer(val));

return env;

} // java method

} // LISA method

method M_append {

import java.io.*;

import java.lang.*;

import java.util.*;

BufferedWriter append(String fileName, String attribute, String separator) {

B EASYTIME SOURCE CODE 61

try {

BufferedWriter outFile = new BufferedWriter(new FileWriter(fileName,

true));

outFile.write(attribute + separator);

outFile.close();

return outFile;

} catch (IOException e) {

e.printStackTrace();

}

return null;

} // java method

} // Lisa method

method M_open {

import java.io.*;

import java.lang.*;

import java.util.*;

BufferedWriter open(String fileName, String attribute, String separator) {

try {

BufferedWriter outFile = new BufferedWriter(new FileWriter(fileName));

outFile.write(attribute + separator);

outFile.close();

return outFile;

} catch (IOException e) {

e.printStackTrace();

}

return null;

} // java method

} // Lisa method

method M_open_append {

import java.io.*;

import java.lang.*;

import java.util.*;

BufferedWriter open_append(String fileName, String attribute, String separator) {

try {

BufferedWriter outFile;

File f = new File(fileName);

if (f.exists())

outFile = new BufferedWriter(new FileWriter(fileName, true));

else

outFile = new BufferedWriter(new FileWriter(fileName));

outFile.write(attribute + separator);

outFile.close();

return outFile;

} catch (IOException e) {

e.printStackTrace();

}

return null;

} // java method

} // Lisa method

}

Dodatek C

Raz²irjeni povzetek v

slovenskem jeziku

C.1 Uvod

V diplomski nalogi se ukvarjamo s problemom merjenja £asa na ²portnih
tekmovanjih. V zadnjem obdobju mnoºi£ne ²portne prireditve, kot npr.
triatloni, maratoni, kolesarske dirke, ipd., postajajo vse bolj popularne.
Zaradi velikega ²tevila udeleºencev je klasi£no merjenje £asa, t.j. s ²toparico,
nemogo£e. S pojavom tehnologije RFID se je merjenje poenostavilo. Poleg
omenjene tehnologije pa potrebujemo tudi ra£unalni²ki sistem, ki omogo£a
krmiljenje merilnih naprav. V ta namen smo razvili domensko speci�£ni jezik
Easytime.

Domensko speci�£ni jeziki (angl. Domain-Speci�c Language, kraj²e DSL)
so jeziki, prikrojeni aplikacijski domeni. Imajo tudi veliko prednosti v primer-
javi s splo²no namenskimi jeziki (angl. General-Purpose Language, kraj²e
GPL). Njihove glavne prednosti se jasno vidijo v njihovi izrazni mo£i in s
tem v ve£ji produktivnosti, enostavni uporabi, enostavni veri�kaciji ter op-
timizaciji.

C.2 Programski jeziki

Programski jezik je vmesnik med £lovekom in ra£unalnikom. Programski
jeziki so ena izmed najbolj raziskanih podro£ij v ra£unalni²tvu. Trenutno
poznamo ºe preko 3500 programskih jezikov. Programske jezike lahko razde-
limo na GPL in DSL jezike. Z GPL lahko pi²emo programe za poljubno
domeno. Primeri teh jezikov so:

� C/C++,

� Java,

C.2 PROGRAMSKI JEZIKI 63

� Ruby,

� PHP.

Po drugi strani so DSL prikrojeni dolo£eni problemski domeni. DSL
je majhen, ponavadi deklarativen jezik, ki je namenjen to£no dolo£enemu
problemu. Ti jeziki imajo svoje prednosti in slabosti. Glavne prednosti so:

� laºje programiranje,

� ponovna uporaba,

� laºja veri�kacija,

� uporabni²ko programiranje.

Imajo pa tudi nekaj slabosti:

� stro²ki razvoja,

� stro²ki u£enja novih uporabnikov,

� slab²a u£inkovitost,

� omejena uporabnost,

� omejena dostopnost.

�e ºelimo program pognati na ra£unalniku, ga moramo najprej prevesti.
Prevajanje sestoji iz treh delov:

1. leksikalne analize,

2. sintakti£ne analize,

3. semanti£ne analize.

V prvi fazi poi²£emo leksikalne simbole. Glavna naloga te faze je v
izvornem programu poiskati terminalne simbole za sintakti£ni analizator. V
naslednji fazi poi²£emo strukturo stavkov jezika. Izhod te faze je opis sintak-
ti£ne strukture originalnega problema. V tej fazi se ukvarjamo s pravilnim
zaporedjem stavkov in nas ne zanima, £e je pomen stavkov pravilen (seman-
tika). S problemom semantike se ukvarjamo v naslednji fazi, t.j. semanti£ni
analizi.

Izvajalno kodo za realni ra£unalnik generira generator kode.

C.3 MERJENJA �ASA NA �PORTNIH TEKMOVANJIH 64

C.3 Merjenja £asa na ²portnih tekmovanjih

Merjenje £asa lahko izvajamo ro£no ali avtomatsko. Pri ro£nem merjenju
merimo z ro£no ²toparico in rezultate zapisujemo na list. Pri avtomatskem
merjenju merimo £as s pomo£jo merilne naprave, ki deluje na podlagi RFID
tehnologije. RFID tehnologija je lahko pasivna ali aktivna. Vsak tekmovalec
ima na sebi pritrjen £ip z unikatno identi�kacijsko ²tevilko. Ko tekmovalec
pre£ka merilno mesto, antensko polje inducira £ip tekmovalca in po²lje iden-
ti�kacijsko ²tevilko merilni napravi. Ta dogodek merilna postaja shrani v
pomnilnik in hkrati po²lje tudi na ra£unalni²ki sistem. Glavne kontrolne
funkcije merilne naprave so:

� branje realnega £asa,

� nastavljanje realnega £asa,

� start registracije dogodkov,

� konec registracije dogodkov,

� branje dogodkov.

C.3.1 Triatloni

Triatlon je relativno mlad ²port. Njegovi za£etki segajo v leto 1975, ko so
v ZDA prvi£ izvedli triatlonsko tekmovanje. Gre za olimpijsko panogo, ki
sestoji iz treh disciplin:

1. plavanja,

2. kolesarjenja,

3. teka.

Discipline potekajo brez prekinitve, v skupni £as pa se ²tejeta tudi £asa
obeh menjav, t.j. ko tekmovalec preide iz vode na kolo in s kolesa na tek.

Najbolj zna£ilni so naslednji triatloni:

� sprint triatlon (750 m plavanje / 20 km kolo / 5 km tek),

� olimpijski triatlon (1500 m plavanje / 40 km kolo, 10 km tek),

� polovi£ni Ironman (1900 m plavanje, 90 km kolo, 21.1 km tek),

� Ironman (3800 m plavanje, 180 km kolo, 42.2 km tek).

Na triatlonu dobi vsak tekmovalec svojo startno ²tevilko, ki jo nosi okrog
pasu. Zaradi laºje identi�kacije je tekmovalec ²e dodatno ozna£en s ²tevilkama
na ramenu in stegnu. Kolo in ostalo opremo, potrebno za kolesarjenje in tek,
tekmovalec pripravi v menjalnem prostoru pred za£etkom tekmovanja.

C.4 EASYTIME 65

�e je le mogo£e, startajo vsi udeleºenci hkrati. Ko tekmovalec premaga
plavalno progo, ste£e v menjalni prostor. Tam obuje kolesarske £evlje, oble£e
majico, nadene £elado, vzame kolo in pri£ne s kolesarjenjem. Ali je voºnja
v zavetrju sotekmovalcev dovoljena, dolo£i organizator tekme, praviloma je
dovoljena na vseh kraj²ih tekmah. Po prevoºeni kolesarski progi tekmovalec
odloºi kolo, sname £elado, se preobuje in za£ne te£i. Po kon£anem teku
zabeleºimo doseºen £as, na podlagi katerega se izra£una uvrstitev v absolutni
konkurenci in v njegovi starostni kategoriji.

C.3.2 Kronometer

Kronometer je tip kolesarske dirke, kjer tekmovalec vozi sam in ne v skupini.
Tekmovalci na kronometru navadno startajo v intervalih po ene ali dveh
minuti. Voºnja v zavetrju je v tej disciplini prepovedana.

C.4 EasyTime

EasyTime je domensko speci�£ni jezik, ki smo ga razvili z namenom pove£anja
�eksibilnosti merilnega sistema. Z njim lahko enostavno generiramo kodo za
merilno napravo in jo preprosto prilagajamo potrebam tekmovanja. Sintaksa
jezika EasyTime je zelo enostavna in jo lahko uspe²no obvladuje tudi tisti,
ki ni programer.

C.4.1 Razvoj

Razvoj tega jezika sestoji iz petih faz, t.j.:

1. analize domene na podlagi diagrama lastnosti (angl. Feature Dia-
grams),

2. abstraktne sintakse,

3. formalne semantike,

4. de�nicije abstraktnega stroja in

5. implementacije.

V prvi fazi podrobno analiziramo aplikacijsko domeno. Poi²£emo vse
zna£ilnosti te aplikacijske domene. Rezultat te analize je diagram lastnosti.
Ta diagram gra�£no ponazori odvisnosti med zna£ilnostmi. Abstraktna
sintaksa de�nira sintakso tega jezika. S pomo£jo formalne semantike pa
dolo£imo pomen posameznih stavkov. Dolo£imo kak²en pomen bodo imele
posamezne strukture v stavkih. Naslednja faza je de�nicija abstraktnega
stroja. Tukaj de�niramo arhitekturo abstraktnega stroja, na katerem se iz-
vaja prevedena koda. Abstraktni stroj v na²em primeru sestoji iz £etvorke

C.5 UPORABA V PRAKSI 66

<c, e, db, i>, kjer pomenijo: c je kodni segment, e je ra£unski sklad, db je
podatkovna baza, i je startna ²tevilka tekmovalca. Zadnja faza je imple-
mentacija na²ega jezika s pomo£jo generatorja prevajalnikov/interpreterjev
LISA. Tukaj s pomo£jo generatorja kode generiramo pravila za krmiljenje
agentov, ki berejo dogodke z merilnih naprav sprotno.

C.5 Uporaba v praksi

EasyTime smo uporabili tudi na realnih primerih iz prakse. S pomo£jo tega
jezika smo merili £as na dveh velikih tekmovanjih:

� Svetovnem pokalu v dvojnem ultra triatlonu 2009 in

� Drºavnem prvenstvu v kronometru 2010.

Merjenje prvega tekmovanja je bilo zahtevno, predvsem zaradi dolgega
trajanja same prireditve in velikega ²tevila tekmovalcev. Proga na tek-
movanju je bila razbita v kroge. Tako so morali tekmovalci preplavati 20
krogov, prevoziti 105 krogov in prete£i 55 krogov. Merjenje je potekalo ro£no
in avtomatsko. Ker je merilna tehnologija za merjenje plavanja ²e zelo draga,
smo merili plavanje ro£no. Avtomatsko smo merili kolesarski in teka²ki del,
ter tranzicijo 2.

Drugo tekmovanje je bilo enostavnej²e za merjenje, saj je bilo potrebno
izmeriti samo kon£ni £as tekmovalca.

C.6 Zaklju£ek

V tej diplomski nalogi smo razvili domensko speci�£ni jezik. Pokazali smo
celoten razvoj od na£rtovanja do implementacije z vsemi vmesnimi fazami.
Ta DSL se je v praksi pokazal kot zelo u£inkovit, saj se z njim da hitro
spreminjati kon�guracije merilnih naprav potrebnih za registracijo dogod-
kov. Enostavno ga je tudi prilagoditi potrebam razli£nih ²portnih tek-
movanj. Tudi tisti, ki niso programerji ali ra£unalni£arji se lahko hitro
nau£ijo uporabljati ta jezik. V prihodnosti bi radi razvili tudi domensko
speci�£ni modelirni jezik, ki bi ²e bolj poenostavil pisanje programov v Easy-
Time.

C.6 ZAKLJU�EK 67

C.6 ZAKLJU�EK 68

C.6 ZAKLJU�EK 69

