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4.1 Introduction

Nature has always been a source of inspiration for scientists when searching for solu-

tions to given problems. For example, the collective behavior of social insects like

ants, termites, bees, and wasp, as well as other animal societies like flocks of birds or

schools of fish, has inspired scientists to design intelligent multiagent systems (Blum

and Li, 2008). In the natural world, colonies of social insects consist of a huge num-

ber of unsophisticated beings/agents (i.e., individuals) so that a colony as a whole can

accomplish complex tasks in cooperation. These tasks are coordinated without any

centralized control and are thus self-organized. The fundamentals of collective behav-

ior regarding individuals in colonies have inspired scientists to solve some complex,

practical problems. The research field that exploits swarm behavior is referred to as

swarm intelligence. Swarm intelligence can be emergent in complex systems, espe-

cially, in those systems that are initially demand flexibility and robustness.

The term swarm intelligence was first used by Beni and Wang (1989) in the

context of a cellular robotic system. Nowadays, this term also extended to the field

of optimization, where the techniques based on swarm intelligence have been

applied successfully. Examples of notable swarm intelligence optimization techni-

ques are ant colony optimization (Dorigo and Di Caro, 1999; Korošec et al., 2012),

particle swarm optimization (Kennedy and Eberhart, 1999), and artificial bee

colony (ABC) (Karaboga and Basturk, 2007). Today, the most promising swarm

intelligence optimization techniques include the firefly algorithm (FFA) (Gandomi

et al., 2011, 2013; Yang, 2008; Yang et al., 2012; Talatahari et al., 2012), the

cuckoo search (Yang and Deb, 2009), and the bat algorithm (Yang, 2010).

Swarm intelligence refers to the collective behavior of social individuals. In

nature-inspired metaheuristic algorithms, these individuals are represented as a

population of solutions. The population of solutions is maintained, instead of
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searching for a single solution to a problem of interest. Therefore, this type of algo-

rithms is also called population-based. From individuals in a population (also par-

ents), population-based algorithms, such as evolutionary algorithms (EAs), are able

to produce new solutions (e.g., offspring) in terms of the operations of mutation

and crossover (Eiben and Smit, 2003).

However, population-based algorithms have many advantages over single-point

search algorithms, as summarized as the following five points (Prügel-Bennett,

2010):

1. Building blocks are put together from different solutions through crossover.

2. Focusing search again relies on the crossover and means that if both parents share the

same value of a variable, then the offspring will also have the same value of this variable.

3. Low-pass filtering ignores distractions within the landscape.

4. Hedging against bad luck in the initial positions or decisions it makes.

5. Parameter tuning is the algorithms’ opportunity to learn good parameter values in order

to balance exploration against exploitation.

The exploration and exploitation in the FFA need to be defined before taking a

closer look at these components for the search process. Exploration and exploita-

tion are the two cornerstones of problem solving by iterative search (Črepinšek

et al., 2011). Exploration refers to the moves for discovering the entirely new

regions of a search space, while exploitation refers to the moves that focus its

search on the vicinity of promising, known solutions found during the search

process. Other terminologies for exploration and exploitation used by Blum and

Roli (2003) are diversification and intensification that refer to medium- to long-

term strategies based on the usage of memory, while exploration and exploitation

refer to short-term strategies tied to randomness. In this chapter, the terms explora-

tion and exploitation are used for consistency.

Exploration and exploitation must be balanced in order to make a search move

efficiently and effectively. Namely, too much exploration can lead to inefficient

search, while too much exploitation can cause the premature convergence of a

search algorithm where the search process, usually due to reducing the population

diversity, can be trapped into a local optimum (Eiben and Smit, 2003).

How to balance these two components of the search? To date, the balance

between exploration and exploitation has been managed indirectly, i.e., by proper

control parameter settings. For example, EAs involve various variations

(e.g., crossover and mutation) and selection operators that can be controlled via con-

trol parameters. A suitable parameter setting depends on the given problem. In fact,

a parameter setting suitable for a certain problem can be unsuitable for another.

Furthermore, set parameters that are suitable at the beginning of a search process

can become unsuitable during the maturing phases of the search. Therefore, a neces-

sity has been arisen for adapting parameters during a search process.

The most complete taxonomy of the parameter setting can be found by Eiben

et al. (1999). According to this taxonomy, the authors distinguished between two

major forms of parameter setting: parameter tuning and parameter control. In the

former case, good values of parameters are set before the run. These values then

74 Swarm Intelligence and Bio-Inspired Computation



remain unchanged throughout the run. In the latter case, the parameters start with

initial values that are then changed during the run. These values can be changed:

deterministic, adaptive, or self-adaptive. Deterministic parameter control occurs

when the values of parameters are changed by some deterministic rule. A charac-

teristic of adaptive parameter control is that the direction or magnitude of the

change depends on feedback from the search. One example of this control is repre-

sented by Rechenberg’s 1/5 success rule (Rechenberg, 1973). Finally, the para-

meters are encoded into representations of individuals and undergo variation

operators by self-adaptive parameter control.

The proposed FFA tries to balance the exploration and exploitation more

directly during the run of a search process. Directly controlling the balance is diffi-

cult (Črepinšek et al., 2011). The first question that must therefore be answered is

how to measure exploration and exploitation during a search. Typically, exploration

and exploitation are implicitly measured using a diversity of population that plays

a crucial role in the success of optimization. Diversity refers to differences among

individuals. These differences can arise either at the genotype or phenotype levels.

The genotype refers to the structural characteristics of individuals’ representation.

Phenotype determines the quality of an individual. Population diversity measures

how similar individuals are to each other (Neri, 2012). When individuals are dis-

tributed over the whole search space, the population has high diversity. On the

other hand, when individuals are crowded to a certain region of the search space, it

has low diversity.

Unfortunately, diversity is only roughly related to exploration and exploitation

(Črepinšek et al., 2011). High diversity is not necessarily a sign that the population

consists of fit individuals. It only indicates that individuals are exceedingly dissimilar.

On the other hand, low diversity can indicate that the search algorithm has converged

to the some optimum. This optimality can either be global or local. In the former case,

the algorithm finds the optimal solution, while in the latter case it is trapped into a

local optimum, e.g., in case of an EA, premature convergence has arisen.

In place of premature convergence, a phenomenon of stagnation can be typical

for swarm intelligence, which can occur when the search algorithm cannot improve

the best performance (also fitness) although the diversity is still high. Thus, less-

promising regions of the search space are explored.

First of foremost, swarm intelligence is concerned in optimization and robotics.

This chapter, however, is devoted to optimization, i.e., how to solve optimization

problems using swarm intelligence techniques. One of the latest swarm intelligence

techniques is the FFA that is the main subject of this chapter. The main characteris-

tic of fireflies is their flashing light that can be visible, especially, on summer

nights in tropical and temperature regions. Such flashing light can be expressed in

the form of a physical equation regarding light intensity. This equation can be asso-

ciated with the objective function of the problem to be optimized. The main advan-

tage of the FFA is to search for more optima simultaneously and thus, it is more

suitable for nonlinear, multimodal problems.

In the proposed FFA, a stagnation phenomenon is signaled when the diversity of

the population being measured on a phenotype level remains stable, and the best
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fitness does not improve regarding the prescribed number of generations. If the

stagnation condition is detected, the proposed FFA recruits individuals with higher

diversity. Thus, the diversity of the entire population is increased and it can there-

fore be supposed that the search algorithm needs to focus itself on exploring a

broader region of the search space.

Three additional features have been applied to the proposed FFA as follows:

1. self-adaptation of control parameters,

2. a new population model,

3. local search heuristics

that will be explained in the remainder of this chapter. A global search algorithm

hybridized with a local search is referred to as memetic algorithm by Moscato

(1999). In our case, the memetic self-adaptive FFA (MSA-FFA) has been devel-

oped and applied to a graph 3-coloring problem (3-GCP). The extensive experi-

ments to be given below show that the results of MSA-FFA are comparable with

the results of other tested algorithms.

The rest of this chapter is organized as follows. In Section 4.2, optimization pro-

blems and their complexity are discussed. The principles of the MSA-FFA are

explained in Section 4.3. Section 4.4 describes a case study in which the MSA-

FFA is applied to a graph 3-coloring. Besides a detailed description of this algo-

rithm, the extensive experimental work is illustrated and the obtained results are

compared with three other well-known graph coloring algorithms, i.e., Tabucol,

HEA, and EA-SAW. Finally, Section 4.5 summarizes the results and a closer look

at future work.

4.2 Optimization Problems and Their Complexity

From a system analysis point of view, an optimization problem can be seen as a

system consisting of three components: input data, output data, and the model

(Eiben and Smit, 2003). The model is treated as a black box that transforms input

data into output data. Knowing the model and output data, the optimization prob-

lem becomes how to find input data that satisfies the criterion of optimality

(Figure 4.1).

Let us suppose, a traveling salesman problem (TSP) is given. Here, an equation

(model) is provided that calculates their length (output data) for each arbitrary

cycle (input data). The length of the cycle is calculated by an objective function

fobj. The task of the optimization system is to find the cycle with the shortest length

Known?
Input 
data

Output
data

Specified

Model
y = S(x)x∈I

Figure 4.1 Optimization problem.
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(goal). The shortest cycle represents an optimal solution that can be written as

sÃ 5 SÃðxÞ5 SðxÃÞ, while its optimal value can be expressed as f ÃobjðsÞ. Note that

only one set of input data x can be put on the input. This set of data is referred to

as an instance I. Normally the instance xAI is a vector of elements xi that are

called design or decision variables. In line with this, the optimization problem can

be formally defined as a quadrille P5 ðI; S; fobj; gÞ, where
● I denotes all instances of the input data;
● S is the function that to each instance xAI assigns a set of feasible solutions SðxÞ;
● fobj is the objective function that to each feasible solution sASðxÞ of instance xAI assigns

the value fobjðsÞAℝ;
● g denotes the goal that determines when the minimum (g5min) or maximum (g5max)

value of objective function is searched for.

Usually, the fitness function f is used in place of the objective function fobj. If

we suppose that maxðfobjðsÞÞ5minð2 fobjðsÞÞ, then the goal g5max can always be

transformed into g5min. In other words, we always search the minimum value of

the transformed objective function. As a result, the optimization problem can be

reduced to a triple P5 ðI; S; f Þ. It can arise in three forms, as follows:

1. Construction form: The optimal solution sÃ and to it the belonging value of the fitness

function f ÃðsÞ need to be calculated for the instance xAI.
2. Nonconstruction form: The optimal value of the fitness function f ÃðsÞ is needed for the

instance xAI.

3. Decision form: For the particular instance xAI, it should be discovered whether the opti-

mal value of fitness function f ÃðsÞ is better than a certain prescribed constant K, more for-

mally if f ÃðsÞ#K:

For example, the shortest cycle (a sequence of cities) and its length need to be

found when the TSP problem is given in its construction form. The length of the

shortest cycle is demanded when the TSP problem is in nonconstruction form,

while in the decision form of TSP, it is necessary to answer the question whether

the shortest cycle found is shorter than a certain prescribed length K.

How hard to solve the problem is, depends not on the problem solver, but rather

on the features of the fitness function within the search space. The visualization of

fitness values’ distribution forms a kind of fitness landscape introduced by Wright

(1932). Mathematically, the fitness landscape is defined as ðS; f ; dÞ, where S

denotes the search space, f the fitness function that assigns to each solution sASðxÞ
with the fitness value f ðsÞ, and d:S3 S ! ℝ is a distance metric that defines the

spatial structure of the landscape (Stadler, 1995). The fitness landscape reflects the

following characteristics of the problem: multimodality, separability, noise, time

dependency, etc.

Optimization problems can be further divided into continuous and discrete. The

latter is also referred to as combinatorial. The decision variables for a continuous

optimization problem can occupy values within the domain of real values ℝ; while
the decision variables for a combinatorial problem have discrete values.

According to the number of objectives involved in the optimization problem,

this can be divided into single-objective and multiobjective (also multicriteria).
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The task of single-objective optimization is to find the optimal solution according

to only one objective function. When the optimization problem involves more than

one objective function, the task is to find one or more optimal solutions regarding

each objective (Deb, 2001). Here, a solution that is good with respect to one objec-

tive can be worse for another, and vice versa. Therefore, the goal of multiobjective

optimization is to find a set of solutions that are optimal with respect to all other

objectives, and such a set of solutions form a so-called Pareto front. Interestingly,

most real-world problems are multiobjective.

Many practical problems have complex constraints. Namely, not all possible

combinations of decision variables represent valid solutions. Constraint problems

can be divided into two different types: constraint satisfaction problems (CSPs) and

constraint optimization problems (COPs). In contrast, if the problem is uncon-

strained, it is referred to as a free optimization problem (Eiben and Smit, 2003).

CSP is defined as a pair hS;φi, where S denotes a search space and φ is a Boolean

function on S that represents a feasibility condition. In fact, this function divides

the search space S into feasible and unfeasible regions. A solution of the CSP is

each sAS with φðsÞ5 true: On the other hand, COP is defined as a triple hS; f ;φi;
where S denotes a search space, f is a real-valued fitness function, and φ is a

Boolean function on S. A solution of this problem is that sASðxÞ with φðsÞ5 true

and SðxÞ5 SðxÃÞ:
In general, algorithms are step-by-step procedures for solving problems (Garey

and Johnson, 1979). These procedures can be computer programs, written in spe-

cific programming languages. The first programs tried to solve optimization pro-

blems by exhaustive search, i.e., by enumerating all possible combinations of

decision variables. However, these programs are too time-consuming and impracti-

cal for solving most real-world problems. Therefore, more approaches were devel-

oped that tried to solve these problems approximately in a reasonable time.

Nowadays, there exist optimization algorithms that search for solutions by using

gradient-based and heuristic-based search techniques (Deb, 2001). Deterministic

and stochastic search principles are applied in these algorithms. While the deter-

ministic principle behaves in a predictably mechanical way, because it always pro-

duces the same results, the stochastic principle involves a randomness step within

the algorithm. The necessity of widening the applicability of optimization algo-

rithms to various new problem domains has led to robust optimization algorithms

inspired by natural and physical principles or characteristics. Essentially, EAs and

swarm intelligence belong to this class of algorithms, which also belong to meta-

heuristic algorithms (Yang, 2008).

If an algorithm successfully solves all instances of some problem P, then we can

say that it is capable of solving the problem P. Usually, we are interested in which

algorithm solves the problem more efficiently. Normally, the term efficiency is

connected with the resources of the computer (time and space) that are occupied by

running an algorithm. Generally, the most efficient algorithm is the one that finds

the solution to the problem in the fastest way.

In practice, the time complexity of an algorithm is not measured by the effective

time necessary for solving the problem on a concrete computer because this
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measurement suffers from a lack of objectiveness. The same algorithm could be run

on different hardware configurations or even on different operating systems.

Therefore, the algorithm’s complexity is measured in an informal way that deter-

mines the complexity with regard to the amount of input data (instance size), neces-

sary for the problem description. In the case of TSP, the complexity of the problem

is determined by the number of cities that the traveling salesman must visit.

The time complexity of an algorithm determines the way in which the increase

in the instance size influences the time complexity (Garey and Johnson, 1979).

This relation can be expressed with the so-called asymptotic time complexity func-

tion Oðf̂ ðnÞÞ that determines the upper bound of time complexity for problem P.

For example, the function Oðn2Þ denotes that the increase in the instance size n will

cause an increase in the time complexity to almost n2.

When do the problems become hard (Garey and Johnson, 1979)? The algorithmic

theory divides problems, with regard to the asymptotic time complexity function, into

two classes: P-hard and NP-hard. To the first class belong those problems that have

polynomial time complexity OðnkÞ and are treated as “easy.” In contrast, problems of

class NP-hard demonstrate the exponential time complexity Oð2nÞ and are, therefore,

treated as “hard.” That is, the exponential time complexity may cause that some

increase in the input data can increase solution time of the problem exponentially. In

the worst case, we could be waiting for the solution over an infinite period of time.

4.3 Memetic Self-Adaptive Firefly Algorithm

Fireflies can generate flashing light that can be admired on clear summer nights.

The flashing light is the result of a process of bioluminescence that comprises a

complicated set of chemical reactions. The purpose of firefly flashing may be still

debating; however, it can be twofold: to attract possible mating partners (communi-

cation) and to warn off potential predators.

The light intensity IL of a flashing firefly decreases as the distance from source

r increases in terms of IL~1=r2: Additionally, air absorption causes the light to

become weaker and weaker as the distance from the source increases. The flashing

light represents the inspiration for the development of the FFA by Yang (2008).

Here, light intensity is proportional to the fitness function of the problem being

optimized (i.e., ILðsÞ~f ðsÞ; where s5 SðxÞ represents a candidate solution).
In order to formulate the FFA, some flashing characteristics of the fireflies are

idealized, as follows:

● All fireflies are unisex.
● Their attractiveness is proportional to their light intensity.
● The light intensity of a firefly is affected or determined by the landscape of the fitness

function.

Note that light intensity IL and attractiveness β are in some way synonymous.

While the intensity IL is referred to as an absolute measure of emitted light by the

firefly, the attractiveness β is a relative measure of the light that should be seen in
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the eyes of the beholders and judged by other fireflies (Yang, 2008). The light

intensity IL varied by distance r is expressed by the following equation

ILðrÞ5 IL0
e2γr2 ð4:1Þ

where IL0
denotes the intensity light at the source and γ is a fixed light absorption

coefficient. Similarly, the attractiveness β also depends on the distance r that is cal-

culated according to the following generalized equation

βðrÞ5β0 e
2γrk ; for k$ 1 ð4:2Þ

The distance between two fireflies i and j is represented as the Euclidian distance:

rij 5 jjxi 2 xjjj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

k51

ðxik 2 xjkÞ
s

ð4:3Þ

where xik is the kth element of the ith firefly’s position within the search space.

Each firefly i moves to another more attractive firefly j as follows:

xi 5 xi 1β0 e
2γr2ij ðxj 2 xiÞ1αUNið0; 1Þ ð4:4Þ

Equation (4.4) consists of three terms. The first term determines the current posi-

tion of ith firefly. The second term refers to the attractiveness, while the third term is

connected with the randomized movement of ith firefly within the search space. This

term consists of the randomization parameter α, and random numbers Nið0; 1Þ drawn
from a Gaussian distribution. The scheme of FFA is sketched in Algorithm 4.1.

The FFA (Algorithm 4.1) runs on the population of fireflies PðtÞ that are repre-

sented as real-valued vectors x
ðtÞ
i 5 ðxðtÞi0 ; . . .; x

ðtÞ
in Þ, where i5 1, . . . , NP and NP

denotes the number of fireflies within a population PðtÞ at generation t. Note that

each firefly x
ðtÞ
i is of dimension n. The population of fireflies is initialized randomly

(function InitFFA) according to the following equation:

x
ð0Þ
ij 5 ðub2 lbÞ Á randð0; 1Þ1 lb ð4:5Þ

where ub and lb denote the upper and lower bounds, respectively. The main loop

of the firefly search process that is controlled using the maximum number of gen-

erations MAX_GEN consists of the following functions:

● AlphaNew: Calculating new values for randomization parameter α. This parameter is

modified according to the equation as follows:

Δ5 12 ð1024=0:9Þ1=MAX GEN; αðt11Þ 5 ð12ΔÞ Á αðtÞ ð4:6Þ

where Δ determines the step size when changing the parameter αðt11Þ: Note that this

parameter decreases with the increasing of generation counter t.
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● EvaluateFFA: Evaluating the new solution x
ðtÞ
i according to a fitness function f ðsðtÞi Þ,

where s
ðtÞ
i 5 SðxðtÞi Þ.

● OrderFFA: Ordering solutions x
ðtÞ
i for i5 1; . . . ; NP with respect to the fitness function

f ðsðtÞi Þ ascending, where sðtÞi 5 SðxðtÞi Þ.
● FindTheBestFFA: Determining the best solution within the population PðtÞ: Normally, the

best solution becomes xÃ 5 x
ðtÞ
0 :

● MoveFFA: Moving the fireflies toward the search space according to the attractiveness of

their neighbor’s solution (Eq. (4.4)).

In order to improve the original FFA, especially in the sense of exploration

and exploitation, the following features are incorporated into our new

MSA-FFA:

● self-adaptation of control parameters,
● new population scheme,
● more directly controlling the balance between exploration and exploitation during the

search process,
● hybridization using local search heuristics.

These features will be discussed in more detail in the remainder of this chapter.

4.3.1 Self-Adaptation of Control Parameters

Population-based algorithms often use the information explored to a certain genera-

tion within a population (Bäck, 1998). However, their efficiency depends on the

Algorithm 4.1 Pseudo code of the FFA.
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characteristics of the population diversity, i.e. accumulated information about the

problem that is written into the genotypes of individuals. The greater the diversity

of the population the greater the search power of the population-based algorithm.

In summary, how to reach the information accumulated into a population depends

primarily on the appropriate setting of the control parameters.

Unfortunately, setting parameters that are appropriate at the beginning of optimi-

zation can become inappropriate for later generations. Therefore, the idea of adapt-

ing control parameters during optimization arose (Holland, 1992). This idea has

overgrown into the self-adaptation of control parameters, where these are encoded

into genotypes of individuals and undergo operations of the variation operators

(Meyer-Nieberg and Beyer, 2007).

It is worth pointing out that FFA involves three control parameters: the randomiza-

tion parameter α; the attractiveness β; and the light absorption coefficient γ. All the
mentioned parameters are encoded into real-valued vectors in the following form:

x
ðtÞ
i 5 hxðtÞi0 ; . . .; x

ðtÞ
in ;α

ðtÞ;σðtÞ
0 ;βðtÞ;σðtÞ

1 ; γðtÞ;σðtÞ
2 i; for i5 1; . . .;NP ð4:7Þ

where the first part of vector x
ðtÞ
i 5 ðxðtÞi0 ; . . .; x

ðtÞ
in Þ represents a position of the ith fire-

fly similar to the original FFA, parameters αðtÞ; βðtÞ, and γðtÞ are the current values

of the control parameters, while σðtÞ
0 ; σðtÞ

1 ; and σðtÞ
2 refer to their standard deviations

(also mutation strengths). Interestingly, the first part is changed according to

Eq. (4.4), while the self-adaptive parameters undergo an operation of uncorrelated

mutation with three-step sizes (Eiben and Smit, 2003). This mutation is described

by the following equations:

σðt11Þ
i 5σðtÞ

i Ue
ðτ 0UNð0;1Þ1τUNið0;1ÞÞ; for i5 1; . . .; 3 ð4:8Þ

αðt11Þ 5αðtÞ 1σðtÞ
0 UNð0; 1Þ

βðt11Þ 5 βðtÞ 1σðtÞ
1 UNð0; 1Þ

γðt11Þ 5 γðtÞ 1σðtÞ
2 UNð0; 1Þ

where τ 0~1=
ffiffiffiffiffi
2n

p
and τ~1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Á

ffiffiffi
n

pp
denote the so-called learning rate. Here, the

rule which prevents that the mutation strengths σðtÞ
i do not fall under a certain mini-

mum value ε0 is applied:

σðtÞ
i , ε0.σðtÞ

i , ε0; for i5 1; . . .; 3 ð4:9Þ

4.3.2 Population Model

The original FFA uses a generational population model, where the entire population

is replaced in each generation. Specifically, NP parents produce NP offspring that
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become parents in the next generation. Here, no selection pressure influences the

survival of individuals. In fact, each parent is alive for one generation only.

Furthermore, the best solution is not preserved by FFA, i.e., elitism is not used in

the original FFA.

Our new population model is presented in Figure 4.2. It can be seen from this

figure that the initialized population forms an initial population consisting of two

NP individuals, where the first NP individuals represent a subpopulation of parents,

while the next NP individuals form a subpopulation of the offspring. Firstly, indivi-

duals from the whole population are evaluated (EvalFFA). Second, both the parent

and the offspring are placed in ascending order according to their fitness values

(OrderFFA). Therefore, the whole population representing a mating pool is divided

into high and low subpopulations. The former consists of individuals with the high-

er fitness, while the latter have the lower fitness values irrespective of whether an

individual is either a parent or an offspring. Third, individuals from both subpopu-

lations are replaced by the high subpopulation (ReplaceFFA). Note that the high

subpopulation consists of overfit individuals and, therefore, in some way represents

an exploitation subpopulation. On the other hand, the low, more explorative sub-

population takes care of diversity. During this phase, the balance between explora-

tion and exploitation can be realized. Fourth, individuals from the high

subpopulation represent the parents for the next generation that are reproduced in

the sense of Eq. (4.4) (MoveFFA). Finally, the offspring that occupy the low sub-

population enter into the next generation of the search process together with their

parents.

Note that this population model is elitist because it ensures that the best indivi-

duals are always preserved.

4.3.3 Balancing Between Exploration and Exploitation

The original FFA automatically subdivides the population (swarm) in a problem’s

search space into subgroups (swarms), where each subgroup explores its own

region within this space. As a result, multiple optima can be found simultaneously.

Unfortunately, there is no warranty that the global optimum is found by at least

one subgroup, unless in the case when the number of fireflies are much higher than

Parents

Offspring

Parents
eval
P(0)

Sort

repl

eval
P(t)

init

Move

f

PHIGH

PLOW PLOW

Figure 4.2 Population

model.
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the number of modes. Stagnation of FFA can often be detected during the search

process if the randomness is reduced too quickly. Furthermore, the population can

lose diversity resulting in premature convergence. These phenomena are not only

connected with a fitness landscape, as determined by the problem, but also with the

nature of the swarm intelligence framework for almost all swarm-based algorithms.

Namely, the search process behaves differently if it runs within either evolutionary

or swarm intelligence frameworks. That is, a certain conclusion that is valid for the

former does not always hold for the latter and vice versa (Neri, 2012).

The proposed MSA-FFA employs a fitness diversity adaptation for preventing

the loss of population diversity and balancing the exploration and exploitation. The

fitness diversity adaptation methods measure the fitness diversity in order to esti-

mate the population diversity. On the other hand, these measures can also serve for

balancing between exploration and exploitation in the search process. Interestingly,

the fitness diversity refers to the phenotype level, where these measures can be

more efficiently calculated than similar measures on the genotype level.

The fitness diversity metric used in MSA-FFA is defined as follows (Neri et al.,

2007):

Ψ5 12
favg 2 fmin

fmax 2 fmin

����
���� ð4:10Þ

where fmin; favg, and fmax are, respectively, the minimum, average, and maximum

fitness values within the population. This measure determines where the average

fitness is positioned between the minimum and maximum fitness variations in the

current population. This metric can occupy any value in the interval ΨA½0; 1�. That
is, when the value of the metric Ψ is close to zero the population diversity is low,

while the population diversity is high when this value is close to one. This metric

is very sensitive to small variations in the fitness landscapes with plateaus and low-

gradient areas (Neri, 2012).

In order to measure population diversity on a genotype level, the concept of

moment of inertia is applied to MSA-FFA (Morrison, 2004). The moment of inertia

is a measure of how the mass of the individuals is distributed from the center of

gravity. In our case, the center of gravity x5 ðx1;. . .; xnÞ (also the centroid) is

expressed as follows:

xi 5
1

NP
U
XNP

j51

xij ð4:12Þ

where xijAℝ; NP is the population size and xi the ith element of the centroid. The

moment of the inertia diversity measure is defined as follows:

IC 5
Xn

i51

XNP

j51

ðxij2xiÞ2 ð4:13Þ
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where n is a dimensionality of the problem. As a measure of similarity between

two individuals at the genotype level, the correlation between individual xi and
centroid x is introduced as follows:

Ki 5
1

n
Á
Xn

j51

xij Á xj 2 xi Á x ð4:14Þ

where xi 5
1
n
Á
Pn

j51 xij, and xj denotes the jth element of the centroid.

At each generation, the fitness diversity Ψ is calculated and then MSA-FFA uses

this information to coordinate exploration and exploitation within the search. Let

us suppose that the new population model of MSA-FFA divides the population PðtÞ

into two subpopulations: P
ðtÞ
HIGH and P

ðtÞ
LOW. Individuals in population P

ðtÞ
HIGH are over-

fit and tend to exploit the explored information held into population, as soon as

possible. These individuals are ordered according to their fitness ascendency.

Usually, this exploitation causes a loss of population diversity that can lead to pre-

mature convergence. The subpopulation P
ðtÞ
LOW consists of underfit individuals but

maintains higher population diversity. Individuals within this subpopulation are

ordered according to their descending covariance (Eq. (4.14)). The proper selection

of individuals from both subpopulations may slow down the fast exploitation pro-

cess by FFA and direct the search process toward underfit individuals in order to

explore new, probably more promising, regions of the search space. Thus, it is

expected that population diversity should not decrease too fast so as to maintain a

good balance.

Balancing between exploration and exploitation into the MSA-FFA is performed

according to the following equation:

P
ðt11Þ
i 5

ðr, ð0:52ΨÞÞ and ði 6¼ 0Þ . P
ðtÞ
LOW

otherwise . P
ðtÞ
HIGH

; for i5 1. . .NP

(
ð4:11Þ

where r denotes the randomly generated number from interval ½0; 1�. Note that

this equation is implemented into the procedure ReplaceFFA in Algorithm 4.2

and acts as follows: When the metric Ψ is calculated, a selection of those indivi-

duals is started that can progress to the next generation. For each individual, a

random number rA½0; 1� is generated. If the generated number r is lower than the

factor ð0:52ΨÞ, the first not-used individual from the population P
ðtÞ
LOW is taken,

otherwise on the same position laid individual from the population P
ðtÞ
HIGH is pre-

served. In the former case, the population diversity is being decreased. Therefore,

the underfit individuals with the highest covariance are selected for the next gen-

eration thus caused an increase in the population diversity. In the latter case, the

overfit individuals can progress to the next generation. Here, the value 0.5 repre-

sents a threshold that balances the exploration and exploitation components

within firefly search. Note that in the worst case when the population diversity is

lost, half individuals from both subpopulations contribute as candidates for the

new population.
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4.3.4 The Local Search

Local search is a kind of improvement heuristics when used properly and effec-

tively. The main characteristic of these heuristics is that the solution is not created

anew but by improving the current solution. The local search is defined as an itera-

tive process of exploiting the search region within neighborhood of the current solu-

tion. If a better new solution is found, then the current one is replaced by it (Aarts

and Lenstra, 1997; Bäck, 1998). The neighborhood of current solution x is defined

as a set of solutions that can be reached by an elementary operator, i.e., N : S ! 2S:
Each solution in their neighborhood N is accessed from the current solution in

k-moves. In line with this, these solutions represent the k-neighborhood as well.

The crucial point of the local search algorithm represents a transformation of the

current solution through an elementary operator (Hoos and Stützle, 2005). In the

case where the number of moves is increased, the operator creates solutions almost

randomly. On the other hand, when the number of moves is small, the operator can

even return the same solution quite often. Thus, no improvement of the current

solution is detected. In a practice, the proper transformation is found somewhere in

the middle.

Another crucial step is performed according to the size of the neighborhood.

When the neighborhood is small, the solution can be found quickly, but it is possi-

ble that the local search algorithm may get stuck in the local minimum. In contrast,

when the neighborhood is too large, searching for solutions can take too long.

Algorithm 4.2 Pseudo code of the MSA-FFA.
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4.3.5 Scheme of the MSA-FFA

The scheme of the MSA-FFA is presented in Algorithm 4.2.

The MSA-FFA runs on a population of fireflies PðtÞ that, beside the real-

valued problem, variables also encode their control parameters as follows.

x
ðtÞ
i 5 hxðtÞi0 ; . . . ; x

ðtÞ
in ;α

ðtÞ;σðtÞ
0 ;βðtÞ;σðtÞ

1 ; γðtÞ;σðtÞ
2 i for i5 1, . . . , 2NP, where NP denotes

the number of fireflies in two subpopulations, i.e., subpopulation of parents and sub-

population of offspring. The problem variables ðxðtÞi0 ; . . . ; x
ðtÞ
in Þ are initialized randomly

according to Eq. (4.5), while the control parameters hαðtÞ;σðtÞ
0 ;βðtÞ;σðtÞ

1 ; γðtÞ;σðtÞ
2 i are

set initially to prescribed values.

Note that the setting values of mutation strengths σð0Þ
i for i5 1,. . .,3, play espe-

cially an important role by a self-adaptive search process. These values determine a

region in which the search process can progress. In fact, this search process can

progress within the limited interval of these values, also called a progress window.

Unfortunately, this region is unknown in advance and usually determined through

extensive experimental work, in practice.

The main loop of MSA-FFA incorporates the following functions:

● SelfAdaptFFA: Self-adaptation of control parameters according to Eq. (4.8).
● EvalAndImproveFFA: Evaluating the new solution x

ðtÞ
i for i5NP, . . . , 2NP with respect to

a fitness function f. Note that in the first generation (t5 0), the whole population is evalu-

ated, i.e., for i5 1, . . . , 2NP. Each solution is improved in the sense of local search heuris-

tics. However, any implementation of these heuristics depends on the problem to be solved.

The number of fitness evaluations depends on the local search heuristic and is unknown in

advance. Therefore, this number is obtained as a return value from the procedure.
● OrderFFA: Sorting solutions x

ðtÞ
i for i5 1, . . . , NP ascending with regard to the fitness

function f and for i5NP, . . . , 2NP descending with regard to the correlations Ki; thus
dividing the population PðtÞ in P

ðtÞ
HIGH and P

ðtÞ
LOW

● ReplaceFFA: Selecting parents from both subpopulations P
ðtÞ
HIGH and P

ðtÞ
LOW and thus bal-

ancing between exploration and exploitation. In the sense of elitism, the best solution is

preserved in the parents’ population.
● FindTheBestFFA: Determining the best solution within the population PðtÞ:
● MoveFFA: Moving the fireflies toward the search space according to the attractiveness of

their neighbor’s solution (Eq. (4.4)).

The proposed algorithm terminates when the number of fitness function evalua-

tions exceeds the maximum number of fitness function evaluations MAX_FE.

4.4 Case Study: Graph 3-Coloring

In order to show how the proposed hybridizations of the original FFA influence the

results of MSA-FFA, we have carried out a case study by solving the well-known

3-GCP on large-scale graphs (graphs with 1000 vertices). This problem is a well-

known, tough combinatorial optimization problem. Note that this kind of optimiza-

tion problem was seldom solved by swarm intelligenceÀbased algorithms, and this

work is among the first attempts.
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Graph coloring can informally be defined as follows: How to color an undi-

rected graph G5 (V, E), where V represents a set of vertices and E a set of edges

(unordered pairs of vertices) with almost k colors so that neither of the two vertices

connected with an edge is colored with the same color. If such coloring exists, it is

also named as proper k-coloring (Bondy and Murty, 2008). The problem of finding

the proper k-coloring is denoted as k-GCP. The minimum number of colors k for

which proper coloring exists is also known as the chromatic number χ of graph G.

3-GCP is a special kind of common k-coloring where the number of colors is lim-

ited to 3 (k5 3). The complexity of the k-GCP is determined as follows: The deci-

sion form of this problem is NP-complete, while the construction form is NP-hard

(Garey and Johnson, 1979).

To solve this problem exactly, i.e., by enumerating all possible solutions, is only

limited to the instances of graphs with less than 100 vertices because of its com-

plexity. Instead, several heuristic methods that approximately solve the problem

have emerged in the past. The simplest way of coloring the vertices of graph G is

in a greedy fashion. Thus, vertices are ordered in a permutation and colored

sequentially one after another. However, the quality of this so-called sequential col-

oring depends on the permutations of vertices. In order to find a more promising

sequence of vertices, many methods for ordering the permutation of vertices have

been incorporated into sequential graph coloring algorithms. For example, vertices

are ordered randomly by the naive method (Kubale, 2004). Much better ordering

can be applied by the DSatur traditional heuristic (Brelaz, 1979), where the vertices

are dynamically ordered according to their saturation degrees ρv. The saturation

degree is defined as the number of distinctly colored vertices adjacent to vertex v

(Bondy and Murty, 2008).

Today, some of the most popular algorithms for solving k-GCP are metaheuris-

tics based on local search (Blum and Roli, 2003; Blum et al., 2011). One of the

first such metaheuristics was developed by Hertz and de Werra (1987), known

under the name Tabucol. At the same time, this was the first application of the

Tabu search (Glover, 1986) to graph coloring. Tabucol acts as follows: at first, it

generates an initial random k-coloring, which typically contains a large number of

conflicting edges. Then, the heuristic iteratively looks for a single vertex that the

most decreases the number of conflicting edges when it is recolored with another

color, i.e., moved to another color class. A Tabu list prevents the moves from

cycling. Proper k-coloring may be obtained after a definite number of iterations.

Later, Tabucol was improved by more sophisticated graph coloring algorithms

(Dorne and Hao, 1998; Galinier and Hao, 1999).

Other local search heuristics include simulated annealing (Chams et al., 1987;

Johnson et al., 1991), iterative local search (Chiarandini and Stützle, 2002;

Chiarandini et al., 2007), reactive partial Tabu search (Blöchliger and Zufferey,

2003, 2008; Malaguti et al., 2008), variable neighborhood search (Avanthay et al.,

2003), adaptive memory (Galinier et al., 2008), variable search space (Hertz et al.,

2008), and population-based methods (Dorne and Hao, 1998; Fleurent and Ferland,

1996; Galinier and Hao, 1999; Lü and Hao, 2010). One of the best population-based

algorithms for k-GCP, the hybrid EA (HEA), developed by Galinier and Hao (1999)
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combines the local search with the partition-based crossover operator. Here, the

Tabucol metaheuristic is used as a local search operator. Recently, a distributed

graph coloring algorithm that was inspired by the calling behavior of Japanese tree

frogs was proposed by Hernández and Blum (2012). For a comprehensive survey of

the main methods, see, for example, Galinier and Hertz (2006) and Malaguti and

Toth (2009).

This case study was a continuation of work presented by Fister et al. (2012a,b)

that introduced the memetic FFA (MFFA) for 3-GCP. This paper was inspired by

the hybrid self-adaptive EA of Fister et al. (2013), the hybrid self-adaptive differ-

ential evolution of Fister and Brest (2011), and the hybrid ABC of Fister et al.

(2012a,b). However, the common characteristic of all these algorithms was solving

of the same problem, i.e., the 3-GCP.

MFFA (Fister et al., 2012a,b) exposed excellent results when coloring the

medium-scale graphs. This algorithm operates on real-valued vectors whose ele-

ments represent weights that determine how hard the vertex is to color. The higher

the weight is, the faster it needs to be colored. An initial permutation of vertices is

obtained when the vertices are ordered according to the weights. This permutation

serves as an input to DSatur traditional heuristic that constructs corresponding

3-coloring. A similar approach was used by Eiben et al. (1998) that developed the

EA with a stepwise adaptation of the weights method (EA-SAW), in order to solve

the 3-GCP. Instead of DSatur, the greedy algorithm was used for the construction

of 3-coloring by the authors of EA-SAW. Two additional features have been

applied to MFFA as follows: heuristic swap local search and elitism.

The preliminary results of MFFA for 3-GCP on large-scale graphs were not

promising. Over several runs the search process of FFA was detected either as stag-

nation or as premature convergence. Therefore, the MSA-FFA was proposed, that

tries to overcome these drawbacks of MFFA, using the following features:

● self-adaptation of control parameters,
● new population model,
● balancing between exploration and exploitation.

A formal definition of graph 3-coloring is firstly provided in the remainder of

this section. Then, the characteristics of MSA-FFA for 3-GCP are described. Next,

the experiments and results are illustrated. Finally, the results of the experimental

work are summarized and discussed.

4.4.1 Graph 3-Coloring

Graph 3-coloring is formally defined as follows: An undirected graph G5 ðV ;EÞ is
given, where V is a set of vertices vAV for i5 1; . . .; n and E denotes a set of edges

that associate each edge eAE for j5 1; . . .;m to the unordered pair e5 fvi; vjg.
Then, the vertex 3-coloring is defined as a mapping c : V ! S, where S5 f1; 2; 3g
is a set of three colors and c is a function that assigns one of the three colors to

each vertex of G. A coloring s is proper if each of the two vertices connected with

an edge is colored with a different color.
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Interestingly, 3-GCP belongs to a class of CSPs. Each CSP is represented as a

pair hS;φi, where S denotes the search space of feasible solutions sAS and φ is the

feasibility condition on S that divides the search space into feasible and unfeasible

regions. To each eAE, the constraint be is assigned with beðhs1; . . .; sniÞ5 true if

and only if e5 fvi; vjg and si 6¼ sj. Suppose that Bi 5 fbeje5 fvi; vjgXj5 1; . . .;mg
defines the set of constraints belonging to variable vi. Then, the feasibility condi-

tion φ is expressed as a conjunction of all the constraints φðsÞ5XvAVB
vðsÞ.

As in evolutionary computation, constraints can be handled indirectly in the

sense of a penalty function that punishes the unfeasible solutions. The further the

unfeasible solution is from the feasible region, the higher the penalty function.

The penalty function is expressed as

f ðsÞ5min
Xn

i50

ψðs;BiÞ ð4:14Þ

where the function ψðs; BiÞ is defined as

ψðs;BiÞ5 1 if s violates at least one beABi

0 otherwise

&
ð4:15Þ

Note that Eq. (4.1) also represents the objective function. On the other hand, the

same equation can be used as a feasibility condition in the sense that φðsÞ5 true if

and only if f ðsÞ5 0. The proper graph 3-coloring is found if this condition is

satisfied.

4.4.2 MSA-FFA for Graph 3-Coloring

The MSA-FFA consists of the following components and features:

● representation of individuals,
● self-adaptation of control parameters,
● evaluation of fitness function,
● population model,
● balancing between exploration and exploitation,
● moves of individuals,
● initialization procedure,
● termination condition.

Each individual in MSA-FFA is composed of problem variables and control para-

meters according to Eq. (4.7). Problem variables that determine points in the fitness

landscape represent those weights from which an initial permutation of vertices is

built by the DSatur traditional heuristic. Control parameters are self-adapted accord-

ing to Eq. (4.8). In this algorithm, the new population model is implemented as dis-

cussed in Section 4.3.2. Additionally, the exploration and exploitation are balanced

as proposed in Section 4.3.3, while the individuals are moved through the search
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space according to Eq. (4.4). The population is initialized according to Eq. (4.5).

The search process is terminated, when the proper 3-coloring is found or the maxi-

mum number of fitness function evaluations exceeds MAX_FE.

Evaluation of the fitness function is crucial for the results of optimization. This

function is problem dependent. On the other hand, an FFA belongs to a kind of

general problem solvers, where the good results should be obtained independently

of the problem to be solved. Although this algorithm can be applied to several real-

world optimization problems, its performance is subject to the No Free Lunch

(NFL) theorem (Wolpert and Macready, 1997). According to this theorem, any two

algorithms are equivalent in the sense of average performance, when their perfor-

mance is compared across all possible problems. Fortunately, the NFL theorem can

be circumvented for a given problem by hybridization that incorporates the

problem-specific knowledge into FFAs.

In the case of MSA-FFA, the problem-specific knowledge can be conducted by

the evaluation of the fitness function. In other words, the fitness function is hybrid-

ized with the domain-specific knowledge. Two kinds of hybridization are imple-

mented into this, as follows:

1. hybrid genotypeÀphenotype mapping,

2. heuristic swap local search.

These hybridizations are described in detail in the remainder of this section.

4.4.2.1 Hybrid GenotypeÀPhenotype Mapping

Many problems are hard to represent within their original problem context. For

instance, genetic algorithms (Goldberg, 1989) operate on the population of binary

vectors but can also be successfully applied to continuous optimization problems.

In that case, a transformation from the binary represented variables to the real-

valued solution must be performed. A solution in its problem context is referred to

as a phenotype, while the same solution in its encoded form is a genotype.

Transformation from a solution in encoded form to a solution in problem context is

known as genotypeÀphenotype mapping.

In MSA-FFA, the genotype is represented as real-valued vector of weights that

determine an initial permutation of vertices, while the phenotype determines the

graph 3-coloring obtained by DSatur traditional heuristic. The quality of solution is

calculated according to Eq. (4.14). The hybrid genotypeÀphenotype mapping in

MSA-FFA transforms the vector of weights into 3-coloring. This mapping consists

of two phases:

1. Ordering the vertices v
ðtÞ
i 5 ðvðtÞi0 ; . . .; v

ðtÞ
in Þ with regard to weights x

ðtÞ
i 5 ðxðtÞi0 ; . . .; x

ðtÞ
in Þ des-

cending and thus determining a permutation of vertices ΠðvðtÞi Þ.
2. From the permutation of vertices ΠðvðtÞi Þ finding the graph 3-coloring s

ðtÞ
i 5 ðsðtÞi0 ; . . .; s

ðtÞ
in Þ

due to traditional heuristic DSatur and evaluating it according to Eq. (4.14).

Note that the genotype space is much bigger than the phenotype space. The for-

mer is determined by the size of the permutation space that can be obtained with
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n vertices, i.e., n!, while the latter is estimated by the size of the combinatorial

space that can be obtained using 3-colors, i.e., 3n. Unfortunately, inspecting the

genotype search space is much easier to implement in an FFA than inspecting the

phenotype space because of the many heuristics that are available for exploring

the permutation search space.

4.4.2.2 The Heuristic Swap Local Search

When a solution is evaluated by the MFFA, the heuristic swap local search tries to

improve it. This heuristic is run until the improvements are detected. The operation

of this is illustrated in Figure 4.3, which deals with a solution on G with 9 vertices.

This solution is composed of a permutation of vertices v, 3-coloring s, weights y,

and saturation degrees ρ. The heuristic swap local search takes the first uncolored

vertex in a solution and orders the predecessors according to the descending satura-

tion degree. The uncolored vertex is swapped with the vertex that has the highest

saturation degree. In the case of a tie, the operator randomly selects a vertex among

the vertices with higher saturation degrees (2-opt neighborhood).

In Figure 4.3, an element of the solution corresponding to the first uncolored

vertex 5 is in dark gray and the vertices 0 and 3 with the highest saturation degree

are in light gray. From vertices 0 and 3, heuristical swap randomly selects vertex 0

and swaps it with vertex 5 (the right-hand side of Figure 4.3).

4.4.3 Experiments and Results

The goal of the experimental work is to show that MSA-FFA can be successfully

applied to 3-GCP on large-scale graphs. As this work continues the experiments as

represented in the paper Fister et al. (2012a,b), the same test algorithms were also

used in this comparative study, i.e., Chiarandini and Stützle (2012) implementa-

tions of HEA and Tabucol and van Hemert (2012) implementation of EA-SAW. In

order to help the developers of a new graph coloring algorithms, the authors put

these implementations on the Internet to make a comparison with the newly devel-

oped algorithms as fairly as possible. Additionally, the basic FFA was also included

into comparison in order to obtain suitable conclusions.

The characteristics of MSA-FFA in the experiments were as follows: The popu-

lation size was fixed at 20. MAX-FE was set at 300,000 by all algorithms to make

1 2 3 4 5 6 7 8 1 25 3 4 0 6 7 80v

2 2 1 3 0 3 2 01s

0.70 0.43 0.16 0.24 0.84 0.72 0.53 0.32 0.70 0.43 0.16 0.24 0.94 0.72 0.53 0.320.84

Swap

y

2 1 3 0 1 0 2 03p

0.94

Figure 4.3 Heuristic swap local search.
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the fair comparison with the paper of Eiben et al. (1998). Each instance of the

graph was executed 25 times. The initial values of the self-adaptive control para-

meters were set as follows: αð0Þ 5 0:1, βð0Þ 5 0:1, and γð0Þ 5 0:8, while the lower

and upper bounds of these parameters were self-adapted over the following inter-

vals: αðtÞA½0:001; 0:2�, βðtÞA½0:001; 0:2�, and γðtÞA½0:1; 1:0�. Mutation strengths

were initially set as σðtÞ
0 5 σðtÞ

1 5σðtÞ
2 5 0:03, while the minimum value of mutation

strengths was limited by ε0 5 0:0001. The same values of control parameters were

also used by the basic FFA. However, these parameters were fixed during the

experiments.

The algorithms were compared according to the measures success rate (SR) and

average estimations to solution (AES). The former determines how successfully the

particular algorithm is by solving the given instance of the graph. It is expressed as

a ratio between the number of successfully runs and the number of all runs. The lat-

ter determines the efficiency of the particular algorithm and counts the average

number of fitness function evaluations needed to find the solution.

Three experiments were conducted during this work in order to show how para-

meters edge probability and the fitness diversity metric Ψ influence the results of

optimization. Additionally, an analysis of the inertia diversity metric is presented

during the arbitrary search process.

4.4.3.1 Test Suite

The test suite during the experiments consists of graphs generated using the

Culberson random graph generator (Culberson, 2012). The graphs generated by

this generator are distinguished according to type, number of vertices n, edge

probability p, and the seeds of random number generator q. Three types of graphs

were employed during the experiments: uniform (random graphs without variabil-

ity in sizes of color sets), equipartite, and flat. The edge probability determines

when the two vertices vi and vj are connected with an edge ðvi; vjÞ. This parameter

was varied in the interval pA½0:004; 0:014� with a step of 0.0005. Thus, a phase

transition phenomenon was captured, where graphs are hard to solve by most of

the algorithms. Finally, the seeds were varied in the interval qA½1; 10� with a step

of one. As a result, 33 213 105 630 different graphs were obtained. In sum-

mary, each algorithm was executed 15,750 times to complete this experimental

setup.

Phase transition is a phenomenon that accompanies almost all NP-hard problems

and determines the region where the NP-hard problem passes over the state of

“solvability” to a state of “unsolvability,” and vice versa (Turner, 1988). Typically,

this region is characterized by particular problem parameter. This parameter is the

edge probability for 3-GCP. Many authors have determined this region differently.

For example, Petford and Welsh (1989) stated that this phenomenon occurs when

2pn=3 % 16=3; Cheeseman et al. (1991) when 2m=n % 5:4; Hayes (2003) when

m=n % 2:35; and Eiben et al. (1998) when 7=n# p# 8=n: In the presented case,

the phase transition needed to be by p % 0:008 over Petford and Welsh and over

Cheeseman, by p % 0:007 over Hayes, and pA½0:007; 0:008� over Eiben et al.
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4.4.3.2 Influence of the Edge Probability

The influence of edge probability on the performance of the tested graph coloring algo-

rithms was investigated during this experiment. The tested algorithms solved the test

suite of graph, as represented in Section 4.4.3.1. This test suite was selected so that the

behavior of the graph coloring algorithms in the phase transition could be observed.

The results of this experiment are illustrated in Figure 4.3 and are divided into

six diagrams corresponding to the graphs of different types (uniform, equipartite,

and flat). Furthermore, the graphs are compared according to the measures SR and

AES. In these diagrams, the average values of the corresponding measures are pre-

sented as obtained after 25 runs for each of 10 different seeds.

As shown in Figure 4.4(a), (c), and (e), the performance of MSA-FFA was simi-

lar to those of HEA and Tabucol when solving the instances of graphs lower than

p, 0:007. With increasing the edge probability, performances of this algorithm

within the phase transition region pA½0:007; 0:010� became worse, especially when

solving the flat type of graphs. On the other hand, EA-SAW and FFA reported the

worse results. When these two algorithms were compared with each other, it can be

observed that EA-SAW gets stuck before FFA (e.g., when p, 0:006 for uniform

and equipartite graphs) and improves the results faster than FFA (e.g., when

p. 0:01 for the same types of graphs).

According to efficiency (measure AES in Figure 4.4(b), (d), and (f)), the best

results were obtained by HEA. The performances of Tabucol were comparable espe-

cially when solving the flat graphs. MSA-FFA was competitive with these two algo-

rithms when solving the uniform and equipartite graphs, while EA-SAW and FFA,

on average, exposed the worst results for all three types of graphs. Interestingly,

Tabucol and HEA also increased AES by p5 0:013. This behavior is connected

with the phenomenon of second phase transition (Boettcher and Percus, 2004).

4.4.3.3 Influence of the Fitness Diversity Metric

The goal of this experiment was to show how exploration and exploitation are bal-

anced by MSA-FFA. In line with this, the fitness diversity metric Ψ was measured

in each generation on the phenotype level. The metric Ψ determines how explora-

tion and exploitation are balanced by firefly search. In order to analyze how this

measure behaves over the particular instance of a graph, all 25 runs of MSA-FFA

were taken into consideration. Here, the equipartite graph with p5 0.008 and q5 5

was observed. Note that this instance of a graph is in the phase transition.

The results of this experiment are presented in (Figure 4.5), which is divided in

two diagrams: diagram 4.5(a) represents the successfully finished runs (10 runs),

while diagram 4.5(b) illustrates the unsuccessful runs (15 runs). In this case, the

MSA-FFA reached SR5 0.40 by solving this instance of a graph.

According to Figure 4.5, the fitness diversity measure was stabilized by Ψ % 0:2:
As a result, in each generation, about 30% of the new population was taken from the

subpopulation P
ðtÞ
LOW: Note that no significant differences were observed among the

runs where the solution was found and runs where the solution was not found.
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4.4.3.4 Influence of the Inertia Diversity Metric

The aim of this experiment was to investigate the behavior of the inertia diversity

metric IC. In contrast to fitness diversity Ψ; it is measured at the genotype level and

describes how individuals are dispersed around the centroid (Eq. (4.13)). The the-

ory of EAs for swarm intelligence (Neri, 2012) asserts that population diversity is

high at the beginning of the search. As the algorithm progresses toward the better
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Figure 4.4 Influence of the edge probability on large-scale 3-colored graphs. (a) SR on

uniform large-scale graphs. (b) AES on uniform large-scale graphs. (c) SR on equipartite

large-scale graphs. (d) AES on equipartite large-scale graphs. (e) SR on flat large-scale

graphs. (f) AES on flat large-scale graphs.
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regions of the search space, the population diversity decreases until either a solu-

tion is found or the algorithm gets stuck into local optimum. When all individuals

in the population converge to the same point within fitness landscape, the inertia

diversity metric decreases to zero. In order to prevent premature convergence, a

new population model was applied to MSA-FFA. The experiment was conducted

as follows: 25 runs of MSA-FFA were observed when coloring the equipartite

graph with p5 0.008 and q5 5.

The results of this experiment are presented in Figure 4.6, which is divided into

two diagrams. The former (diagram 4.6(a)) represents those runs where the solution

was found, while the latter (diagram 4.6(b)) the runs where the solution was not

found.

It can be seen from diagrams that at the beginning the population diversity mea-

sured the inertia diversity measure was high, but this diversity was lost by the pop-

ulation very quickly. Although during some runs the inertia diversity was near to

zero, it never reached this value. That is, the new population model conducting the

underfit individuals into population never gets stuck in local optimum. For

instance, when using this population model, the SR on the mentioned instance of

the graph was increased from SR5 0.0 by MFFA to SR5 0.40 by MSA-FFA.

4.4.3.5 Convergence Graphs

The convergence of solutions was studied during the last experiments, where the

average fitness of the population in certain generation was compared with the best

fitness found so far. Thus, two different runs of MSA-FFA were analyzed by solv-

ing the equipartite graph with p5 0.008 and q5 5: in the first, where the solution

was found, while in the second, where the solution was not found.

The results of both runs can be seen in Figure 4.7, which is divided into dia-

grams 4.7(a) (solution found) and 4.7(b) (solution not found).

It can be seen from diagram 4.7(a) that the average fitness consists of a

sequence of values that represents hills and valleys. The hills denote an increase of
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Figure 4.5 Influence of fitness diversity metric. (a) Solutions found. (b) Solutions not

found.
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the average fitness, while the valleys a decrease of it. However, the average fitness

decreased slowly throughout the entire run. This decreasing was more observable

at the end of the optimization. On the other hand, the best solution was decreased

stepwise. After some big skips, the optimal solution was found.

When the solution was not found (diagram 4.7(b)), the average fitness remained

almost constant during the whole run, while the best solution decreased stepwise.

Unfortunately, these skips were smaller and usually led the search process to the

local optimum.

4.4.3.6 Discussion

The results of these experiments can be summarized as follows: The results of

MSA-FFA are comparable with Tabucol and HEA when solving 3-GCP on uniform

and equipartite graphs and are slightly worse on flat graphs. However, EA-SAW

and FFA gained the unsatisfactory results that are incomparable with the other

tested algorithms.
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Figure 4.6 Influence of fitness diversity metric. (a) Solutions found. (b) Solutions not

found.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

 0  20,000  40,000  60,000  80,000 100,000 120,000 140,000

U
nc

ol
or

ed
 v

er
tic

es

Evaluations of fitness function

Best
Average

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0(a) (b)

 0  50,000  100,000  150,000  200,000  250,000  300,000

U
nc

ol
or

ed
 v

er
tic

es

Evaluations of fitness function

Best
Average

Figure 4.7 Convergence diagrams. (a) Solution found. (b) Solution not found.
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The fitness diversity Ψ balances the exploration and exploitation within the firefly

search algorithm. In our opinion, this metric plays a crucial role during optimization

and we are convinced that its value depends on the problem to be solved. Although

this metric behaved as a relative constant in the case of 3-GCP, we believe that it

should be dependent on the number of fitness evaluations. That is, at the beginning

of the optimization process, when the firefly search process ruthlessly exploits the

solutions in the current population, some mechanism is necessary to prevent the loss

of population diversity being too fast. In matured generations, when the diversity of

the population is low, the exploration of the search space must be activated in order

to prevent the search process to get stuck into local optimum. Both demands are

being considered by the construction of a new population model.

The inertia diversity IC, on the other hand, affirmed the thesis that the popula-

tion diversity is high at the beginning of the optimization and becomes lower as the

population becomes matured. Unfortunately, the population diversity by MSA-FFA

is lost in the first 2% of the allowable number of fitness evaluations. Without using

the new population model, MSA-FFA is unable to prevent the search process from

premature convergence.

The convergence of the MSA-FFA to the global optimum is impossible to pre-

dict, as illustrated within convergence graphs. Population diversity is necessary in

order to reach the optimum, but the population diversity does not ensure that the

best solution is also found during the search. In summary, the population diversity

is a prerequisite for convergence, but not also a sufficient condition.

4.5 Conclusions

The FFA is a member of the swarm intelligence algorithms inspired by the collec-

tive behavior of social insects and other animal societies when solving diverse opti-

mization problems. Essentially, this algorithm has not extensively been applied to

the domain of combinatorial optimization problems. Therefore, this work is among

the first of its kind that focused on the behavior of the FFA when solving this class

of problems.

In order to prepare the FFA algorithm for solving the combinatorial optimization

problems, the following features were proposed:

● new population model,
● explicit control of exploration and exploitation during firefly search,
● self-adaptation of control parameters,
● incorporating local search heuristics.

The new population model introduces selection pressure within the firefly search

process. Without this feature, the FFA algorithm is unable to direct deep searching

into the promising regions of the search space. Explicit balancing between explora-

tion and exploitation during the firefly search is realized using fitness diversity

metric that is calculated in each generation. The control parameters are not set fix
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during the search process but are self-adapted within the proposed algorithm. Local

search heuristics are applied in order to incorporate problem-specific knowledge.

The proposed algorithm is named the MSA-FFA because of the characteristics

of the used features. In order to show its quality, the MSA-FFA was applied to

graph 3-coloring that is a well-known combinatorial optimization problem.

Extensive experiments of MSA-FFA by coloring the large-scale graphs of various

types, edge probabilities, and the seeds of a random graph generator were per-

formed and compared with other well-known graph coloring algorithms, like

Tabucol, HEA, and EA-SAW. The experiments showed that the results of MSA-

FFA are comparable with the results obtained by the other algorithms used in

experiments.

In the future, MSA-FFA should also be used for solving other combinatorial

optimization problems. How the proposed hybridizations influence on the results of

an FFA should be performed as well. Essentially, additional experiments with fit-

ness diversity metric should be conducted in order to obtain more direct control

over exploration and exploitation in the FFA, and in fact, in many other swarm-

based algorithms as well.
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