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Abstract. The aim of this chapter is to familiarize readers with the
basics of adaptation and hybridization in nature-inspired algorithms as
necessary for understanding the main contents of this book. Adapta-
tion is a metaphor for flexible autonomous systems that respond to
external changing factors (mostly environmental) by adapting their well-
established behavior. Adaptation emerges in practically all areas of hu-
man activities as well. Such adaptation mechanisms can be used as a
general problem-solving approach, though it may suffer from a lack of
problem-specific knowledge. To solve specific problems with additional
improvements of possible performance, hybridization can be used in or-
der to incorporate a problem-specific knowledge from a problem domain.
In order to discuss relevant issues as general as possible, the classification
of problems is identified at first. Additionally, we focus on the biological
foundations of adaptation that constitute the basis for the formulation
of nature-inspired algorithms. This book highlights three types of inspi-
rations from nature: the human brain, Darwinian natural selection, and
the behavior of social living insects (e.g., ants, bees, etc.) and animals
(e.g., swarm of birds, shoals of fish, etc.), which influence the develop-
ment of artificial neural networks. evolutionary algorithms, and swarm
intelligence, respectively. The mentioned algorithms that can be placed
under the umbrella of computational intelligence are described from the
viewpoint of adaptation and hybridization so as to show that these mech-
anisms are simple to develop and yet very efficient. Finally, a brief review
of recent developed applications is presented.

Keywords: Computational intelligence, evolutionary algorithms,
swarm intelligence, artificial neural networks, adaptation, nature-inspired
algorithms.

1 Introduction

The noun adaptation originates from the greek word ad aptare which means to
fit to. This word emerged primarily in biology and was later widened to other
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areas as well. It designates a collective name for problems arising within different
areas, e.g., genetic, artificial intelligence, economics, game theory, etc., encom-
passing the optimization problems of different difficulties regarding complexity
and uncertainty [41]. Complexity means how much effort must be incorporated
in order to solve a specific problem. Uncertainty denotes the environment in
which a problem arises and typically, changes over time. In general, real-world
problems are embodied within environments which are typical dynamic, noisy
and mostly unpredictable.

An adaptive system undergoes acting operators that affects its structure. That
means, such systems adapt to the changing conditions of the environment by
modifying the structure. In fact, each system prepares itself for changes using
the so-called adaptive plan; i.e., the set of factors controlling these changes [41].
The adaptive plan determines how the structures are changed in order to best
fit to the changing environment. Typically, the adaptive plans are realized by
developing the operators that determine how the changes of structures are per-
formed. There are several plans (operators) that can be used for adapting to the
environment. Which of these is the best depends on a performance measure in
which the estimation of a plan is based. Selecting the proper performance mea-
sure depends on the domain from which the specific problem arises. On the other
hand, the performance measure estimates the quality of the modified structure.

Many natural, as well as artificial systems, arising within different domains are
adaptive in nature. Some of these systems, by their structures and performance
measures, are illustrated in Table 1.

In genetics, the structure of an adaptation is a chromosome that undergoes
the actions by the operators of crossover, mutation and inversion. The quality
of an individual is measured by its fitness. The fitter the individual, the more
chances it has to survive. Artificial intelligence looks for a program tool that
imitates the behavior of the human brain, which should be able to learn, while

Table 1. Domains and corresponding structures, operators, and performance measures

Domain Structures Operators Performance Measure

genetic chromosome mutation, crossover, fitness
inversion

artificial program cleavage learning error function
intelligence

production goods/services production activities utility

game theory strategies rules payoff

supramolecular supermolecules recognition,transcription, amount of energy
chemistry transformation and information

memetic memes transmission, selection, payoff
computation replication, variation
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its performance is normally measured by the error function. The smaller the
value of error function, the better the program is adapted to its environment.

Production is a process of combining various material and immaterial inputs
(plans, know-how) in order to make something for consumption (the output). It
is the act of creating outputs, goods or services which have values and contribute
to the utility of individuals [35]. The higher the utility, the more the production
process is optimized.

In a game theory, a game is a mathematical model of a situation of interactive
decision making, in which every decision maker (or player) strives to attain his
“the best possible outcome” [42]. Indeed, each player plays a move according to
the strategy that maximize its payoff. The payoff matrix provides a quantitative
representation of players’ preference relations over the possible outcomes of the
game. The strategy for player A is the winning strategy if for every move of
player B, player A is the winner. A combination of moves must obey the game
rules by all game players.

Supramolecular chemistry may be defined as “chemistry beyond the molecule”,
where two molecules (i.e., receptor and substrate) are assembled into
supramolecules using intermolecular bonds [43]. Supramolecules undergo the
actions such as molecular recognition, transformation, and translocation that
may lead to the development of molecular and supramolecular species and can
provide very complex functions. These species are capable of self-organizing, self-
assembling and replicating by using molecular information. Here, the amount of
energy and information is employed as the performance measure.

In memetic computation (MC), a meme represents a building block of infor-
mation obtained by autonomic software agents obtained either by learning or
by interacting with the surrounding agents which acts within a complex dy-
namic environment [24]. Indeed, memes can represent the agent’s ideas and
knowledge captured as memory items and abstractions (e.g., perceptions, be-
liefs, minds) [29]. The primary memetic operator is imitation [61], which takes
place when the memes are transmitted, replicated or modified. These intelligent
agents are also confronted by selection, where the agents with the higher payoffs
in the previous generations have more chances for survival.

Although adaptation has emerged within different domains of human activi-
ties, it shares the similar characteristics, e.g., each adapted system has its struc-
ture on which operators are applied according to an adaptive plan, while the
modified structure is estimated using a suitable performance measure. The higher
the performance measure, the better the system adapts to its environment. As
a result, only the best adapted structures can continue to develop and improve
their characteristics. The less adapted ones are condemned to disappear. In this
sense, adaptation can also be viewed as an optimization process.

Obviously, most real-world problems are hard to solve. This means that prob-
lems cannot be solved exactly by an algorithm enumerating all the possible
solutions. They are too complex in terms of both the time and space necessary
for obtaining solutions [40]. Therefore, these problems are usually solved ap-
proximately by using heuristic methods that guess the solution of the problem
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in some (ideally smart) way. Although such a solution is not exact, it is good
enough to be used in a practice.

Nowadays, algorithm developers often try to imitate the operations of natural
processes by attempting to solve the harder, real-world problems. From the al-
gorithm development point of view, there are three types of inspiration sources
from nature:

– human brain,
– natural selection,
– behavior of some social living insects and animals.

The first source of inspiration has led to the emergence of the artificial in-
telligence, where the algorithm tries to mimic the operations of human brains
in order to solve problems, where the main example is the artificial neural net-
works (ANNs) [39]. The second source of inspiration has led to the foundations
of evolutionary algorithms (EA) [36] using the Darwinian natural selection [37],
where the fittest individual in a population can survive during the struggle for
existence. The third source of inspiration has closely related to the development
of swarm intelligence (SI) [1,173] that mimics the social behavior of some living
insects and animals [38]. Although such systems tend to obey simple rules, sim-
ple creatures such as ants are capable of performing autonomous actions, they
are still capable of doing great things, e.g., building magnificent anthills, when
acting together within a group. All three mentioned nature-inspired algorithms
can be placed under the umbrella of computational intelligence (CI). The al-
gorithms belonging to this family share the same characteristics, i.e., they are
capable of solving the problems on some sophisticated, intelligent way.

On the other hand, the behavior of an optimization algorithm is controlled by
its parameters (also strategy or control parameters). These parameters mostly
stay fixed during the algorithm’s run. However, this is in contrast to the real-
world, where the good starting values of parameters could become bad during
the run. As a result, a need has been emerged to modify them during the run.
Here, the adaptation of control parameters can be used as well, where the values
of the control parameters are modified during the run in order to best suit the
demands of the search process.

In addition, many traditional algorithms, especially gradient-based methods,
exist that contain a lot of domain-specific knowledge within algorithm struc-
tures. Contrary, the general problem solver methods, especially nature-inspired
population-based algorithms like EAs and SI, are capable to obtain the moder-
ate results on all classes of optimization problems. In order to connect the gen-
eral problem solver methods with the traditional heuristics, the hybridization
of nature-inspired population-based algorithms with traditional heuristic algo-
rithms has been performed. Such hybridized algorithms incorporate a problem-
specific knowledge into algorithms’ structures and are therefore more suitable
for solving the specific problems. Using more problem-specific knowledge, these
algorithms may overcome limitation imposed by the No-Free Lunch theorem [18]
stating that two algorithms are equivalent when comparing across all classes of
problems. According to Chen et al. [24], the hybridized algorithms evolved over
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simple hybrids, via adaptive hybrids to memetic automation. Simple hybrids of-
ten represent a hybridization of population-based CI algorithms with local search
heuristics. The result of connecting the adaptation with hybridization has led to
adaptive hybrids. The last step in the integration of adaptation with hybridiza-
tion forms a part of memetic computing, where, in addition to the parameters,
other algorithmic structures can also be adapted.

The remainder of this chapter is organized as follows. Section 2 deals with
optimization problems and their complexity. The origin of adaptation within
natural systems is the subject of Section 3. Section 4 analyzes the nature-inspired
algorithms. In line with this, the ANN, EA and SI-based algorithms are taken
into account. Section 5 highlights key characteristics of adaptation and diversity
in CI. Section 6 deals with a description of hybridization methods in CI. A brief
review of recent application arisen in CI is given in Section 7. Finally, some
conclusions are drawn in Section 8.

2 Classification of Problems

From a system analysis point of view, problem-solving can be seen as a system
consisted of three components: input, output, and model (Fig. 1). The model
transforms input data to output data. If the model is known, the output data
can be determined by each set of input data. The problem can also be placed
differently, i.e., which input data produces specific output data by a known
model. Finally, knowing the input and output data, the problem is how to find
a model that transforms the specific input data to the output data.

Fig. 1. Problems and System Analysis

In line with this, three classes of problems can be defined with regard to one
of the unknown components within system analysis, as follows:

– optimization: the input data that satisfies a criterion of optimality are
searched for by a known model and known output data,

– simulation: a set of known input data are applied to the known model in
order to simulate the output data,

– modeling: searching for a (mathematical) model is performed, which can
transform the known input data to the known output data, at a glance.

The optimization and simulation/modeling problems are described in the next
subsections in more detail.
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2.1 Optimization Problems and Their Complexity

When solving optimization problems, the output value needs to be determined
with a set of input data, a model for transforming the input data into output, and
a goal prescribing the optimal solutions. Optimal solutions are feasible solutions
the values of which are either minimal or maximal. These values can be written
as y∗ = f(y∗), while their optimal values as f∗(y). Only one set of input data can
be set on the input. This set is therefore known under the name instance. The set
of all instances that can appear on the input constitute an optimization problem
P . Formally, the optimization problem is defined as quadruple P = 〈I, S, f, goal〉,
where

– I is a set of instances of problem P ,
– S is a function assigning each instance x ∈ I to a set of feasible solutions

S(x), where x = {xi} for i = 1 . . . n and n determines a dimensionality of
the problem P ,

– f is an objective function assigning a value f(y) ∈ R to each feasible solution
y ∈ S(x),

– the goal determines whether the feasible solution with the minimum or max-
imum values is necessary to search for.

In computational intelligence, the fitness function is employed in place of
the objective function because using the equality min(f(y)) = max(−f(y)) the
maximal values of objective function can be transformed into searching for the
minimal values of the fitness function.

The optimization problems may be emerged within one of three possible forms,
as follows:

– constructed form, where the optimal values of variables y∗ and the cor-
responding value of objective function f∗(y) needs to search for a given
instance y = S(x),

– non-constructed form, where the optimal value of objective function f∗(y)
needs to search for a given instance y = S(x),

– decision form, where the problem is to identify whether the optimal value of
the objective function is better than some prescribed constant K, i.e., either
f∗(y) ≤ K, when goal = min or f∗(y) ≥ K, when goal = max.

Optimization problems can be divided into three categories, i.e., problems
using: the continuous variables, the discrete (also combinatorial) variables, and
the mixed variables. The first category of problems searches for the optimum
value in an infinite set of real numbers R. Variables are taken from a finite set
by discrete problems, while they may be either discrete or continuous by the
mixed problems.

In general, algorithms are procedures for solving problems according to certain
prescribed steps [2]. Usually, these procedures are written in some programming
language. If a certain algorithm solves all instances I of the specific problem
P then it can be said that the algorithm solves this problem completely. Here,
the algorithm which solves this problem the most efficiently is typically searched
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for. The efficiency of algorithms is normally estimated according to the time
and space occupied by the algorithm during a run. Generally, the more efficient
algorithms are those that solve problems the fastest.

Time complexity is not measured by the real-time as required for solving
the problem on a concrete computer because this measure would not be fair.
Algorithms can be run on different hardware or even on different operating
systems. In general, the problem or instance size is therefore measured in some
informal way which is independent of the platform on which the algorithm runs.
Therefore, time complexity is expressed as a relation that determines how the
time complexity increases with the increasing problem size. Here, we are not
interested in the problem size, but in how the instance size influences on the
time complexity. If the algorithm solves a problem of size n, for example, with
a time complexity C · n2 for some constant C means that the time complexity
of the algorithm is O(n2) (read: of order n2). The function O(n2) determines an
asymptotic time complexity of the algorithm and limits its upper bound.

If the time complexity of the algorithm is exponential, i.e., O(2n), it can be
argued that the problem is hard. As a result, these kinds of problems belong to
a class of nondeterministic-polynomial hard problems (i.e., NP-hard) [40]. Clas-
sical combinatorial problems like the Traveling Salesman Problem (TSP) [44],
the Graph Coloring Problem (GCP) [45], etc. are members of this class.

2.2 Simulation/Modeling Problems

The behavior of real-world facilities or processes (also systems) can be described
in the form of mathematical or logical relationships. In general, these real world
systems are too complex for expressing their behavior with exact mathematical
methods. Therefore, analytical solutions of this system’s behavior are not pos-
sible. As a result, the system is studied by simulation, where the mathematical
model of the system is built on a digital computer. The task of simulation is to
evaluate a model numerically by known input variables in order to obtain output
variables matching the expected real world values as closely as possible.

In this chapter, modeling problems (in the narrow sense) refer to supervised
learning, where on the basis of observing some examples of input-output pairs,
the system learns a model that maps input data to output data. Supervised
learning can be defined formally as follows. Let a training set be given with N
instances of input-output pairs in the form (x1,y1), · · · , (xN ,yN ), where each
yi is generated by an unknown function y = f(x). The task is to discover a
function h that approximates the true function f [39].

The function h represents a hypothesis that is validated throughout all input-
output pairs during the learning process. The learning process is finished when
the search space of all possible hypotheses is searched for and none of these are
rejected. Moreover, the learned model h must also perform well on the so-called
test set of input-output pairs that are distinct from the training set.

When the elements of output vector y belong to a finite set of values, such
a learning problem becomes a classification problem. On the other hand, when
these elements are real values, the learning problem is also known as regression.
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3 Biological Foundations of Natural Adaptation

In natural evolution, adaptation indicates a genetic as well as non-genetic mod-
ification of individuals during more generations. Moreover, this term is usually
used as being a synonymous for measure of fitness, i.e., a characteristic that in-
creases during generations. What does an individual adapt to? More frequently,
here goes about adapting to conditions of environment or ecological niche, i.e.,
an area that is occupied by individuals living in a particular community be-
cause of common exploitation of resources in the environment [46]. Too specific
adaptation of a particular ecological niche can lead to speciation [37].

Darwin’s finches (also Galápagos finches) are one of the most famous examples
of speciation using adaptation, where a group of about fifteen finch species with
common ancestors occupied specific ecological niches and adapted to different
food sources with different body sizes and beak shapes. Indeed, only the best
adapted individuals survived. The process of so-called adaptive radiation [3],
in which individuals diversify rapidly into a multitude of new forms, had been
started when finch ancestors originated from South America occupied an island
in Galápagos archipelago closest to the continent.

The adaptive radiation as an origin of evolutionary diversity opens up the
question as to when and why comes to the speciation. Darwin in 1859 [37] an-
swered with an allopatric model of speciation whereby the evolutionary diversity
was caused by geographical separation of the population.

Fig. 2. Galápagos archipelago

Speciation and formation of new Galápagos finches were carried over three
phases (Fig. 2):

– The population of finches colonized an island closest to the continent. This
population underwent the rules of natural selection.

– Part of the population separated from the group and colonized the next
island. They adapted themselves to new environmental conditions, because a
distribution of food sources on the next island was different. As a result, only
the most adapted to the new conditions with the body size and the shape of
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their beaks could survive. Additionally, geographically separated populations
underwent changes of their reproduction materials through mutation.

– The process of colonizing the other islands of the Galápagos archipelago
repeated until finally, the conquering population recolonized the site island
from which the adaptive radiation started. As a result, the new population
meets its ancestor population.

The meeting of these two populations may have caused the individuals of both
populations:

– to mate among themselves and the offsprings became more successful than
their parents,

– to mate among themselves and the offsprings became less successful than
their parents,

– not to mate among themselves.

In the first case, both populations merge together into a single one, while in
the third case the individuals of both populations are so different that the mating
was impossible. In this worst case, reproduction isolation happens and prevents
mating between the individuals of two different populations. However, the most
interesting is the second case that represents a process of adaptive radiation
that could cause population isolation over a longer period of time. However, this
isolation is just a precondition for speciation.

More recently views on the adaptive radiation and speciation of Darwin’s
finches have cast doubt in the correctness of the allopatric model [37]. Indeed, it
seems that the proximity of the Galápagos islands might prevent the existence
of geographical isolation and therefore, the finches could freely travel between
islands. This fact also suggests that more populations need to live on the same
place at the same time.

Today, a sympatric model has been established that argues speciation with-
out geographical isolation [3]. In this model, new species appear as a result of
adaptation to ecological niches. When individuals of a sympatric species mate
between themselves, then the fitness of their offspring usually decreases. The nat-
ural selection quickly eliminates such individuals from the population. On the
other hand, differences in the reproductive materials changed by mutations can
also cause a reproduction barrier whereby individuals of different populations
do not mate between themselves and thus speciation can occur.

Differences in reproduction material represent a reproduction barrier when
mating has been performed. Usually, the reproduction barrier can emerge before
the mating takes place. Interestingly, each male finch uses a similar kind of
courtship. Thus, it is not important how males appear, but how they look.
Usually, males differ between themselves according to the size and the shape of
their beaks rather than the birds’ plumages. As a result, the size and the shape
of the beaks adapted to the local food sources can cause a reproduction barrier
between individuals of sympatric populations.

Furthermore, the reproduction isolation can also be caused by differences in
the acquired characteristics of individuals (i.e., ecological isolation), e.g., sounds



12 I. Fister et al.

that have been learned by males from their parents and which are susceptible by
females of the same population. The sound is independent of the reproduction
material, although morphological characteristics of individuals are written in
genes (e.g., the size and the shape of beaks) can have an impact on the volume
and pitch of sound articulated by the bird.

Interestingly, Wright’s concept of adaptive landscape [4] can be used to illus-
trate the morphological characteristics of Darwin’s finches according to various
food sources on the Galápagos islands. Both different morphological characteris-
tics, i.e., the body size and the shape of beaks, are represented as two coordinate
axes in a 3-dimensional coordinate system, while the third axis represents se-
lective advantages or disadvantages of morphological characteristics of a specific
individual in regard to the food sources.

The adaptive landscape of morphological characteristics versus body sizes
and beak shapes can change over the longer period of time. Therefore, such
landscape is also named dynamic adaptive landscape. Similarly to the conditions
in the environment have changed over time, also the heights and positions of
hills are changed in the adaptive landscape. For instance, the height of the hill is
lowered, a valley between two hills is increased or two hills move closer to each
other or move away from each other. Various populations of Darwin’s finches
adapt to these changes in the environment. If, for example, two hills are moved
closer to each other because of frequent earthquakes on Galápagos archipelago,
two or more populations of Darwin’s finches come together, while if the hills
are moved away the groups of finches are being separated. Speciation appears
when the specific population colonizes the peak of a hill. Each hill is occupied by
exactly one finch population with the body size and the shape of beaks adapted
to the specific food source. As a result, fifteen ecological niches can be discovered
on the Galápagos archipelago, on which exactly the same number of finch species
have appeared.

In computational intelligence, the adaptive landscape is known as the fitness
landscape. Furthermore, the speciation is more frequently used by solving mul-
timodal problems, where more equivalent problem solutions (i.e., more peaks
within the fitness landscape) are maintained during the algorithm run. In fact,
each peak represents an ecological niche appropriate for speciation [47].

Therefore, different landscapes (from different problems) may pose different
challenges to different algorithms. It is not possible in general to adapt to all
landscapes at the same time. As a result, different algorithms may perform
differently for different problems. In order to solve this a broad spectrum of
various problems, developers of new algorithms draw inspirations from different
natural systems. Nature-inspired algorithms are the most generalized terms and
we will discuss nature-inspired algorithms in greater detail in the next section.

4 Nature-Inspired Algorithms

Nature-inspired algorithms are very diverse. Loosely speaking, we can put nature-
inspired algorithms into three categories: artificial neural networks, evolutionary
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algorithms and swarm intelligence. It is worth pointing out that such categoriza-
tion here is not rigorous. However, it is mainly for the convenience of discussions
in this chapter.

4.1 Algorithm as an Iterative Process

Mathematical speaking, an algorithm A is an iterative process, which aims to
generate a new and better solution x(t+1) to a given problem from the current
solution x(t) at iteration or (pseudo)time t. It can be written as

x(t+1) = A(x(t), p), (1)

where p is an algorithm-dependent parameter. For example, the Newton-Raphson
method to find the optimal value of f(x) is equivalent to finding the critical
points or roots of f ′(x(t)) = 0 in a d-dimensional space. That is,

x(t+1) = x(t) − f ′(x(t))

f ′′(x(t))
= A(x(t)). (2)

Obviously, the convergence rate may become very slow near the optimal point
where f ′(x) → 0. Sometimes, the true convergence rate may not be as quick as
it should be. A simple way to improve the convergence is to modify the above
formula slightly by introducing a parameter p as follows:

x(t+1) = x(t) − p
f ′(x(t))

f ′′(x(t))
, p =

1

1−A′(x∗)
. (3)

Here, x∗ is the optimal solution, or a fixed point of the iterative formula.
The above formula is mainly valid for a trajectory-based, single agent system.

For population-based algorithms with a swarm of n solutions (x
(t)
1 ,x

(t)
2 , ...,x

(t)
n ),

we can extend the above iterative formula to a more general form

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠

(t+1)

= A
(
(x

(t)
1 ,x

(t)
2 , ...,x(t)

n ); (p1, p2, ..., pk); (ε1, ε2, ..., εm)
)
⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠

(t)

,

(4)
where p1, ..., pk are k algorithm-dependent parameters and ε1, ..., εm are m ran-
dom variables. An algorithm can be viewed as a dynamical system, Markov
chains and iterative maps [173], and it can also be viewed as a self-organized
system [174].

4.2 Artificial Neural Networks

The human brain consists of a network of interconnected neural cells (also-called
neurons) which communicate using electrochemical signaling mechanisms. The
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main part of a human neuron (Fig. 3.a) is the cell body that contains a cell
nucleus [39]. The cell body branches out with a number of fibers (dendrites) and
a single long fiber named an axon. The neuron accepts the incoming signals from
its neighbors’ axons through dendrite tips at junctions called synapses, which
inhibit or amplify the signal strength. After the processing of accumulated inputs
inside the nucleus the output signal is propagated through the axon to neurons
down the communication line. The brain function is evolved through short-term
and long-term changes in the connectivity of the neurons, which is considered
as learning.
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Fig. 3. Human and artificial neuron

There is a natural desire to compare the performance of the human brain
with the performance of a digital computer. Like the brain, today’s computers
are capable of highly parallel processing of signals and data. Interestingly, today’s
capacity of a digital computer is comparable to the capacity of the human brain.
Moreover, they are capable of parallel processing. On the other hand, human
brain do not use all of their neurons simultaneously. If it is further assumed that
according to Moore’s law [14], the memory capacity of digital computers doubles
approximately every two years, if this trend continues, it is obviously possible
that the singularity point [15] at which the performance of digital computers
will be greater than those of the human brain has to be reached. Although
computer intelligence has virtually unlimited capacity, this does not mean that
truly intelligence will emerge automatically. It is still a challenging, unresolved
task to figure out how to use such resources to produce any useful intelligence.

The Artificial neural network (ANN) is a simplified and inherently adaptive
mathematical model of the human brain. The elementary part of every ANN
is the artificial neuron (Fig 3.b), which is modeled after the biological brain
cell. In an ANN the neurons communicate through weighted connections that
simulate the electrochemical transfer of signals in the brain. Many different ANN
topologies and neuron models have been presented in the past, each developed
for a specific type of machine learning task like classification, regression (i.e.,
function approximation), or clustering. By far the most practically employed
type of ANN is the multi-layered feed-forward neural network that consists of
the McCulloch-Pitts type of artificial neuron [16].
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The structure of a classical feedforward multi-layered neural network, com-
monly known as a multi-layer perceptron (MLP), is shown in Figure 4. The
external input signals xi, 1 ≤ i ≤ n, enter the network on the left and flow
through multiple layers of neurons towards the outputs oi, 1 ≤ i ≤ m, on the
right. The neuron connectivity exists only from the previous layer to the next
one, so the outputs of neurons in layer l − 1 serve as inputs to the neurons of
layer l. There is no interconnection of neurons within the layer, no backward
connections, and no connections that bypass layers. In a MLP network with L
layers, the first L−1 are called hidden layers and the last one is called the output
layer. Two hidden layers are enough for most practical purposes. We shall use
hi to denote the number of neurons in the i-th hidden layer and m to denote
the number of neurons in the output layer (i.e., the number of network outputs).
We will use the compact notation n/h1/h2/ . . . /hL−1/m to describe such MLP
network with n external inputs.
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Fig. 4. Multi-layer feed-forward neural network

Every connection within the MLP network is assigned a real-valued weight
that amplifies or inhibits the signal traveling over the connection. We will use

notation w
(l)
ij to denote the weight on the j-th input to the i-th neuron in layer

l. The function of a MLP network with fixed structure is determined by a set of
weights on all of its connections.

Neurons in a MLP function as simple processors that gather the weighted
signals on their input lines and transform them into a single numerical output.
In the McCulloch-Pitts neuron model shown in Fig. 3.b this is performed in
two steps. The summation unit adds weighted inputs and shifts the result by an
additional intercept parameter θ called threshold or bias to produce the neuron
activation value v in the following way:

v =

n∑
i=0

wixi, (5)

where x = {x0, . . . , xn} is the augmented input vector with x0 = −1 and w =
{w0, . . . , wn} is the corresponding augmented weight vector with w0 = θ.
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In the second step the activation value is injected into the transfer function
φ to obtain the neuron output y:

y = φ(v). (6)

The Heaviside step function is used in place of φ for classification tasks, while
for regression tasks the popular choice for φ is the logistic function σ:

σ(v) =
1

e−v/ρ
. (7)

Here, ρ is the sigmoid slope parameter with default value 1. Fig. 5 shows the step
function on the left and the logistic function for various values of ρ on the right-
hand side. When a signed version of the sigmoid transfer function is required,
the common choice is the hyperbolic tangent.
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Fig. 5. The step (left) and the sigmoid (right) activation function

The flow of signals in a MLP network with structure n/h1/h2/ . . . /hL−1/m
can be described in a unified form as:

y
(l)
i = φ

⎛
⎝

hl−1∑
j=0

w
(l)
ij y

(l−1)
j

⎞
⎠ , 1 ≤ i ≤ hi; 1 ≤ l ≤ L (8)

where h0 = n, y
(0)
i = xi, hL = m, and oi = y

(L)
i .

Weights represent the programmable part of neural network. In order to per-
form a specific task, we need to train the MLP, i.e., adjust the weights using a set
of training samples with known input-output mappings. This is an example of
supervised learning, which is used in classification tasks with existing records of
correctly labeled patterns or regression tasks with known values of an unknown
nonlinear map in a given set of points.

The weight adaptation in neural networks is achieved by iterative training
algorithms, in which the input parts of the training samples are presented to the
network in succession. A cycle in which all of the training samples are introduced
on the network input is called an epoch. The better known supervised training
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method for the MLP is the error back-propagation algorithm. For each presented
input, the computed network output o is compared with the target vector d to
obtain the prediction error. The usual error measure E in back-propagation
training is the mean squared error (MSE) of the output neurons:

E =
1

m
(d− o)T (d− o) (9)

The weights are then updated in the direction of the negative gradient ∂E/∂w
to reduce the error in the next iteration.

Training continues until the maximum number of epochs is reached or the av-
erage MSE error for the epoch falls below some prescribed tolerance ε. General
methods like cross-validation to prevent over-fitting can also be used for prema-
ture training termination. The complete back-propagation training algorithm is
summarized in Algorithm 1.

Algorithm 1. Pseudo-code of back-propagation ANN
1: repeat
2: initialize weights
3: for all examples(x,y) do
4: propagate the inputs forward to obtain the outputs
5: propagate deltas backwards from output layer to input layer
6: update every weight in network with deltas
7: end for
8: until termination criteria met
9: return artificial neural network

Training continues until the maximum number of epochs is reached or the av-
erage MSE error for the epoch falls below some prescribed tolerance ε. General
methods like cross-validation to prevent over-fitting can also be used for prema-
ture training termination. The complete back-propagation training algorithm is
summarized in Algorithm 1.

4.3 Evolutionary Algorithms

EAs found their origins for basic operations from the Darwinian evolutionary
theory of the survival of the fittest [37], where the fitter individuals in nature have
more chances to survive in the struggle for survivor. Thus, the fitter individuals
are able to adapt better to changing conditions of the environment. The lesser
fit individuals are gradually eliminated from the population by natural selection.

Darwinian theory of survival of the fittest refers to a macroscopic view of
natural evolution [36]. Today, it is known that all characteristic traits that define
the behavior of an individual are written in genes as fundamental carriers of
heredity. Individuals’ outer characteristics (also phenotype) are determined in
genes (also genotype). The view on these individuals as inner characteristics
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is also known as the microscopic view of natural evolution. As matter of fact,
the phenotypic characteristics are encoded into genotypes. Unfortunately, this
encoding is not one-to-one, i.e., the genotype-phenotype mapping is not injective
because one phenotype trait can be determined by more genes. On the other
hand, a genetic material is passed onto the new generation using the process of
reproduction. Reproduction consists of two phases: crossover and mutation. In
the former phase, the genetic material from two parents are combined in order to
generate offspring with new traits, while in the latter phase, the genetic material
of the offspring may be randomly modified.

In order to introduce this Darwinian natural evolution in EAs, some links be-
tween the concepts of both domains should be performed [36]. Natural evolution
is handled by a population of individuals living in an environment that changes
over the time (also dynamic). On the other hand, EAs use the population of
candidate solutions. The environment can be taken as the problem space. Sim-
ilarly, the natural reproduction process is simulated by operators of crossover
and mutation in EAs. Finally, the fitness of the individual in natural evolution
represents the quality of the candidate solution in EAs. A pseudo-code of EA is
presented in Algorithm 2, where two selection operators are supported in EAs. In
the first selection (function select parents), two parents are selected for crossover,
while in the second (function select candidate solution for the next generation),
the candidate solutions are determined for the next generation. When the gen-
erational model of population is selected, the whole population is replaced in
each generation, while using the steady-state model only the worst part of the
population is replaced by the best offsprings.

Algorithm 2. Pseudo-code of evolutionary algorithm

1: initialize population with random candidate solutions
2: evaluate each candidate solution
3: while termination criteria not met do
4: select parents
5: recombine pairs of parents
6: mutate the resulting offspring
7: evaluate each candidate solution
8: select candidate solution for the next generation
9: end while
10: return best agent

Evolutionary computation (EC) was inspired by Darwinian theory of natural
evolution. EC is a contemporary term that captures all the algorithms arising
from the principle of natural selection. Consequently, all algorithms that have
been emerged within this EC domain are known under the name EAs. Loosely
speaking, EAs can be divided into the following types (Fig. 6):

– Genetic Algorithms (GA) [47],
– Genetic Programming (GP) [49],
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– Evolution Strategies (ES)[46],
– Evolutionary Programming (EP) [48],
– Differential Evolution (DE) [13].

Fig. 6. Primarily, EAs differ from each other in terms of the representation of solutions.
For example, GAs operate with a population of mainly binary represented solutions,
ESs use real-valued elements of solutions, GPs represent solutions as trees implemented
in Lisp programming language, while EPs employ the solutions represented as finite
state automata.

EAs have been successfully applied to different areas of optimization, modeling
and simulation, where problems cannot be solved sufficiently using traditional
methods such as gradient-based methods.

4.4 Swarm Intelligence

Swarm intelligence concerns the studies of the collective behavior of multi-agent
and decentralized systems, which may be self-organized and evolving. This term
was probably first used by Beni in 1989 [1], when he developed cellular robots
consisted of simple agents communicating by interactions with other agents
within the neighborhood.

In nature, some social living insects (e.g., ants, bees, termites, etc.) and ani-
mals (e.g., flocks of birds, schools of fishes, etc.) may show some characteristics
that may be classified as swarm intelligence (Fig. 7). Though individual agents
such as ants and bees may follow simple rules, they can carry out complex tasks
collectively. In other words, their decision making is decentralized, while they
are self-organized and act consistently with the intentions of the group. Such
interactions between individuals (such as particles) are local and rule based.

Interactions between particles in a swarm can be direct or indirect. In the
indirect case, two particles are not in physical contact with each other because a
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Fig. 7. Nature-inspired SI-based algorithms - The picture presents the sources of in-
spiration from nature for developing the following SI-based algorithms that follow in
the clockwise direction: natural immune systems, particle swarm optimization, flower
pollination algorithm, bat algorithm (echolocation), cuckoo search (to lay own eggs
into other birds’ nests), fireflies (bioluminescence), bee (foraging of nectar) and ant
colonies(pheromone)

communication is performed via modulation of the environment [38]. For exam-
ple, ants deposit pheromones on their way back from a profitable food source and
other ants will follow paths marked with pheromone. In that way information is
simply spit out without controlling who receives it. In the direct case, informa-
tion is transferred directly without modulation of environment. A good example
of such an interaction mechanism is the honeybees’ ’waggle dance’ to encode
the spatial information: the direction and the distance to the nectar source. The
quality of a new food source is assessed by the forager gauge, based on the sugar
content of the nectar, the distance from the colony and the difficulty with which
the nectar can be collected.

SI-based algorithms are population-based, which uses multiple interacting
agents or particles. Each particle has a position and velocity where the posi-
tion usually represents a solution to the problem of interest. Their interaction
may be described by some mathematical equations, based on the idealized char-
acteristic for the collective behavior of imitated insects or animals (e.g., swarm
of birds, fireflies, etc.). In most SI-based algorithms, all solutions are moved to-
wards the best candidate solution and thus, the new better solutions can be
obtained. Sometimes, problems arise when the best solution cannot be improved
anymore. In this case, stagnation emerges. However, stagnation may be avoided
using an additional mechanisms like local search heuristics, though there is no
guarantee that it will solve the stagnation issue. The pseudo-code of the generic
SI-based algorithm is shown in Algorithm 3.
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Algorithm 3. Pseudo-code of swarm intelligence algorithm

1: initialize swarm within bounds
2: evaluate all particles
3: while termination criteria not met do
4: move all particles
5: evaluate all particles
6: find the best particle
7: end while
8: return best particle

The main characteristics of SI-based algorithms are as follows [38]:

– decentralization via rule-based models,
– interaction among particles is carried locally (collective behavior),
– particle behavior is subordinated to the system behavior (self-organization),
– adapting to changes in the landscape (reasonable robust and flexible).

Some representative SI-based algorithms are as follows:

– Artificial Immune Systems (AIS) [5],
– Particle Swarm Optimization (PSO) [8],
– Flower Pollination (FPA) [11],
– Bat Algorithm (BA) [9],
– Cuckoo Search (CS) [12],
– Firefly Algorithm (FA) [10],
– Artificial Bee Colony (ABC) [7],
– Ant Colony Optimization (ACO) [6].

It is worth pointing out that we can only cover and discuss less than 10% of
all different SI-based algorithms in this brief review. However, the development
of new types of the SI-based algorithms is not finished yet. Almost every day
new SI-based algorithms have been emerging. In this way, there is no doubt that
this area will become more active in the near future.

5 Adaptation and Diversity in Computational Intelligence

Adaptation in nature-inspired algorithms can take many forms. For example,
the ways to balance exploration and exploitation are the key form of adapta-
tion [175]. As diversity can be intrinsically linked with adaptation, it is better
not to discuss these two features separately. If exploitation is strong, the search
process will use problem-specific information (or landscape-specific information)
obtained during the iterative process to guide the new search moves; this may
lead to the focused search and thus reduce the diversity of the population, which
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may help to speed up the convergence of the search procedure. However, if ex-
ploitation is too strong, it can result in the quick loss of diversity in the pop-
ulation and thus may lead to the premature convergence. On the other hand,
if new search moves are not guided by local landscape information, it can typi-
cally increase the exploration capability and generate new solutions with higher
diversity. However, too much diversity and exploration may result in meandered
search paths, thus lead to the slow convergence. Therefore, adaptation of search
moves so as to balance exploration and exploitation is crucial. Consequently, to
maintain the balanced diversity in a population is also important.

Diversity in meta-heuristic algorithms can also appear in many forms. The
simplest diversity is to allow the variations of solutions in the population by
randomization. For example, solution diversity in genetic algorithms is mainly
controlled by the mutation rate and crossover mechanisms, while in simulated
annealing, diversity is achieved by random walks. In most SI-based algorithms,
new solutions are generated according to a set of deterministic equations, which
also include some random variables. Diversity is represented by the variations,
often in terms of the population variance. Once the population variance is get-
ting smaller (approaching zero), diversity also decreases, leading to converged
solution sets. However, if diversity is reduced too quickly, premature conver-
gence may occur. Therefore, a right amount of randomness and the right form
of randomization can be crucial.

In summary, adaptation and diversity in meta-heuristic algorithms can mainly
take the following forms:

– balance of exploration and exploitation,
– generation of new solutions,
– right amount of randomness,
– parameter setting, and
– other subtle form.

In the remainder of this chapter, we discuss the role of adaptation and diversity
in these cases.

5.1 Exploration and Exploitation

The efficiency of a search process in all population-based nature-inspired algo-
rithms depends on two components: exploration and exploitation [21]. The first
component is connected with the generation of new undiscovered regions of the
search space, while the second with directing the search towards the known
good solutions. Both components must be balanced during the search because
too much exploration can lead to inefficient search, while too much exploitation
can lead to the loss of the population diversity that may cause premature con-
vergence. Exploitation and exploration are also referred to as intensification and
diversification [59,176,10].

Exploitation uses any information obtained from the problem of interest so
as to help to generate new solutions that are better than existing solutions.
However, this process is typically local, and information (such as gradients) is
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also local. Actually, it is for a local search. For example, hill-climbing is a method
that uses derivative information to guide the search procedure. In fact, new steps
always try to climb up the local gradient. The advantage of exploitation is that
it usually leads to very high convergence rates, but its disadvantage is that it
can get stuck in a local optimum because the final solution point largely depends
on the starting point.

On the other hand, exploration makes it possible to explore the search space
more efficiently, and it can generate solutions with enough diversity and far from
the current solutions. Therefore, the search is typically on a global scale. The
advantage of exploration is that it is less likely to get stuck in a local mode,
and the global optimality can be more accessible. However, its disadvantages are
slow convergence and waste of a lot of computational efforts because many new
solutions can be far from global optimality.

As a result, a fine balance is required so that an algorithm can achieve the
best performance. Too much exploitation and too little exploration means the
system may converge more quickly, but the probability of finding the true global
optimality may be low. On the other hand, too little exploitation and too much
exploration can cause the search path meander with very slow convergence. The
optimal balance should mean the right amount of exploration and exploitation,
which may lead to the optimal performance of an algorithm. Therefore, a proper
balance is crucially important.

However, how to achieve such a balance is still an open problem. In fact,
no algorithm can claim to have achieved such an optimal balance in the current
literature. In essence, the balance itself is a hyper-optimization problem, because
it is the optimization of an optimization algorithm. In addition, such a balance
may depend on many factors such as the working mechanism of an algorithm,
its setting of parameters, tuning and control of these parameters and even the
problem to be considered. Furthermore, such a balance may not universally
exist [18], and it may vary from problem to problem, thus requiring an adaptive
strategy.

These unresolved problems and mystery can motivate more research in this
area, and it can be expected relevant literature will increase in the near future.

Attraction and Diffusion. The novel idea of attraction via light intensity as
an exploitation mechanism was first used by Yang in the firefly algorithm (FA)
in 2007 and 2008. It is simple, flexible and easy to implement. This algorithm
bases on the flashing patterns and behavior of tropical fireflies, and can naturally
deal with nonlinear multimodal optimization problems.

The movement of firefly i is attracted to another more attractive (brighter)
firefly j as determined by

x
(t+1)
i = x

(t)
i + β0e

−γr2ij(x
(t)
j − x

(t)
i ) + α ε

(t)
i , (10)

where the second term is due to the attraction, and β0 is the attractiveness at r =
0. The third term is randomization with α being the randomization parameter,

and ε
(t)
i is a vector of random numbers drawn from a Gaussian distribution
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at time t. Other studies also use the randomization in terms of ε
(t)
i that can

easily be extended to other distributions such as Lévy flights. A comprehensive
review of the firefly algorithm and its variants has been carried out by Fister et
al. [74,79,75].

In FA, the attractiveness (and light intensity) is intrinsically linked with the
inverse-square law of light intensity variations and the absorption coefficient. As
a result, there is a novel but nonlinear term of β0 exp[−γr2] where β0 is the
attractiveness at the distance r = 0, and γ > 0 is the absorption coefficient for
light [10].

The main function of such attraction is to enable an algorithm to converge
quickly because these multi-agent systems evolve, interact and attract, leading
to some self-organized behavior and attractors. As the swarming agents evolve,
it is possible that their attractor states will move towards to the true global
optimality.

This novel attraction mechanism in FA is the first of its kind in the literature of
nature-inspired computation and computational intelligence. This also motivated
and inspired others to design similar or other kinds of attraction mechanisms.
Other algorithms that were developed later also used inverse-square laws, derived
from nature. For example, the charged system search (CSS) used Coulomb’s law,
while the gravitational search algorithm (GSA) used Newton’s law of gravitation.

Whatever the attraction mechanism may be, from the meta-heuristic point of
view, the fundamental principles are the same: that is, they allow the swarming
agents to interact with one another and provide a forcing term to guide the
convergence of the population.

Attraction mainly provides the mechanisms for exploitation, but, with proper
randomization, it is also possible to carry out some degree of exploration. How-
ever, the exploration is better analyzed in the framework of random walks and
diffusive randomization. From the Markov chain point of view, random walks
and diffusion are both Markov chains. In fact, Brownian diffusion such as the
dispersion of an ink drop in water is a random walk. Lévy flights can be more
effective than standard random walks. Therefore, different randomization tech-
niques may lead to different efficiency in terms of diffusive moves. In fact, it is
not clear what amount of randomness is needed for a given algorithm.

5.2 Generation of New Solutions

The ways of generating new solutions affect the performance of an algorithm.
There are as many ways of solution generations as the number of variants or
algorithms. For example, according to Yang [173], three major ways of generating
the new solutions in SI-based algorithms are:

– Uniform random generation between a lower bound L and an upper bound
U. Thus, the new solution often takes the form

x = L+ ε(U− L), (11)

where ε ∈ [0, 1].
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– Local random walks around a current solution (often the best solution),
which gives

x(t+1) = x(t) + w, (12)

where w is drawn from a Gaussian normal distribution.

– Global Lévy flights provide an efficient way of generating long-jump solutions

x(t+1) = x(t) + L(λ), (13)

where L(λ) obeys a Lévy distribution with the exponent of λ.

However, it is very rare for an algorithm to use only one of the above methods.
In fact, most algorithms use a combination of the above methods together with
other ways of solution generation.

5.3 Right Amount of Diversity via Randomization

As we mentioned earlier, all meta-heuristic algorithms have to use stochastic
components (i.e., randomization) to a certain degree. Randomness increases the
diversity of the solutions and thus enables an algorithm to have the ability to
jump out of any local optimum. However, too much randomness may slow down
the convergence of the algorithm and thus can waste a lot of computational
efforts. Therefore, there is some tradeoff between deterministic and stochastic
components, though it is difficult to gauge what is the right amount of random-
ness in an algorithm? In essence, this question is related to the optimal balance
of exploration and exploitation, which still remains an open problem.

As random walks are widely used for randomization and local search in meta-
heuristic algorithms [10,9], a proper step size is very important. As different
algorithms use different forms of randomization techniques, it is not possible to
provide a general analysis for assessing randomness.

One of the simplest randomization techniques is probably the so-called ran-
dom walk, which can be represented as the following generic equation

x(t+1) = x(t) + sε(t), (14)

where ε(t) is drawn from a standard normal distribution with a zero mean and
unity standard deviation. Here, the step size s determines how far a random
walker (e.g., an agent or a particle in meta-heuristics) can go for a fixed number
of iterations. Obviously, if s is too large, then the new solution x(t+1) generated
will be too far away from the old solution (or more often the current best). Then,
such a move is unlikely to be accepted. If s is too small, the change is too small
to be significant, and consequently such search is not efficient. So a proper step
size is important to maintain the search as efficient as possible. However, what
size is proper may depend on the type of the problem and can also be changed
during the iteration. Therefore, step sizes and thus the amount of randomness
may have to be adaptive.
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5.4 Parameter Settings in Computational Intelligence

Biological species live in a dynamic environment. When the environment changes
these changes are also followed by living beings changing their behavior as deter-
mined by corresponding genetic material written in chromosomes. Those beings
who do not follow these changes are eliminated by the natural selection. The ex-
tinction of mammoths is a well-known example of animals that were not capable
of adapting to new environmental conditions that occurred after the recent Ice
Age.

On the other hand, the changing environment of the Galápagos archipelago
essentially influenced the adaptive radiation of Darwin’s finches. At that time,
some islands had disappeared, while some new ones had emerged because of
volcanic activity within that region. The tropical climate from before the onset
of the recent Ice Age had changed by global cooling that crucially influenced the
vegetation. Consequently, the ancestral finches acquired longer and narrower
beaks better suited to exploring for nectar and insects [3] thus changing their
habitat regarding trees by living on the ground. In line with this, the ground
finches had also changed their feeding habits, i.e., in place of nectar and insect
they fed on seeds. Those ground finches with the shorter beaks were more suitable
for this living space and therefore had more chances of surviving and reproducing
their genetic material for the next generations. Additionally, mutations were
ensured for the modification of this material, where only successful mutations
ensured individuals survived.

In summary, it can be concluded that finches adapted to a changing envi-
ronment with their body size and shape of their beaks. Both characteristics are
written in chromosomes that were changed via crossover and mutation. As mat-
ter of fact, the adaptation process can be viewed from almost three aspects to:
when to adapt (environment), what to adapt (chromosomes), and how to adapt
(crossover and mutation).

How can we use this adaptation metaphor from biology in computational intel-
ligence (CI)? As stated previously, a problem in EAs relates to the environment
in nature. However, this formulation can also be widened to other population-
based CI algorithms. If the problem is solved by an algorithm, then its behavior
is determined by the algorithm parameters. In other words, the algorithm pa-
rameters (also strategic parameters) control the behavior of the algorithm.

For instance, EAs have several parameters like the probability of crossover,
probability of mutation, etc. [36]. The former regulates the probability that the
crossover operator will be applied to two or more parents, while the latter the
probability that the mutation will change a generated offspring. The parame-
ters CR and F are used in DE for the same purposes. The other SI-based and
ANN algorithms use specific algorithm parameters depending on the biologi-
cal, physical, chemical, and all other rules that inspire developers of the new
algorithms [30].

An instance of parameter values set during the run is also-called a parameter set-
ting.Obviously, thedifferentvaluesofparameters, i.e.,parameter settingcan leadto
different results and indirectly to different behavior by an algorithm.
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Therefore, it can be concluded that CI algorithms adapt their parameters (what?)
to a problem to be solved (when?) by changing algorithm parameters (how?).
Links between a natural adaptation and adaptation in CI is made in Table 2,
where the adaptation domains are analyzed according to three different aspects,
i.e., when to adapt, what to adapt and how to adapt.

Table 2. Adaptation in natural and artificial systems

Adaptation When? What? How?

Natural Environment Structures Operators
ANN Problem Perceptrons Learning
EAs and SI Problem Parameter Changing parameter settings

The adaptation in ANNs is embedded into the algorithm’s structures, where
perceptrons learn how to minimize the error rate. On the other hand, the
population-based CI search algorithms improve the fitness by changing the pa-
rameter settings. According to Eiben and Smith [36], the algorithm parameters
can be changed:

– deterministically,
– adaptively,
– self-adaptively.

Deterministic parameter control takes place when the strategy parameters
are changed by some deterministic rule. That means, this deterministic rule is
predefined and therefore any feedback from a search process is not necessary.
For instance, parameters can be changed in a time-varying schedule, i.e., when
a predefined number of generations have elapsed [36].

Adaptive parameter control means that the strategy parameters are changed
according to some form of feedback from the search process. An example of
this parameter control is the well-known 1/5 success rule of Rechenberg [51],
where the mutation strength (probability of mutation) is increased when the
ratio of successful mutation is greater than 1/5 and decreased when the ratio of
successful mutation is less than 1/5. In the first case, the search process focuses
on exploring the search space, while in the second case on searching around the
current solution, i.e., exploiting the search space.

Control parameters are encoded into chromosomes and undergo actions by the
variation operators (e.g., crossover and mutation) using self-adaptive parame-
ter control. The better values of parameter variables and control parameters
have more chances to survive and reproduce their genetic material into the next
generations. This phenomenon makes EAs more flexible and closer to natural
evolution [53]. This feature was firstly introduced in ES by Schweffel [52].

Parameter control addresses only one side of the parameter setting, where the
strategic parameters are changed during the run. In contrast, when the parame-
ters are fixed during the run, an optimal parameter setting needs to be found by
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an algorithm’s developer. Typically, these optimal parameters are searched dur-
ing a tuning. In general, the taxonomy of parameter setting according to Eiben
and Smith [36] is as illustrated in Fig. 8.

Fig. 8. Parameter setting in CI algorithms

Obviously, the different values of strategic parameters may lead to different
results, i.e., the results obtained by one parameter setting can be better than by
another and vice versa. In order to find the best parameter setting, the tuning of
parameters is performed that demands extensive experimental work. This work
can be increased enormously when the algorithm has more parameters to be
tuned, and where also an analysis as to how the combination of the individual
parameters must be taken into consideration [17].

6 Hybridization in Computational Intelligence

This section deals with a hybridization in CI. Here, we are focused on the nature-
inspired CI algorithms. According to their characteristics, two types of the
hybridization in CI can be considered, as follows: hybridization in ANNs and
hybridization in population-based CI search algorithms. Actually, it is hard to
treated both types of hybridizations separately, because the hybridization be-
comes a powerful bond that connects the individual algorithms under the same
umbrella. In line with this, boundaries between individual algorithms composing
such the hybrid algorithm are deleted, while the hybrid algorithm operates as a
homogenous unit by solving the hardest real-world problems.

In the remainder of the chapter, hybridizations of ANNs and population-based
CI search algorithms are presented in details.

6.1 Hybridization in Neural Networks

The hybridization of ANNs with EAs and SI-based algorithms is aimed at solving
two optimization problems arising during the application of ANNs. The first
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problem arises because gradient-based methods for ANN training are susceptible
to getting stuck in local optimums on complex error surfaces. For such cases,
global search methods like EAs and SI-based algorithms can provide a robust and
efficient approach for weight optimization. The second problem arises because
the optimal network structure for a specific task is rarely known in advance and
is usually determined by an expert through a tedious experimentation process.
When using EA or SI-based algorithm, the network topology can be dynamically
adapted to the problem at hand by the insertion and removal of neurons or the
connections between them.

The field of neuro-evolution provides an unified framework for adaptive evolu-
tion and the training of neural networks. In neuro-evolution the ANN structure
and weights are adaptively developed using one of the nature-inspired optimiza-
tion methods with a problem specific fitness function. We can distinguish three
groups of neuro-evolutionarymethods depending on whether the network param-
eters (i.e., weights), topology or both, are evolved. Further, because the concept
of application to the training and evolution of ANN is very similar using either
EAs or SI-based methods, we regard them all under the term of neuro-evolution
in this text (Fig. 9).

Fig. 9. Hybridization in ANNs

6.2 Hybridization in Population-Based CI Search Algorithms

EAs and SI-based algorithms belong to a class of population-based CI search
algorithms. This means, these algorithms maintain a population of solutions in
place of a single point solution during the run. While the single point search
algorithms deal with single points within a fitness landscape, population-based
algorithms investigate the sub-regions of points within the same landscape. Be-
side this inherent parallelism, the population-based search algorithms are more
likely to provide a better balance between the simultaneous exploration of these
sub-regions and exploitation of the knowledge accumulated in the representation
of the solutions.
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As a result, the population-based search algorithms like EAs and SI-based
algorithms, rely on balancing exploration and exploitation within the search
process [36]. The former is connected with discovering new solutions, while the
latter with directing the search process in the vicinity of good solutions. Both
components of the search process are controlled indirectly by the algorithms
parameters. Therefore, the suitable parameter settings can have a great impact
on the performance of the population-based search algorithms. Actually, these
algorithms operate correctly, when a sufficient population diversity is present.
The population diversity can be measured as: the number of different fitness
values, the number of different phenotypes, entropy, and others [21]. The higher
the population diversity, the better the exploration of the search space. Losing
population diversity leads to premature convergence. In SI, stagnation can also
occur where the current best solution can no longer be improved [23].

In general, the population-based search algorithms can be considered as gen-
eral problem solvers that can be successfully applied to the many NP-hard prob-
lems occurring in practice. Unfortunately, the metaphor general problem solver
does not mean that they obtain the best solution for each of our problems. In
this sense, they act similarly to a Swiss Army knife [54] that can be used to
address a variety of tasks. Definitely, the majority of tasks can be performed
better using the specialized tools but, in absence of these tools, the Swiss Army
knife may be a suitable replacement for them. For instance, when slicing a piece
of bread, the kitchen knife is more suitable but when traveling the Swiss Army
knife is fine.

Although population-based CI algorithms provide adequate solutions for most
real-world problems and therefore can even be applied to domains where the
problem-specific knowledge is absent, they perform worse when solving the prob-
lems from domains where a lot of problem-specific knowledge has to be explored.
This is consistent with the so-called No-Free Lunch theorem [18] arguing that
any two algorithms are equivalent when their average performances are com-
pared across all classes of problems. This theorem that in fact destroys our
dreams about developing a general problem solver can fortunately be circum-
vented for a specific problem by hybridizing, i.e., incorporating problem-specific
knowledge into the algorithm. However, no exact solutions of the problems are
needed, in practice, and therefore the primary task is to find the efficient tool
for solving a specific class of problems effectively.

On the one hand, integration of population-based search algorithms with one
or more refinement methods in order to conduct problem-specific knowledge
within the stochastic search process, represents a synergistic combination that
often enhances the performance of the population-based search algorithms [24].
On the other hand, this synergistic combination of population-based search and
refinement methods is capable of better balancing between exploration and ex-
ploitation within the stochastic search process. Obviously, the population-based
search is more explorative, while the refinement methods act more exploita-
tively. Mostly, the refinement methods address the following elements of the
population-based search algorithms [55]:
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– initial population,
– genotype-phenotype mapping,
– evaluation function, and
– variation and selection operators.

This chapter has focused on population-based CI search algorithms composed
within the evolutionary framework. In line with this, the typical refinement meth-
ods applied within this class of algorithms are as follows:

– automatic parameter tuning,
– hybridization of components,
– construction heuristics,
– local search heuristics (also memetic algorithms [19,20]).

In the remainder of the chapter, these refinement methods are illustrated in
detail. This section concludes with a case study, that presents how hybridization
can be performed in typical EAs.

Automatic Parameter Tuning. As an algorithm is a set of interacting Markov
chains, we can in general write an algorithm as

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠

(t+1)

= A[x1, ...,xn, p1, ..., pk, ε1, ..., εm]

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠

(t)

, (15)

which generates a set of new solutions (x1, ...,xn)
(t+1) from the current pop-

ulation of n solutions. This behavior of an algorithm is largely determined by
the eigenvalues of the matrix A that are in turn controlled by the parameters
p = (p1, . . . , pk) and the randomness vector ε = (ε1, ..., εm). From the Marko-
vian theory, we know that the first largest eigenvalue is typically 1, and therefore
the convergence rate of an algorithm is mainly controlled by the second largest
eigenvalue 0 ≤ λ2 < 1 of A. However, it is extremely difficult to find this eigen-
value in general. Therefore, the tuning of parameters becomes a very challenging
task.

The parameter tuning can be defined as an optimization problem that searches
for those values of the strategic parameters that optimize the performance of the
population-based CI search algorithm [17]. In fact, parameter tuning, or tuning
of parameters, is an important topic under active research [17,177]. The aim
of parameter tuning is to find the best parameter setting so that an algorithm
can perform most efficiently for a wider range of problems. At the moment,
parameter tuning is mainly carried out by detailed, extensive parametric studies,
and there is no efficient method in general. In essence, parameter tuning itself
is an optimization problem which requires higher-level optimization methods
to tackle. However, a recent study had shown that a framework for self-tuning
algorithms can be established with promising results [177].
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In summary, studying how the algorithm depends on its parameters is often
of interest to the algorithm’s designer. However, both mentioned tasks occur
by parameter tuning that can be conducted either manually by a designer or
automatically by an algorithm. Because the manually parameter setting is time
consuming, automatic parameter tuning is increasingly prevailing. Here, a tradi-
tional population-based CI search algorithm can be used for automatic tuning.
In this approach, one population-based CI search algorithm controls the perfor-
mance of another by changing its parameter setting, while the other algorithm
solves the original problem and therefore works within the corresponding prob-
lem space. The control algorithm operates in the parameter space of the con-
trolled algorithm, i.e., at the higher level. Therefore, this approach is also named
as meta-heuristic and was introduced by Grefenstette in 1986 [34]. Recently, the
word meta-heuristic (meaning ’higher-level’ [9]) has become used for any com-
bination of population-based CI search algorithms and appropriate refinement
methods.

Hybridization of Components. The EA domain has been matured over more
than 50 years of development. Small numbers of problems in science, as well
as in practice, remain intact by the evolutionary approach. In line with this,
many prominent experts have emerged within this domain together with several
original solutions developed by solving this huge diapason of problems. These
original solutions were mostly tackled for developing new evolutionary operators,
population models, elitism, etc.

Typically, SI-based algorithms borrow the DE operators of mutation and
crossover that replace the original move operator in order to increase the ef-
ficiency of the SI-based search process. Obviously, the DE variation operators
are effective because of their exploration and exploitation power. For instance,
Fister et al. in [31] hybridized the BA algorithm with ’DE/rand/1/bin’ strategy
of applying the mutation and crossover, and reported significant improvements
compared with the original BA algorithm, as well as the other well-known algo-
rithms, like ABC, DE and FA.

Construction Heuristics. Usually, population-based CI search algorithms are
used for solving those problems where a lot of knowledge has to be accumulated
within different heuristic algorithms. Unfortunately, those algorithms operate
well on a limited number of problems. On the other hand, population-based CI
search algorithms are in general more matured and therefore prepared for solving
the various classes of problems, although they suffer from a lack of problem-
specific knowledge. In order to combine the advantages of both, population-based
CI search algorithms are used for discovering new solutions within the search
space, and exploiting these for building new, possibly better solutions.
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Construction heuristics build solutions incrementally, i.e., elements are added
to the solution step by step until the final solution is obtained (Algorithm 4).

Algorithm 4. Pseudo-code of construction heuristic

1: y = ∅
2: while solution y ∈ S not found do
3: add element yi ∈ I to solution y heuristic
4: move the the next element
5: end while

Greedy heuristics are the simplest type of construction heuristics that add new
elements to a solution according to the value of current heuristic function that
can maximize (or minimize) the current non-final set of elements during each
construction step. When the stochastic construction heuristics [60] are used,
the results of construction may depend on some coincidence. As a result, com-
bining the population-based CI search algorithms which are stochastic in their
nature with stochastic construction heuristics form synergy suitable for solving
the hardest real-world problems.

Memetic Algorithms. The hybridization of population-based CI search algo-
rithms with local search methods is also named as memetic algorithms (MA).
The term MA originated from Moscato in 1989 [56] and means: similar as genes
form the ”instructions for building proteins” in genetic, memes are ”instructions
for carrying out behavior, stored in brains” [24]. The term meme was intro-
duced by Dawkins in its famous book The selfish gene [58]. In computer science
and engineering, a meme represents the smallest piece of knowledge that can be
replicated, modified and combined with other memes in order to generate a new
meme [22].

Interestingly, there is a difference between the evolution of memes and evo-
lution of genes. While the former does not alter the memetic information at
this stage, the latter modified the genetic information during the variation pro-
cess. However, both changes have their own metaphor in biology. The first can
be attributed to the Baldwian model of evolution arguing that behavior char-
acteristics can also be learned during the life-time of individual and therefore
not written in genes, while the second is inspired by the Lamarkian model of
evolution stating that each behavior characteristics are written in genes.

A local search [59] is an iterative process of investigating the set of points
in the neighborhood of the current solution and exchanging it, when a better
solution is found [60]. The neighborhood of the current solution y is defined as
a set of solutions achieved by using the elementary operator N : S → 2S . All
points in neighborhood N are reached from the current solution y in k strokes.
Therefore, this set of points is also named k-opt neighborhood of point y.
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Algorithm 5. Pseudo-code of local search

1: generate initial solution y ∈ S
2: repeat
3: find the next neighbor y′ ∈ N (y)
4: if f(y′) < f(y) then
5: f(y) = f(y′)
6: end if
7: until neighbor set is empty

It should be noticed that MAs represent the simplest class of so-called meme-
inspired computation (MC) that are also known as simple hybrids by Chen et al.
in [24]. Recently, MAs have merged with the field of hybridization with adap-
tation. In line with this, several studies have been emerged that extended the
concept of adaptation of parameters also to adaptation of operators [25] that
represent the next step in evolution of MC, i.e., adaptive hybrids. In contrast to
simple hybrids in which domain knowledge is only captured and incorporated
once by a human expert during the design of MAs, adaptive hybrids incorporate
the adaptive strategies and adaptive parameters in order to better suit to solve
the problem as the search process progress [24,26]. To date, the further step of
evolution of MC represents the memetic automation already described in Sec-
tion 1 [28]. In the context of MC, all mentioned refinement methods represent
the attempt to use memes as the carriers of the various kind of knowledge [27].

Case Study: Hybridization of EAs. Fig. 10 illustrates some possibilities how
and where to hybridize EAs. In general, the other population-based CI search
algorithms, e.g., SI can also be hybridized in the similar way.

Fig. 10. How to hybridize EAs
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At first, the initial population can be generated by incorporating solutions
of existing algorithms or by using heuristics, local search, etc. In addition, the
local search can be applied to the population of offsprings. Evolutionary oper-
ators (e.g., mutation, crossover, parent and survivor selection) can incorporate
problem-specific knowledge or apply the operators taken from other algorithms.
Finally, a fitness function evaluation offers more possibilities for a hybridization.
As a matter of fact, it can be used as a decoder that decodes the indirect rep-
resented genotype into a feasible solution. By this mapping, however, various
kinds of the problem-specific knowledge or even the traditional heuristics can be
incorporated within the algorithm.

7 Applications in Computational Intelligence

Applications of various stochastic population-based CI search algorithms are
very diverse, and therefore it is hard to review all the recent developments. In
this chapter, we outline some interesting studies briefly.

7.1 Adaptive EAs

EAs were usually connected with parameter adaptation and self-adaptation. Dif-
ferent forms of adaptation and self-adaptation were also applied to the original
DE in order to improve its performance. For instance, Qin and Suganthan [105]
developed a self-adaptive DE (SaDE). In this version, learning strategy and DE
control parameters F and CR are not demanded to be known in advance. That
means, learning strategy and parameters are self-adapted during the run ac-
cording to the learning experience. Brest et al. [64] proposed a DE variant called
jDE. Here, control parameters are self-adaptively changed during the evolution-
ary process. Another variant of self-adaptive DE with the neighborhood search
was proposed by Yang [112]. GAs also encompass enormous work in adapta-
tion and self-adaptation domain. In line with this, a very interesting work was
proposed by Hinterding et al. [89] that self-adapts mutation strengths and pop-
ulation size. Deb and Beyer [68] developed a self-adaptive GA with simulated
binary crossover (SBX). A more complete reviews of the other works in this
domain can also be found in [32,33,65,69,110].

7.2 Adaptive SI-Based Algorithms

Adaptations in SI were used less frequently than hybridizations. Usually, adapta-
tion is connected with the adaptation and self-adaptation of control parameters,
mutation strategies, learning and etc. Some adaptation forms of ABC was pro-
posed in order to improve search ability of the algorithm, to avoid local optima,
and to speed up convergence. For instance, Liao et al. [97] developed an ABC
algorithm and applied it to long-term economic dispatch in cascaded hydro-
power systems. Furthermore, Pan et al. [103] added a self-adaptive strategy for
generating neighboring food sources based on insert and swap operators, which
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allow the algorithm to work on discrete spaces. Alam and Islam proposed an
interesting ABC variant called artificial bee colony with self-adaptive mutation
(ABC-SAM) which tries to dynamically adapt the mutation step size with which
bees explore the problem search space. In line with this, small step sizes serve
to an exploitation component, while large mutation steps more to exploration
component of the ABC search process.

On the other hand, some interesting adaptation has also been applied to the
bat algorithm (BA). For example, Fister et al. [73] proposed a self-adaptive bat
algorithm (SABA), based on the self-adapting mechanism borrowed from the
jDE algorithm. In addition, adaptation or self-adaptation in cuckoo search (CS)
has yet to be developed.

However, there are some adaptive and self-adaptive variants of the FA. For
instance, Fister et al. extended the original FA with the self-adaptation of con-
trol parameters called also MSA-FFA and achieved better balancing between
exploration and exploitation of the search process. They tested their proposed
approach on the graph coloring and showed very promising results [63]. This
MSA-FFA was modified by Galvez and Iglesias and adopted for continuous op-
timization problems [81]. Yu et al. [113] proposed a self-adaptive step FA to
avoid falling into the local optimum and reduce the impact of the maximum
of generations. Author’s core idea was to set the step of each firefly varying
with the iteration according to current situation and also historical informa-
tion of fireflies. Roy et al. [106] developed a FA variant using self-adaptation of
the algorithm control parameter values by learning from the fireflies’ previous
experiences, which led to a more efficient algorithm.

Adaptations in improving PSO are widely spread in many papers describing
many applications. Since there are many efficient PSO variants, and readers can
refer to the following papers [99,109,115,90,114,95].

7.3 Hybrid ANN+EAs

There is a vast body of literature on the subject of combining EA and ANN,
which is nicely assembled in an indexed bibliography [117]. Early neuro-evolution
approaches focused on ANN training and demonstrated superior efficiency of EA
methods over traditional back-propagation training in many domains [169]. The
shift towards the evolution of network topology required consideration of efficient
encoding schemes to resolve the problem of multi-way genotype to phenotype
maps and avoid small genotypic mutations to result in vastly different pheno-
types [140,164]. Most of the work in the last two decades concentrated on the
simultaneous evolution of both weights and topology, where various paradigms
of EAs have been employed for the evolution of neural networks.

For example, Angeline et al. proposed an approach based on evolutionary
programming (EP) to build recurrent neural networks [119]. A similar EP-based
method for feed-forward ANNs was presented by Yao and Liu [165]. More re-
cently, Oong and Isa described a hybrid evolutionary ANN (HEANN) in which
both the weights and topology were evolved using an adaptive EP method [151].
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The symbiotic adaptive neuro-evolution (SANE) by Moriarty used cooperative
coevolution to evolve neural networks that adapt to input corruption [145,133].

NeuroEvolution of Augmenting Topologies (NEAT) is an approach that evolves
the network topology andadjusts theweights using the genetic algorithm [160,159].
Later, Stanley introduced the HyperNEATwhich used compositional pattern pro-
ducing network as a developmental encoding scheme and was aimed at evolving
large neural networks [158]. HyperNEAT is able to capture symmetries in the ge-
ometric representation of the task and was extended by Risi into Evolvable Sub-
strate HyperNEAT (ES-HyperNEAT) which added adaptive density of hidden
neurons [152]. Evolution of adaptive networks using improved developmental en-
coding that outperformed HyperNEAT was proposed by Suchorzewski [161]. A
multi-objective approach to the evolution of ART networks with adaptive param-
eters for the genetic algorithm was proposed in a PhD thesis by Kaylani [135].
Hierarchical genetic algorithms, which used parametric and control genes to con-
struct the chromosome, were applied for neuroevolution by Elhachmi and Guen-
noun [126]. On the side of ANN training procedures the focus is in recent years
on novel combinations of GA with gradient-based or local optimization methods,
whichwere used to address the problemof stockmarket time-series prediction [120]
and optimize multi-objective processes in material synthesis [128].

Evolution strategy (ES) was regarded as a driving mechanism of ANN evo-
lution by Matteucci [141]. In place of ES, Igel used evolution strategies with
adaptive covariance matrix (CMA-ES) as the neuroevolutionary method in [131].
Kassahun and Sommer presented an improved method called Evolutionary Ac-
quisition of Neural Topologies (EANT), which used more efficient encoding and
balancing exploration/exploitation of useful ANN structures [134].

Adaptive differential evolution (ADE) is among the most recent methods to
train multi-layer ANNs, used by Silva [124], Slowik [157], and Sarangi et al. [153].
Memetic variants of DE were used to solve prediction problems in medicine and
biology [127,122]. Cartesian genetic programming was used by several authors
to efficiently encode evolvable ANN [137,136,162].

7.4 Hybrid ANN+SI

More recently the ANNs have been coupled with SI-based algorithms. Particle
swarm optimization (PSO) was combined with the classical back-propagation
(BP) learning method for the training of feed-forward neural networks by Zhang
et al. [167]. Very recently, a similar hybridization of PSO with a simplex op-
timization method was proposed by Liao et al. [139]. A hybrid of PSO and
gravitational search algorithm (GSA) outperformed each individual method in
ANN training benchmarks [144]. Sermpinis et al. have used the PSO method
with adaptive inertia, cognitive, and social factors to improve the performance
of a radial basis function (RBF) network in the task of exchange rate forecast-
ing [154]. A similar approach by Zhang and Wu uses adaptive chaotic PSO to
train the ANN in a crop classification task [168].

The successful application of PSO in ANN training was followed by the use
of other SI-based algorithms. A hybrid of BP and ACO algorithm was used in
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ANN for financial forecasting [129]. The domain of stock forecasting attracted
researchers who hybridized ANNs with the ABC algorithm [150] and the fish al-
gorithm [156]. A related application of ABC to earthquake time-series prediction
is due to Shah et al. [155].

Additionally, for the most recent SI-based algorithms, adaptive hybridizations
of ANNs with the FA [142,146], the BA [148], the CS [147], and hunting algo-
rithm/harmony search combination [138] have also been carried out with good
results.

ANN training was also approached using the population-based algorithms
which are not strictly nature-inspired, such as magnetic optimization algorithm
[143], chemical reaction optimization [166], and artificial photosynthesis and pho-
totropism [123].

While the majority of hybrid ANN+SI-based approaches are concerned with
ANN training, evolution of both weights and topology using the PSO was pre-
sented by Garro et al. [130] and by Ali [118]. A version of PSO called jumping
PSO was recently used by Ismail and Jeng to obtain self-evolving ANN [132].

7.5 Hybrid EAs

There are many hybrid variants of EAs. Most studies in this domain are based
on hybridization with local search, and recently also on borrowing some princi-
ples from SI. In line with this, Grimaccia et al. [84] combined properties of PSO
and GA, and tested performance on the optimization of electromagnetic struc-
tures. Galinier and Hao in [80] proposed a hybrid EA (HEA) for graph coloring.
Their algorithms combined a highly specialized crossover operators with Tabu
search [83]. GA-EDA [104] is a good example of a hybrid EA which uses genetic
and estimation of distribution algorithms. Niknam [102] developed a new EA
algorithm called DPSO-HBMO, which based on the combination of honey bee
mating optimization [87] and discrete PSO [171]. Lin [98] proposed a new EA
combining DE with the real-valued GA.

7.6 Hybrid SI-Based Algorithms

In order to improve original SI-based algorithms, researchers usually hybridized
these with other meta-heuristics, different local searches, fuzzy logic, machine
learning methods and other mathematical principles. This chapter has briefly
summarized some SI-based hybrids.

ACO has been hybridized in many applications. For instance, Chitty and Her-
nandez [67] developed a hybrid technique which added the principles of dynamic
programming to ACO for solving the problem of dynamic vehicle routing. On
the other hand, Wang et al. [107] proposed a hybrid routing algorithm mobile
ad hoc network which based on ACO and zone routing framework of border-
casting. Hybrid ACO was also applied to cope with well-known problem a job-
shop scheduling in the study [88]. Moreover, Duan and Yu [70] applied hybrid
ACO using memetic algorithm for solving the traveling salesman problem.
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ABC was also hybridized in many papers to enhance its performance and
efficiency. Duan et al. [71] proposed an ABC and quantum EA, where the ABC
was adopted to increase the local search capacity and also the randomness of
populations. Data clustering was improved with hybrid ABC (HABC) [111],
where authors introduced crossover operator of genetic algorithm to ABC and
enhance information exchange between bees. Large-scale global optimization was
tackled by memetic ABC (MABC) algorithm [72], where the original ABC was
hybridized with two local search heuristics: the Nelder-Mead algorithm (NMA)
and the random walk with direction exploitation (RWDE) in order to obtain the
better balance between exploration and exploitation. Moreover, a hybrid simplex
ABC algorithm (HSABC) which combines NMA with ABC was proposed and
applied for solving the inverse analysis problems [92]. An interesting hybrid
variant of ABC was also applied to solve graph coloring problems [77].

BA has also been developed many hybrid variants, which try to enhance the
efficiency, performance, quality of solutions, and faster convergence. A hybrid
BA with path relinking was proposed by Zhou et al. [116], where authors in-
tegrated the greedy randomized adaptive search procedure (GRASP) and path
relinking into the BA, and applied to capacitated vehicle routing problem. Fister
et al. [76] created a hybrid BA (HBA) in order to combine the original BA with
DE strategies as a local search instead of classic random walk. An extension of
the SABA was done by the same authors in [31] where they hybridized the SABA
(HSABA) also with ensemble DE strategies that were used as a local search for
improving current best solution directing the swarm of a solution towards the
better regions within a search space. Wand and Guo developed a novel hybrid
BA with harmony search and applied to global numerical optimization [85].

Chandrasekaran and Simon [66] proposed a hybrid CS (HCS) algorithm that
was integrated with a fuzzy system in order to cope with multi-objective unit
commitment problems. Layeb [94] developed a novel quantum inspired CS that
connects the original CS with quantum computing principles. The main advan-
tage of this hybridization was a good balance between exploration and exploita-
tion during the search process. Li and Yin [96] created a new hybrid variant of
CS called CS-based memetic algorithm and applied it for solving permutation
flow shop scheduling problems. Since the creation of CS, a diverse range of hy-
brid variants this algorithm have emerged. Therefore, readers are invited to read
the review of these algorithms in the paper [91].

FA is another example of very successful SI-based algorithm that experienced
many promising hybridizations since its birth in 2008. Although a comprehen-
sive description of this algorithm was performed in papers [74,75], let us present
some efficient and recent hybrid variants of the FA only. Kavousi-Fard et al. [93]
combined a support vector machine (SVM) and modified FA in order to get
a hybrid prediction algorithm and applied it to the short term electrical load
forecast. Guo et al. in [86] combined FA with harmony search. The result of this
hybridization was an effective algorithm for solving the global numerical opti-
mization problems. On the other hand, Fister et al [78] developed a memetic FA
(MFFA) and applied it to the graph coloring problems. Interesting approach to
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the distributed graph coloring problem based on the calling behavior of Japanese
tree frogs were accomplished by Hernández and Blum in [170].

PSO underwent many hybridization suitable for continuous and combinato-
rial optimization. For instance, Lovbjerg et al. [100] created a hybrid PSO and
borrowed some concepts from EAs. A very interesting method was proposed
by Marinakis and Marinaki [101] where authors developed new approach based
on PSO, greedy randomized adaptive search procedure and expanding neigh-
borhood search. This algorithm was then tested on the probabilistic traveling
salesman problem. Zhang et al. proposed a DEPSO algorithm [172], which com-
bined PSO with DE operators, while Wang and Li [108] combined PSO with
simulated annealing (SA).

Obviously, there are other developments and applications, but the purpose of
this chapter is not to review all of they. Therefore, interested readers can refer
to more specialized literature.

8 Conclusion

Adaptation becomes the metaphor for reactions of the natural or artificial system
to the conditions of the changing environment. There are a lot of renewed inter-
ests in this area. Therefore, this chapter starts from a definition of adaptive sys-
tems and identifies the human domains that already deal with this phenomenon.
Adaptation has also been encountered in the domain of problem-solving. In or-
der to solve these problems, developers usually try to develop new algorithms
imitating the main characteristics of natural processes. Interestingly, the nature
does not impose questions only, but also provides the answers how to solve these.
However, these answers provides diverse sources of inspiration for scientists in
order to solve their problems.

Researchers have always been trying to find the general problem solver suit-
able to solve all classes of the real-world problems. However, this is usually not
possible as constrained by the NFL theorem. Hybridization of nature-inspired
algorithms may partly overcome the limitations of the NFL theorem, when solv-
ing a specific problem by incorporating the problem-specific knowledge in the
algorithm structures. In line with this, some popular hybridization methods have
been presented in the chapter, with emphasize on the memetic algorithms. This
initial idea of hybridizing the population-based CI nature-inspired algorithms
with the local search has led to the emergence of the new area in CI, i.e., memetic
computation that represents the class of new general problem solvers suitable
for solving the hardest real-world problems.

Here, we have identified three main sources of inspiration that are the most
commonly used nowadays for the development of the new nature-inspired al-
gorithms, i.e., human brains, a Darwinian natural selection, and behavior or
some social living insects and animals. In line with this, three classes of nature-
inspired algorithms have been emerged, in general: ANNs, EAs and SI-based.
All the mentioned classes of algorithms placed under the umbrella of CI are de-
scribed in detail throughout this chapter. The descriptions of these algorithms
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are emphasized in terms of adaptation and hybridization that can be applied in
order to increase their performance. At the end, the papers tackling the recent
advances in this CI domains are reviewed shortly.

In summary, we hope that this chapter (and the chapters in the book) contains
a sufficient information to inspire researchers to begin searching for solutions in
the beautiful dynamic world represented by the adaptation and hybridization
in CI.
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