
Upgrading EasyTime: from a textual to a visual language

Iztok Fister Jr.,∗ Tomaž Kosar,† Marjan Mernik,‡ and Iztok Fister§

Abstract

Measuring time in mass sports competitions is usually performed using expensive measuring

devices. Unfortunately, these solutions are not acceptable by many organizers of sporting compe-

titions. In order to make the measuring time as cheap as possible, the domain-specific language

(DSL) EasyTime was proposed. In practice, it has been proven to be universal, flexible, and

efficient. It can even reduce the number of required measuring devices. On the other hand, pro-

gramming in EasyTime is not easy, because it requires a domain-expert to program in a textual

manner. In this paper, the domain-specific modeling language (DSML) EasyTime II is proposed,

which simplifies the programming of the measuring system. First, the DSL EasyTime domain

analysis is presented. Then, the development of DSML is described in detail. Finally, the DSML

was tested by regular organizers of a sporting competition. This test showed that DSML can be

used by end-users without any previous programming knowledge.

To cite paper as follows: I. Fister Jr., T. Kosar, M. Mernik, I. Fister, Upgrading EasyTime:

from a textual to a visual language, In Proceedings of the 21st International Electrotechnical and

Computer Science Conference, Portorož, Slovenia, 2012.

∗University of Maribor, Faculty of electrical engineering and computer science Smetanova 17, 2000 Maribor;

Electronic address: iztok.fister@guest.arnes.si
†University of Maribor, Faculty of electrical engineering and computer science Smetanova 17, 2000 Maribor;

Electronic address: tomaz.kosar@uni-mb.si
‡University of Maribor, Faculty of electrical engineering and computer science Smetanova 17, 2000 Maribor;

Electronic address: marjan.mernik@uni-mb.si
§University of Maribor, Faculty of electrical engineering and computer science Smetanova 17, 2000 Maribor;

Electronic address: iztok.fister@uni-mb.si

1

ar
X

iv
:1

20
8.

41
26

v1
 [

cs
.P

L
]

 2
0

A
ug

 2
01

2

mailto:iztok.fister@guest.arnes.si
mailto:tomaz.kosar@uni-mb.si
mailto:marjan.mernik@uni-mb.si
mailto:iztok.fister@uni-mb.si

I. INTRODUCTION

The problem of measuring time in sporting competitions is relatively old. Many ap-

proaches have been developed to deal with this problem. One of the more efficient solutions

was the domain-specific language (DSL) [1][2] EasyTime[6]. The development of EasyTime

arose from the need to cover the results of double triathlon competition in 2009, but out-

grown limits of this particular triathlon competition. After its first successful use in practice,

two demands for the future development of EasyTime were revealed:

• how to satisfy the demands of various competitions,

• how to simplify the handling of the measuring system in order for it also be usable for

regular organizers of sporting competitions.

The first demand was satisfied with EasyTime. EasyTime is a small and efficient DSL with

high expressive-power. Until now, it has been applied to various sports competitions like

triathlons, time-trials in bicycling, cyclo-cross, running, etc. Unfortunately, its widespread

usage was limited because of a lack of measuring devices. Specifically, the equipment for

measuring times in a swim course is very expensive. Therefore, we concentrated on measur-

ing time in relatively small competitions. It is encouraging that many industries showed an

interest in using EasyTime for their measuring systems.

Although the original EasyTime demonstrated itself to be robust and universal in the

practice, it still required a domain-specific expert to program the measuring domain. There-

fore, the development of a domain-specific modeling language (DSML) EasyTime II was

proposed that could satisfy the second demand. Note that DSMLs are currently one of the

most interesting research topics in the area of computer languages.

In this paper, the development of an EasyTime II DSML is presented that consists of

four core stages: meta-model construction, the definition of a graphical model, obtaining the

semantic model, and code generation. In the beginning, the meta-model for our language is

defined. Then, the graphical elements are designed that represent the language concepts and

are visible to a user on a panel. In the third stage, the semantic model is obtained. Finally,

this model is transformed into an executable code (e.g., Java code) with a model-to-code

transformation.

2

The structure of this paper is as follows: in Section 2 we describe the problem of measuring

time in sports competitions. Section 3 presents DSML EasyTime II and its development

stages from the meta-model to code generation. Section 4 describes the practical example

using this DSML. The paper concludes with practical experience and directions for future

development.

II. MEASURING TIME IN SPORTING COMPETITIONS

Not long ago, measuring time in sporting competitions was performed manually by people

who wrote the results for each competitor on paper and at the end, put the competitors in

order according to their achievements. This way of measuring time is impossible nowadays

because of the large number of participants. On the other hand, there are many modern

sports, e.g., the triathlon, aquathlon, etc. that require a very precise measurement of results.

Therefore, there is a significant need for electronic measuring devices. These devices need

to work precisely and securely in all weather conditions, i.e., in rain and snow.

”Multi-sport” refers to competitions, where more than one discipline is involved. The

most popular multi-sport disciplines are:

• triathlon (consists of swimming, biking and running),

• duathlon (consists of running, biking and running),

• aquathlon (consists of swimming and running),

• winter triathlon (consists of running, mountain biking, cross-country skiing),

• etc...

Moreover, all these disciplines consist of courses with various distances. For example, a

triathlon is divided according to distance into: Ironman, Half Ironman (also Ironman 70.3),

Olympic triathlon, Sprint triathlon, etc. Measuring time for these multi-sport competitions

is more complicated because of their long duration and a number of the competitors.

In Figure 1, the Olympic triathlon is presented. The Olympic triathlon consists of 1.5

km of swimming, 40 km of biking and 10 km of running [4]. Additionally, competitors have

to go through two transition areas. In the first transition area, the competitor leaves their

3

2 x 5

TA 1 TA 2

SWIM BIKE RUN

CP 3 CP 4 CP 5 CP 7CP 6 CP 8CP 0 CP 2CP 1

MP 1 MP 2 MP 3 MP 4

MD

 10 km 40 km1.5 km

30 x
0.05

4 x
10

TA 1 TA 2

SWIM BIKE RUN

CP 3 CP 4 CP 5 CP 7CP 6 CP 8CP 0 CP 2CP 1

MP 1 MP 2 MP 3 MP 4

MD

30 x
0.05

1.5 km 40 km

4 x
10

2 x 5

FIG. 1: Olympic triathlon

swimming equipment and prepares for biking. In the second transition area, the competitor

has to drop their bike and prepares for running. Every discipline in this triathlon is split

into laps. Therefore, in addition to measuring time, it is also necessary to count laps.

On the other hand, ”single-sport” competitions consist of only one sport (e.g., running,

swimming, cycling, etc.). Measuring time in these competitions is not as difficult as it is in

multi-sports.

III. DESIGN AND IMPLEMENTATION OF EASYTIME II

DSMLs have been developed in a number of areas to facilitate the construction of mod-

els at a level closer to the conceptual model, thereby making model implementation more

accessible to domain experts [5][9][12][13]. DSMLs are a special kind of languages, where

the user does not need to write code. These languages go to the 4th generation of computer

languages and are currently one of the most interesting topics of research in the area of

computer languages. These languages have a bright future, because of their simple usage.

The design and implementation of these languages is a bit more complicated and can be

split into the following four core stages:

• meta-model construction,

• definition of a graphical model,

• obtaining the semantic model, and

• code generation.

The development of DSML EasyTime II grew out of DSL EasyTime. Note that Easy-

Time is a little textual language for measuring time in sports competitions, which is very

efficient and assures the flexibility of a measuring system. The language is based on the

4

compiler/interpreter implementation approach [3]. For more information, the design and

implementation of DSL EasyTime has been presented in more detail in [6][7][8].

However, each DSL development started with a domain analysis, in which the concepts

of DSL are defined and represented within a feature diagram. The feature diagram describes

the dependencies between these concepts. Furthermore, the concepts can be broken-down

into features and sub-features. Let us remember the main concept of application domain

measuring time in triathlon consists of the following features: events, control points, measur-

ing time, transition areas and agents. Events arise via different disciplines, e.g., sub-features,

swimming, cycling, and running. Each control point is described by its start and finish time

together with the number of laps to go. The feature transition area can be calculated by the

difference between the finish and start times, while the measuring place is determined by

the sub-features updating time and decreasing laps. Finally, the feature agent, which is ded-

icated to processing events received from the measuring device, can act either automatically

or manually.

The feature diagram served as a basis for EasyTime II development. Fortunately, this

diagram can be incorporated into the Eclipse Modeling Framework tool (EMF) [16]. The

feature diagram was used as a reference for the construction of a meta-model. Furthermore,

the meta-model served as a basis for the Eclipse Graphical Modeling tool (GMF) [14][17],

in which the used graphical interface (GUI) is defined. Then, the model transformations

must be defined in order to call the domain framework, which is a platform that provides

functions to implement the semantics of DSMLs in a specific environment. In order to obtain

a semantic model, this GUI is mapped to the EMF concepts. Finally, this semantic model is

translated into an executable code - Java code, which is executed on a Java Virtual Machine.

In the rest of paper, the DSML development stages are described in more detail.

A. Meta-model construction

Meta-modeling is the construction of a collection of concepts within a certain domain

presented in a context diagram. A model is an abstraction of phenomena in the real world.

That is, the meta-model highlights the properties of the real processes. As a result, the

model conforms to its meta-model in the way that a computer program conforms to the

grammar of the programming language in which it is written [10][11][12]. In essence, with a

5

meta-model, a business logic of a process that performs the measuring time in triathlon is

described.

EMF allows us to create good meta-models in a very simple way. The meta-model that

performs the triathlon presented in Figure 1 is presented in Figure 2. The meta-model was

developed in Ecore notation. In Figure 2, it can be seen that this meta-model is a conceptual

class diagram (defines a set of concepts in the form of classes together with relations).

FIG. 2: Meta-model example

This meta-model consists of two main features: root, and competition. These main

features are connected with sub features: swim, bike, run, transition area 1, transition

area 2, arrow, arrow2, auto and manual. These sub-features are linked with features by a

connection. Usually, cardinality 0..* is used. Cardinality 0..* means that we might use this

feature exactly 0 or more times in our model.

B. Definition of the graphical model

EasyTime II was modeled using the Eclipse Graphical Modeling Framework (GMF).

GMF allow us to create visual aspects of a generated graphical editor [15]. These visual

aspects consist of the following definitions:

• graphical definition,

• tooling definition,

• mapping definition.

In a graphical definition, we choose the elements that will be shown to the user. Then,

a tooling definition is performed, in which a visual model is defined, i.e., the palette and

6

toolbox. Finally, the meta-model (business logic) is mapped into a visual model (graphical

and tooling definition).

A sample of the graphical model definition for measuring time in sporting competitions

is illustrated in Figure 3.

Create GMF
Project

Develop
Domain
Model

Develop
Graphical
Definition

Develop
Tolling

Definition

Develop
Mapping

Model

Create
Generator

Model

Generate
Diagram
Plug-in

*.ecore

*.gmfgraph

*.gmftool

*.gmfmap

*.gmfgen

FIG. 3: GMF

In GMF, images are embedded into a modeling environment. These images are created

by GIMP and Inkscape editors, and are shown in the model editor. For tooling definition

model, the pictures that are shown in the toolbox are created.

C. Obtaining the semantic model

It is not sufficient to complete a DSML definition by only specifying the notions and

their representations. The complete definition of DSML requires the semantics of language

concepts. Therefore, the abstract syntax defined with Ecore is mapped into the function calls

from the measuring time environment. These mappings lead to model transformations that

are applied on EasyTime model instances at runtime in order to obtain their counterparts

in real EasyTime infrastructures. The model-to-code transformations can be written in

MOFScript, where rules contain calls to the domain framework of the EasyTime system.

D. Code generation

Currently, the definition of the model-to-code transformation is still in progress.

7

IV. WORKING WITH EASYTIME II

In Figure 4, the measuring time for the Olympic triathlon is presented. Users control

the measuring with a simple toolbox, where they can choose between the following sports

elements:

• swim (the graphical representation of swimming is a swimmer),

• bike (the graphical representation of cycling is a cyclist),

• run (the graphical representation of running is a runner).

Furthermore, users can select between elements that symbolize:

• transition area 1, and

• transition area 2.

For agents, users can select between:

• a manual agent (the graphical representation of the manual agent is a simple clock),

and

• an automatic agent (the graphical representation of the automatic agent is a com-

puter).

The arrows symbolize the order in which the sports are performed, and connect the particular

sport with the agents.

V. CONCLUSION

In this paper, we presented the design and implementation of DSML EasyTime II. Easy-

Time II is an extension of DSL EasyTime and was developed to simplify the measuring of

time in real sport competitions. In contrast to its predecessor, which required a domain

expert to program the measuring system, EasyTime II is dedicated to ordinary users that

8

FIG. 4: EasyTime II in action

can control the complicated tasks through easy to use graphical elements. In the future, we

intent to measure time in a real-world competition.

[1] Mernik, M. and Heering, J. and Sloane, A., When and how to develop domain-specific lan-

guages. ACM computing surveys, 37(4):316-344, 2005.

[2] Deursen van, A. and Klint, P. and Visser, J., Domain-specific languages: An annotated bibli-

ography. ACM Sigplan Notices, 35(6):26-36, 2000.

[3] Kosar, T. and Martinez Lopez, P.E. and Barrientos, P.A. and Mernik, M., A preliminary study

on various implementation approaches of domain-specific language. Information and Software

Technology, 50(5):390-405, 2008.

[4] Petschnig, S., 10 Jahre IRONMAN Triathlon Austria. Meyer & Meyer Verlag, 2007

[5] Fall, A. and Fall, J. A domain-specific language for models of landscape dynamics. Ecological

Modeling, 141(1-3):1-18, 2001.

[6] Fister, Jr. I. and Fister, I. and Mernik, M. and Brest, J. Design and implementation of

domain-specific language easytime. Computer Languages, Systems & Structures, 37(4):151-

167, 2011.

[7] Fister, I. Jr. and Mernik, M. and Fister I. and Hrnčič, D. Implementation of the domain-

specific language easy time using a lisa compiler generator. In FedCSIS : proceedings of the

9

Federated Conference on Computer Science and Information Systems, pages 809–816, Szczecin,

Poland, 2011. Los Alamitos: IEEE Computer Society Press.

[8] Fister I. Jr., Mernik, M., Fister, I., Hrnčič, D., Implementation of EasyTime Formal Semantics

using a LISA Compiler Generator. Computer Science and Information Systems, Article in

press.

[9] Sprinkle, J., Rumpe, B., Vangheluwe, H. , Karsai, G., Meta-modeling: state of the art and

research challenges. Proceedings of the 2007 International Dagstuhl conference on Model-

based engineering of embedded real-time systems, November 04-09, 2007, Dagstuhl Castle,

Germany

[10] Tolvanen, J.-P., Rossi, M., MetaEdit+: defining and using domain-specific modeling languages

and code generators. Companion of the 18th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications, October 26-30, 2003, Anaheim,

CA, USA

[11] Krahn, H., Rumpe, B., Volkel, S., MontiCore: Modular development of textual domain specific

languages. In: Paige, R.F., Meyer, B. (eds.) Proceedings of the 46th International Conference

Objects, Models, Components, Patterns (TOOLS-Europe), pp. 297-315. Springer, Heidelberg

(2008).

[12] Gray, J., Tolvanen, J.P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J., Domain-specific

modeling. In: Fishwick, P.A. (ed.) Handbook of Dynamic System Modeling. Chapman &

Hall/CRC, Boca Raton (2007).

[13] Czarnecki, K., Eisenecker, U., W.,Generative programming: methods, tools, and applications,

ACM Press/Addison-Wesley Publishing Co., New York, NY, 2000.

[14] Eclipse GMF, http://wiki.eclipse.org/Graphical_Modeling_Framework.

[15] Learn Eclipse GMF in 15 minutes, http://www.ibm.com/developerworks/opensource/

library/os-ecl-gmf.

[16] Eclipse EMF, http://www.eclipse.org/modeling/emf/.

[17] Eclipse GMF, http://www.eclipse.org/modeling/gmp/.

Updated 20 August 2012.

10

http://wiki.eclipse.org/Graphical_Modeling_Framework
http://www.ibm.com/developerworks/opensource/library/os-ecl-gmf
http://www.ibm.com/developerworks/opensource/library/os-ecl-gmf
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmp/

	I Introduction
	II Measuring time in sporting competitions
	III Design and implementation of EasyTime II
	A Meta-model construction
	B Definition of the graphical model
	C Obtaining the semantic model
	D Code generation

	IV Working with EasyTime II
	V Conclusion
	 References

