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Abstract Firefly algorithms belong to modern meta-heuristic algorithms inspired
by nature that can be successfully applied to continuous optimization
problems. In this paper, we have been applied the firefly algorithm,
hybridized with local search heuristic, to combinatorial optimization
problems, where we use graph 3-coloring problems as test benchmarks.
The results of the proposed memetic firefly algorithm (MFFA) were
compared with the results of the Hybrid Evolutionary Algorithm (HEA),
Tabucol, and the evolutionary algorithm with SAW method (EA-SAW)
by coloring the suite of medium-scaled random graphs (graphs with 500
vertices) generated using the Culberson random graph generator. The
results of firefly algorithm were very promising and showed a potential
that this algorithm could successfully be applied in near future to the
other combinatorial optimization problems as well.
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1. Introduction

Nature, especially biological systems, has always been an inspiration
for those scientists who would like to transform some successful features
of a biological system into computer algorithms for efficient problem
solving. Birds, insects, ants, and fish may display some so-called, collec-
tive or swarm intelligence in foraging, defending, path finding, etc. This
collective intelligence of self-organizing systems or agents has served as
a basis for many good and efficient algorithms developed in the past,
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e.g.: ant-colony optimization [7], particle swarm optimization [22], ar-
tificial bee colony [11, 12, 21], bacterial foraging [23]. Today, all these
algorithms are referred to as swarm intelligence.

The firefly algorithm (FFA) belongs to swarm intelligence as well. It
was developed by X. S. Yang [28]. This algorithm is based on the behav-
ior of fireflies. Each firefly flashes its lights with some brightness. This
light attracts other fireflies within the neighborhood. On the other hand,
this attractiveness depends on the distance between the two fireflies. The
closer the two fireflies are, the more attractive they will seem to other.
In FFA, each firefly represents a point in a search space. When the at-
tractiveness is proportional to the objective function the search space is
explored by moving the fireflies towards more attractive neighbors.

FFA has displayed promising results when applied to continuous opti-
mization problems [29, 30]. Conversely, within the area of combinatorial
optimization problems, only a few papers have been published to date.
Therefore, aim of this paper is to show that FFA can be applied to this
kind of optimization problems as well. In this context, FFA for graph
3-coloring (3-GCP) has been developed. 3-GCP can informally be de-
fined as follows: How to color a graph G with three colors so that none
of the vertices connected with an edge is colored with the same color.
The problem is NP -complete as proved by Garey and Johnson [16].

The most natural way to solve this problem is in a greedy fashion.
Here, the vertices are ordered into a permutation and colored sequen-
tially one after the other. However, the quality of coloring depends on
the order in which the vertices will be colored. For example, the naive
method orders the vertices of graph randomly. One of the best tradi-
tional heuristics for graph coloring today is DSatur by Brelaz [2], which
orders the vertices v according to saturation degree ρ(v). The saturation
degree denotes the number of distinctly colored vertices to the vertex v.

This problem cannot be solved by an exact algorithm for graph in-
stances of more than 100 vertices. Therefore, many heuristic methods
have been developed for larger instances of graphs. These methods can
be divided into local search [15] and hybrid algorithms [26]. One of
the more successful local search heuristic was Tabucol developed by
Herz and De Werra [19], who employed the tabu search proposed by
Glover [17]. The most effective local search algorithms today are based
on reactive partial local search [1, 25], adaptive memory [20], and vari-
able search space [1]. On the other hand, various evolutionary algorithms
have been hybridized using these local search heuristics. Let us refer to
three such algorithms only: the hybrid genetic algorithm by Fleurent and
Ferland [13], the hybrid evolutionary algorithm by Galinier and Hao [14],
and the memetic algorithm for graph coloring by Lü and Hao [24].
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Some modifications of the original algorithm need to be performed in
order to apply FFA to 3-GCP. The original FFA algorithm operates on
real-valued vectors. On the other hand, the most traditional heuristics
act on the permutation of vertices. In order to incorporate the benefits
of both, solutions of the proposed memetic FFA (MFFA) algorithm are
represented as real-valued vectors. The elements of these vectors rep-
resent weigths that determine how hard the vertices are to color. The
higher the weight is, the sooner the vertex should be colored. The per-
mutation of vertices is obtained by sorting the vertices according to their
weights. The DSatur traditional heuristic is used for construction of 3-
coloring from this permutation. A similar approach was used in the
evolutionary algorithm with the SAW method (EA-SAW) of Eiben et
al. [8], and by the hybrid self-adaptive differential evolution and hybrid
artificial bee colony algorithm of Fister et al. [10, 12]. Additionally, the
heuristical swap local search is incorporated into the proposed MFFA. In
order to preserve the current best solution in the population, the elitism
is considered by this algorithm.

The results of the proposed MFFA algorithm for 3-GCP were com-
pared with the results obtained with EA-SAW, Tabucol, and HEA by
solving an extensive set of random medium-scale graphs generated by
the Culberson graph generator [6]. The comparison between these al-
gorithms shows that the results of the proposed MFFA algorithm are
comparable, if not better, than the results of other algorithms used in
the experiments.

The structure of this paper is as follows: In Section 2, the 3-GCP is
discussed, in detail. The MFFA is described in Section 3, while the ex-
periments and results are presented in Section 4. The paper is concluded
with a discussion about the quality of the results, and the directions for
further work are outlined.

2. Graph 3-Coloring

Let us suppose, an undirect graph G = (V,E) is given, where V is
a set of vertices v ∈ V for i = 1, . . . , n, and E denotes a set of edges
that associate each edge e ∈ E for i = 1, . . . ,m to the unordered pair
e = {vi, vj} for i = 1, . . . , n and j = 1, . . . , n. Then, the vertex 3-coloring
(3-GCP) is defined as a mapping c : V → S, where S = {1, 2, 3} is a
set of three colors and c a function that assigns one of the three colors
to each vertex of G. A coloring s is proper if each of the two vertices
connected with an edge are colored with a different color.

3-GCP can be formally defined as a constraint satisfaction problem
(CSP). It is represented as a pair ⟨S, ϕ⟩, where S denotes the search
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space, in which all solutions s ∈ S are feasible, and ϕ a Boolean function
on S (also a feasibility condition) that divides the search space into fea-
sible and unfeasible regions. To each e ∈ E the constraint be is assigned
with be(⟨s1, . . . , sn⟩) = true if and only if e = {vi, vj} and si ̸= sj .
Suppose that Bi = {be|e = {vi, vj} ∧ j = 1 . . .m} defines the set of
constraints belonging to variable vi. Then, the feasibility condition ϕ is
expressed as a conjunction of all the constraints ϕ(s) = ∧v∈VBv(s).

As in evolutionary computation, constraints can be handled indirectly
in the sense of a penalty function, that punishes the unfeasible solutions.
The farther the unfeasible solution is from the feasible region, the higher
is the penalty function. The penalty function is expressed as:

f(s) = min
n∑

i=0

ψ(s, Bi), (1)

where the function ψ(s, Bi) is defined as:

ψ(s, Bi) =

{
1 if s violates at least one be ∈ Bi,
0 otherwise.

(2)

Note that Eq. (1) also represents the objective function. On the other
hand, the same equation can be used as a feasibility condition in the
sense that ϕ(s) = true if and only if f(s) = 0. If this condition is
satisfied a proper graph 3-coloring is found.

3. Memetic Firefly Algorithm for Graph
3-Coloring

The phenomenon of fireflies is that fireflies flash their lights that can
be admired on clear summer nights. This light is produced by a compli-
cated set of chemical reactions. Firefly flashes in order to attract mating
partners and serve as a protection mechanism for warning off potential
predators. Their light intensity I decreases when the distance r from
the light source increases according to term I ∝ r2. On the other hand,
air absorbs the light as the distance from the source increases.

When the flashing light is proportional to the objective function of the
problem being optimized (i.e., I(w) ∝ f(w)), where w represents the
candidate solution) this behavior of fireflies can represent the base for
an optimization algorithm. However, artificial fireflies obey the following
rules: all fireflies are unisex, their attractiveness is proportional to their
brightness, and the brightness of a firefly is affected or determined by
the landscape of the objective function.

These rules represent the basis on which the firefly algorithm acts [28].
The FFA algorithm is population-based, where each solution denotes a
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point in the search space. The proposed MFFA algorithm is hybridized
with a local search heuristic. In this algorithm, the solution is repre-
sented as a real-valued vector wi = (wi,1, . . . , wi,n) for i = 1 . . .NP ,
where NP denotes the size of population P . The vector wi determines
the weights assigned to the corresponding vertices. The values of the
weights are taken from the interval wi,j ∈ [lb, ub], where lb and ub are
the lower and upper bounds, respectively. The weights represent an ini-
tial permutation of vertices π(vi). This permutation serves as an input
to the DSatur heuristic that obtains the graph 3-coloring. The pseudo-
code of the MFFA algorithm is illustrated in Algorithm 1.

Algorithm 1 Pseudo code of the MFFA algorithm
1: t = 0; fe = 0; found = FALSE; s∗ = ∅;
2: P (t) = InitializeFFA();
3: while (!TerminateFFA(fe, found)) do
4: fe += EvaluateFFA(P (t));
5: P ′ = OrderFFA(P (t));
6: found = FindTheBestFFA(P (t), s∗);
7: P (t+1) = MoveFFA(P (t), P ′);
8: t = t+1;
9: end while

As can be seen from Algorithm 1, the search process of the MFFA
algorithm (statements within the while loop) that is controlled by gen-
eration counter t consists of the following functions:

EvaluateFFA(): evaluating the solution. This evaluation is divided
into two parts: In the first part, the solution wi is transformed into
a permutation of vertices π(vi) according to the non-decreasing
values of the weights. In the second part, the permutation of ver-
tices π(vi) is decoded into a 3-coloring si by the DSatur heuristic.
Note that the 3-coloring si represents the solution of 3-GCP in its
original problem space, where the quality of the solution is evalu-
ated according to Eq. (1). Conversely, looking for a new solution
is performed within the real-valued search space.

OrderFFA(): forming an intermediate population P ′ by copying
the solutions from the original population P (t) and sorting P (t)

according to the non-decreasing values of the objective function.

FindTheBestFFA(): determining the best solution in the popula-
tion P (t). If the best solution in P (t) is worse than the s∗ the later
replaces the best solution in P (t), otherwise the former becomes
the best solution found so far s∗.
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MoveFFA(): moving the fireflies towards the search space accord-
ing to the attractiveness of their neighbour’s solutions.

Two features need to be developed before this search process can
take place: the initialization (function InitializeFFA()) and termination
(function TerminateFFA()). The population is initialized randomly ac-
cording to the following equation:

wi,j = (ub− lb) · rand(0, 1) + lb, (3)

where the function rand(0, 1) denotes the random value from the interval
[0, 1]. The process is terminated when the first of the following two condi-
tion is satisfied: the number of objective function evaluations fe reaches
the maximum number of objective function evaluations (MAX FES) or
the proper coloring is found (found == true).

The movement of i-th firefly is attracted to another more attractive
firefly j, and expressed as follows:

wi = wi + β0e
−γr2i,j (wj −wi) + α(rand(0, 1)− 1

2
), for j = 1...n. (4)

Note that the move of the i-th firefly is influenced by all the j-th fireflies
for which I[j] > I[i]. As can be seen from Eq. (4), two summands are
added to the current firefly position wi. The former reflects the attrac-

tiveness between firefly i and j (determined by β(r) = β0e
−γr2i,j ), while

the latter is the randomized move in the search space (determined by
the randomized parameter α). Furthermore, the attractiveness depends
on the β0 that is the attractiveness at r = 0, absorbtion coefficient γ,
and Euclidian distance between the attracted and attracting firefly ri,j .

3.1 The Heuristical Swap Local Search

After the evaluation step of the MFFA algorithm, the heuristical swap
local search tries to improve the current solution. This heuristic is ex-
ecuted until the improvements are detected. The operation of this op-
erator is illustrated in Fig. 1, which deals with a solution on G with
10 vertices. This solution is composed of a permutation of vertices v,
3-coloring s, weights x, and saturation degrees ρ. The heuristical swap
unary operator takes the first uncolored vertex in a solution and orders
the predecessors according to the saturation degree descending. The
uncolored vertex is swapped with the vertex that has the highest satu-
ration degree. In the case of a tie, the operator randomly selects a vertex
among the vertices with higher saturation degrees (1-opt neighborhood).
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Figure 1. The heuristical swap unary operator.

In Fig. 1, an element of the solution corresponding to the first uncol-
ored vertex 5 is in dark gray and the vertices 0 and 3 with the highest
saturation degree are in light gray. From vertices 0 and 3, heuristical
swap randomly selects vertex 3 and swaps it with vertex 5 (the right-
hand side of Fig. 1).

4. Results

In the experimental work, the results of the proposed MFFA algo-
rithm were compared with the results of: EA-SAW, HEA, and Tabucol.
The algorithms used in the experiments were not selected coincidentally.
In order to help the developers of new graph coloring algorithms, the au-
thors Chiarandini and Stützle [4] made the code of Tabucol and HEA
available within an online compendium [5]. On the other hand, this
study is based on the paper of Eiben and al. [8], in which the authors
proposed the evolutionary algorithm with SAW method for 3-GCP. The
source code of this algorithm can also be obtained from Internet [18].
The goal of this experimental work was see whether the MFFA could
also be applied to combinatorial optimization problems like 3-GCP.

The characteristics of the MFFA in the experiments were as follows.
The population size was set at 500. The MAX FES was fixed at 300,000
by all algorithms to make this comparison as fair as possible. All algo-
rithms executed each graph instance 25 times. The algorithm parame-
ters of MFFA were set as follows: α = 0.1, β0 = 0.1, and γ = 0.8. Note
that these values of algorithm parameters optimize the performance of
MFFA and were obtained during parameter tuning within the extensive
experimental work. This parameter tuning satisfies the first perspective
of parameter tuning, as proposed by Eiben and Smit [9], i.e., choosing
parameter values that optimize the algorithm’s performance. In order
to satisfy the second perspective of the parameter tuning, i.e., how the
MFFA performance depends on its parameter values, only the influence
of the edge density was examined because of limited paper length.

The algorithms were compared according to the measures success rate
(SR) and average evaluations of objective function to solution (AES).
While the first measure represents the ratio between the number of suc-
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cessfully runs and all runs, the second determines the efficiency of a
particular algorithm. The aim of these preliminary experiments was to
show that MFFA could be applied for 3-GCP. Therefore, any comparison
of algorithms according to the time complexity was omitted.

4.1 Test-Suite

The test-suite, considered in the experiments, consisted of graphs gen-
erated with the Culberson random graph generator [6]. The graphs gen-
erated by this generator are distinguished according to type, number of
vertices n, edge probability p, and seeds of random number generator q.
Three types of graphs were employed in the experiments: uniform (ran-
dom graphs without variability in sizes of color sets), equi-partite, and
flat. The edge probabilities were varied in the interval p ∈ 0.008 . . . 0.028
with a step of 0.001. Finally, the seeds were varied in interval q ∈ 1 . . . 10
with a step of one. As a result, 3×21×10 = 630 different graphs were ob-
tained. That is, each algorithm was executed 15, 750 times to complete
this experimental setup.

The experimental setup was selected so that a phase transition was
captured. The phase transition is a phenomenon that accompanies al-
most all NP-hard problems and determines the region where the NP-
hard problem passes over the state of ”solvability” to a state of “un-
solvability” and vice versa [31]. Typically, this region is characterized
by ascertain problem parameter. This parameter is edge probability for
3-GCP. Many authors have determined this region differently. For exam-
ple, Petford and Welsh [27] stated that this phenomenon occurs when
2pn/3 ≈ 16/3, Cheeseman et al. [3] when 2m/n ≈ 5.4, and Eiben et
al. [8] when 7/n ≤ p ≤ 8/n. In the presented case, the phase transition
needed to be by p = 0.016 over Petford and Welsh, by p ≈ 0.016 over
Cheeseman, and between 0.014 ≤ p ≤ 0.016 over Eiben et al.

4.2 Influence of the Edge Density

During this experiment, the influence of the edge density on the per-
formance of the tested algorithms were investigated. The results are
illustrated in Fig. 2. This figure consists of six diagrams corresponding
to graphs of different types (uniform, equi-partite, and flat), and ac-
cording to the measures SR and AES. In these diagrams, the average
of those values accumulated after 25 runs are presented. Especially, we
focus on the behavior of tested algorithms within the phase transition.

As can be seen in Fig. 2.a and Fig. 2.c, the results of MFFA out-
performed the results of the other algorithms according to the measure
SR on uniform and equi-partite graphs. HEA was slightly better than
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Figure 2. Results of algorithms for 3-GCP solving different types of random graphs.

Tabocol during the phase transition (p ∈ [0.014, 0.016]), whilst EA-SAW
exposed the worst results within this region. As can be seen in Fig. 2.e,
flat graphs were the hardest nuts to crack for all algorithms. Here, the
results of MFFA according to measure SR were slightly worse but com-
parable to the results of HEA and Tabucol, whilst EA-SAW reported
the worst results.

According to the measure AES (Fig. 2.b and Fig. 2.d), the best re-
sults were reported for MFFA by coloring the uniform and equi-partite
graphs. On average, MFFA found solutions using a minimum number
of evaluations. Note that the highest peak by p = 0.014 denotes the
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hardest instance of uniform and equi-partite graphs to color for almost
all the observed algorithms. Conversely, the graph with p = 0.015 was
the hardest instance when coloring the flat graphs.

In summary, the proposed MFFA outperformed the results of HEA
and Tabucol when coloring the uniform and equi-partite graphs, while
by coloring the flat graphs it behaved slightly worse. The results of EA-
SAW fell behind the results of the other tested algorithms for coloring
all other types of graphs.

4.3 Discussion

The results of other parameter tuning experiments have been omitted
because of limited paper length. Notwithstanding, almost four charac-
teristics of MFFA could be exposed from the results of the last exper-
iment. First, it is very important whether the movement of i-th firefly
according to Eq. (4) is calculated from the position of the j-th fire-
fly taken from the population P (t) or the intermediate population P ′,
because the former incorporates an additional randomness within the
search process. Thus, the results were significantly improved. Second,
an exploration of the search space depends on the best solution in the
population that directs the search process to more promising regions of
the search space. As a result, this elitist solution needs to be preserved.
Third, the local search serves as a search mechanism for detailed explo-
ration of the basins of attraction. Consequently, those solutions that
would normally be ignored by the regular FFA search process can be
discovered. Fourth, the α parameter determines the size of the random-
ness move within the search space. Unfortunately, all conducted tests
to self-adapt this parameter did not bear any improvement, at this mo-
ment. In summary, these preliminary results of MFFA encourage us to
continue developing this algorithm in the future.

5. Conclusion

The results of MFFA showed that this algorithm could in future be
a very promising tool for solving 3-GCP and, consequently, the other
combinatorial optimization problems as well. In fact, it produced better
results than HEA and Tabucol, when coloring the medium-scale uni-
form and equi-partite graphs. Unfortunately, this algorithm is slightly
worse on flat graphs that remains the hardest to color for all the tested
algorithms.

However, these good results could be misleading until further experi-
ments on large-scale graphs (graphs with 1,000 vertices) are performed.
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Fortunately, in the sense of preserving the obtained results, we have
several ways for improving this MFFA in the future.
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