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a b s t r a c t

Planning proper sports training has always been a very challenging task for coaches. In line with this,
they need to have almost two special abilities: firstly, to have a lot of earlier experiences with sports
training and secondly, to know the capability of their athletes very well. New ways in planning sports
training have emerged with development of pervasive and mobile technologies. Recently, a GPS receiver
is one of the most useful parts of each standard sports watch that enables athletes to track the duration
of their sports activities and analyze them later on digital computers using GPS viewers. Most sport's
watches are also capable of measuring an athlete's heart rate during activities. Both measures represent
reliable data sources that can be used for planning the sports trainings by coaches. In this paper, we
introduce a novel intelligent planning method for sports training sessions, where the training plans are
generated on digital computers using the bat algorithm according to reliable data obtained from sports
watches. Real-world experiments showed promising results that encouraged us to proceed with this
research also in the future.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Athletes today are having a lot of possibilities to improve their
training performance and therefore can be better prepared for
competitions. Nowadays, a big part of the sports life of every
athlete is connected with training technologies [1]. These tech-
nologies are composed of:

� smart sport watches,
� power and cadence meters,
� different variants of heart rate monitors,
� different variants of music players,
� and many more.

Sport watches probably represent the most important pieces of
these technologies. The first interest in sport watches arose in the
middle of the 90s when the Finnish company Polar released very
powerful sport watches with heart rate monitor and timer for
measuring the duration of sport activities. These watches have the
following functions:

� monitoring the total duration of a sports activity,
� watching current and maximum heart rates,
� monitoring current elevation and total ascent,
� current temperature,
� saving activities on sport watch.

Additionally, cyclists have also obtained some sensors which
were put on the bikes and are capable of monitoring the speed.
Furthermore, later variants of these watches provided connection
with digital computers and in line with this, an online analysis of
workouts.

These sports watches had been one of the more important
training tools for every amateur and professional athlete in the
past. Then, the training technology made a big step forward. An
expansion of the GPS technology allowed many companies to
develop sports watches with GPS receivers [2]. These watches
have huge advantages over previous generations of watches,
because they measure very precisely the characteristics data about
trainings when athletes using the GPS receiver. As a result, runners
and bicyclists do not need to use any special sensors for determin-
ing their speed, altitude and duration of activities. Currently,
companies like Garmin, Polar and Suunto are making serious
efforts to develop additional options for such watches in order to
meet the needs of athletes worldwide.
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Certainly, connection with digital computers and online analy-
sis of trainings are the greatest advance of these sport watches. For
instance, Garmin Connect web service developed a majestic online
training service, where users can analyze their workouts after
their performed activities. The web service also encourages ath-
letes to practice more in order to reach better results on the official
competitions. On the other hand, the results of these workouts can
also be exported into a digital computer in XML form and
analyzed later.

An aim of this paper is to propose an intelligent planning for
sports training using a digital computer on the basis of reliable
data exported from sports watches in the form of XML activity files
[3]. Essentially, two measures are important for this planning: a
duration of activity and an average heart rate. Both measures are
precisely measured using the sports watches which saves data
about specific activities in their internal memory and can be
exported onto a digital computer for the further analyses. On the
basis of these exported data, the plan of sports training for specific
athlete is performed using a bat algorithm.

The bat algorithm belongs to a class of Swarm Intelligence (SI)
[4–6]. This algorithm arose in the year 2010, when Yang [7] created
a new optimization algorithm inspired by the behavior of micro-
bats that use a special mechanism called echolocation. Echoloca-
tion is used by bats for orientation and prey finding. The original
bat algorithm was applied to various benchmark functions, where
have achieved solid results. The convergence rate of this algorithm
was improved in the study [8], where the authors hybridized the
original bat algorithm with differential evolution strategies (HBA).
In the study [9] the same authors dealt with hybridizing the bat
algorithm using differential evolution strategies [11] and a random
forests machine learning method (HBARF). The complete survey
regarding bat algorithm can be found in [12].

The proposed algorithm for planning the sports training ses-
sions is able to create the training plan for a given training period
of a specific athlete. It starts with a set of base trainings char-
acterized by different durations and average intensities deter-
mined by the average heart rate. The base training sessions are
selected by the coaches on the basis of XML activity files obtained
in the past. Thus, it is assumed that the long-duration training
sessions are more suitable for the starting periods of training,
while the more intensive short-duration training sessions need to
be performed during the more matured period of training, when
the athlete is already fit. Indeed, the number of fully intensive
training sessions is kept to a minimum.

Although there are a lot of different commercial tools for
tracking sports activities, as we know there is no system for the
intelligent planning of sports training on a digital computer. Our
proposed algorithm is therefore mainly devoted to coaches as a
help tools for planning the optimal training period for the specific
athlete preparing himself/herself for upcoming competitions. The
results of this algorithm conform with the expectations of profes-
sional coaches and therefore open-up a lot of potentials for the
further development.

The structure of this paper is as follows. Section 2 introduces
the basics of a sport training. Here, the mathematical model is
developed for planing the sports training. In Section 3, the bat
algorithm for planning the sports training sessions is discussed in
detail. Experiments and results are the subject of Section 4. Section
5 provides a conclusion, where our work is summarized and the
directions for the further developments are outlined.

2. Sports training

According to the definition the sports training is a process built
on scientific and pedagogical principles, which affects the

performance of an athlete using planned and systematic training
sessions, thus allowing him/her to strive for the highest achieve-
ments [13]. The ultimate effect of the supplied process of sports
training can be seen in an athlete's improved form, the increased
capacity of his/her body or/and in the worst case, over-training. In
relation to the expected competitive performance, the sport form
can be described as a phenomenon of short-term increased
capacity by the athlete. An athlete's achieved sport form in an
expected competition means that his process of sport training was
the most effective. The efficient process of sports training is also
described as a qualitative approach that optimizes an athlete's
time dedicated to training. Namely, the frequency of sports
exercise is always in conflict with its intensity. In other words, a
large amounts of time spent exercising could not be carried out
very intensively.

Most athletes use heart rate monitors for measuring the sports
training intensity. The time duration (TD) measured by a stop-
watch and the intensity of the workout measured by a heart rate
monitor (HR) are the simple metrics for monitoring the difficulty
of sport training. Banister [14] has made step forward towards
smart training analysis during training sessions using the method
“TRAining IMpulse” (TRIMP) for quantifying the training load.
Nowadays, power meters are more often used by bicyclists for
evaluating the difficulty of sport training intensity instead of the
physiological parameter HR. In line with this, Friel [10] for this
purpose proposed a measure Training Stress Score (TSS) as a way
of expressing the difficulty from a training session regarding
workload. The measure can be expressed as a product of the
intensity and duration necessary to accomplish the workout.

2.1. Mathematical definition of the problem

The problem of planning the sports training can be mathema-
tically defined as follows. Let us assume a set of base training
sessions T ¼ ft1;…; tng characteristics for certain athlete. Each base
training session is specified by the athlete's average heart rate HRi

and the time duration TDi, which determine the profit rate as
pi ¼ ci � HRi=TDi, where ci ¼HRi=HR and HR ¼ 1=n �∑n

j ¼ 1HRj. Here,
a coefficient ci is used to normalize the values of HRi. The HRi is
measured by minutes (min), while the TDi by beats per minutes
(BpM), counting the number of heart beats per minutes. The task
of the optimal planning the sports training is to find the integer
vector y¼ fy1;…; yng determining the training plan such that the
error rate (er) is minimized, in other words

ern ¼min jK�hrj; ð1Þ
where K the intensity factor that prescribed the maximal heart
rate reached during the training period, and hr is defined as
follows:

hr¼ 1
n

∑
n

i ¼ 1
HRi � yirK; yiA ½1;n�: ð2Þ

Note that hr denotes the calculated heart rate hr obtained by a
specific training plan y. In practice, coaches would like that the
calculated heart rate hr is as close to the prescribed intensity factor
K as possible. As a result, when the ideal solution is found the
calculated heart rate hr matches value of the intensity factor. In
that case, the error rate hr must be zero.

Additionally, a training effort value ev is calculated for each
training plan that estimates an average effort needed by an athlete
to finish it. The training effort value is expressed as

ev¼max ∑
n

i ¼ 1
pi � yi: ð3Þ

The vector y in Eq. (3) counts the number of the same training
sessions yi, where the efficiency of i-th training session depends
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on the intensity HRi and time duration TDi. Both metrics are
inversely related. This means that the intensity of training
decreases when the time duration increases, and vice versa. In
Eq. (3), this relationship is captured by introducing the profit rate
pi.

In summary, training sessions of less intensity and longer
duration are preferred by this equation. Here, coaches are inter-
ested in how to determine a sensible number of base training
sessions in order to bring the athlete in the full form. Note that the
average training effort is indirectly regulated by the intensity
factor K. When the athlete is near to optimal form the parameter
K is set below the average heart rate of trainings included into the
base training set HR, in other words, KoHR, where HR ¼
∑n

i ¼ 1HRi.

3. Swarm intelligence and the bat algorithm

The hardest optimization problems (also NP-hard problems
[15]) cannot be solved exactly because of their time as well as
space complexity. Therefore, meta-heuristic algorithms have been
more popular became to solve these problems approximately.
Usually, these algorithms take an inspiration for their operation
from nature. There are two main categories of nature-inspired
algorithms, i.e., evolutionary algorithms [16] and swarm intelli-
gence [5]. The former imitates a Darwin's evolutionary theory [17],
where the fitter individuals have more chances to survive in a
struggle for survival, while for the latter, an inspiration presents on
the first look simple creatures that are able to perform some
inherent actions. However, together in group, these creatures i.e.,
social insects and animals, are suitable to perform complex tasks,
e.g. building magnificent nests by termites. Mainly, some impor-
tant swarm intelligence algorithms are as follows: Particle Swarm
Optimization (PSO) [18], Artificial Bee Colony (ABC) [19–21], Firefly
Algorithm (FA) [22,23], Ant Colony Optimization (ACO) [24].

The original bat algorithm is one of the younger members of
the swarm intelligence. It was developed in 2010 by Yang [7]. The
inspiration for his work was micro-bats and their special mechan-
ism named echolocation. Echolocation is a mechanism uses by
bats for orientation and finding their preys. Bats are not the only
creatures using such a mechanism.

The original bat algorithm is population based, where each
individual represents the candidate solution. The candidate solu-
tions are represented as vectors xi ¼ ðxi1;…; xinÞT for i¼ 1…Np
with real-valued elements fxijg, where each elements can capture
values from interval xlb…xub. Thus, xlb and xub denote the corre-
sponding lower and upper bounds, while the population size is
determined by Np parameter.

Algorithm 1. Original bat algorithm.

Input: Bat population xi ¼ ðxi1;…; xinÞT for i¼ 1…Np, MAX_FE.
Output: The best solution xbest and its corresponding value

f minminðf ðxiÞÞ.
1: init_bat();
2: eval¼evaluate_the_new_population;
3: f min ¼ find_the_best_solutionðxbestÞ; {initialization}
4: while termination_condition_not_meet do
5: for i¼1 to Np do
6: z¼generate_new_solution ðxiÞ;
7: if randð0;1Þ4ri then
8: z¼ improve_the_best_solution ðxbestÞ
9: end if {local search step}
10: f new ¼ evaluate_the_new_solutionðzÞ;
11: eval¼ evalþ1;
12: if f newr f i and Nð0;1ÞoAi then

13: xi ¼ z; f i ¼ f new;
14: end if {save the best solution conditionally}
15: f min ¼ find_the_best_solutionðxbestÞ;
16: end for
17: end while

The pseudo-code of the original bat algorithm is illustrated in
Algorithm 1, where bats' behavior is captured within the fitness
function of the problem to be solved. The original bat algorithm
consists of the following components [25]:

� initialization (lines 1–3): initializing the algorithm parameters,
generating the initial population, evaluating this, and finally,
determining the best solution xbest in the population,

� generate_the_new_solution (line 6): moving the virtual bats in
the search space according to the physical rules of bat
echolocation,

� local_search_step (lines 7–9): improving the best solution using
random walk heuristic [26],

� evaluate_the_new_solution (line 10): evaluating the new
solution,

� save_the_best_solution_conditionally (lines 12–14): saving the
new best solution under some probability Ai similar to simu-
lated annealing [27],

� find_the_best_solution (line 15): finding the current best
solution.

Initialization of the bat population is performed randomly.
Then, each candidate solution is evaluated. Note that evalua-
te_the_new_population calculates the fitness for each virtual bat
in the population using evaluate_the_new_ solution function. Gen-
erating the new solutions is performed according to the following
equations:

Q ðtÞ
i ¼QminþðQmax�QminÞNð0;1Þ;

vðtþ1Þ
i ¼ vti þðxt

i �bestÞQ ðtÞ
i ;

xðtþ1Þ
i ¼ xðtÞ

i þvðtþ1Þ
i ; ð4Þ

where Nð0;1Þ is a random number drawn from a Gaussian
distribution with zero mean and a standard deviation of one. A
random walk heuristic [26] implemented in the function impro-
ve_the_best_solution modifies the current best solution according
to the equation:

xðtÞ ¼ bestþϵAðtÞ
i Nð0;1Þ; ð5Þ

where Nð0;1Þ denotes the random number drawn from a Gaussian
distribution with zero mean and a standard deviation of one, ϵ
being the scaling factor, and AðtÞ

i the loudness. A local search is
launched with the probability of pulse rate ri. As already stated,
the probability of accepting the new best solution in the compo-
nent save_the_best_solution_conditionally depends on loudness Ai.
Actually, the original BA algorithm is controlled by two algorithm
parameters: the pulse rate ri and the loudness Ai. Typically, the rate
of pulse emission ri increases and the loudness Ai decreases when
the population draws nearer to the local optimum. Both character-
istics imitate natural bats, where the rate of pulse emission
increases and the loudness decreases when a bat finds a prey.
Mathematically, these characteristics are captured using the fol-
lowing equations:

Aðtþ1Þ
i ¼ αAðtÞ

i ; rðtÞi ¼ rð0Þi ½1�expð�γϵÞ�; ð6Þ
where α and γ are constants. Actually, the α parameter plays a
similar role as a cooling factor in the simulated annealing algo-
rithm that controls the convergence rate of this algorithm.
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3.1. Modified bat algorithm for the planning sports training sessions

In an early stage of the emergence, the original bat algorithm
has been applied primarily to continuous optimization problems
[28–32]. Recently, some tries to use this algorithm also by solving
the discrete optimization problems that have been emerged
[33,34]. A problem of planning the sports training sessions is a
typical discrete problem that had never been solved using the
computer technology before.

Although many other evolutionary [35–39,11] and swarm
intelligence algorithms [20,21,23] could be applied for solving
the mentioned problem, in this paper, the bat algorithm is used
essentially because of its simplicity. In fact, this algorithm
demands only few control parameters and it exposes a low time
complexity solving the real-world problems.

Some modifications of the original bat algorithm are needed in
order to prepare it for the planning sports training sessions. That
is, the candidate solutions in the original bat algorithm are
represented as real-valued vectors x, while the problem of plan-
ning the sports training sessions demands an integer vectors y
denoting the number of training sessions. Therefore, some map-
ping between representation of solution in real-valued search
space to the solution in a problem space is needed, where it is
represented as an integer vector. In the proposed modified bat
algorithm (MBA), this mapping is performed as follows.

A candidate solution in the proposed modified bat algorithm
(MBA) is represented using the real-valued vector xi ¼ fxi1;…;

xingT for i¼ 1…n with elements xijA ½0;1�, same as the original bat
algorithm. The evaluation function is calculated as follows. At first,
the permutation of base trainings πi ¼ fπi1;…;πing is mapped from
the vector xi such that the following relation is valid:

xiπi1
oxiπi2

o…oxiπin
: ð7Þ

Then, the number of base training sessions yi ¼ fyi1;…; yingT is
calculated according to the equation:

yij ¼ ⌈
ðn�πijÞ �m

N
⌉; subject to ∑

n

i ¼ 1
yi ¼m; ð8Þ

where N¼ n � ðnþ1Þ=2 counts the sum of a sequence of numbers
from 1…n, ðn�πijÞ denotes weights, and m determines the
number of training days (also a training period). Thus, the sum
of all base training sessions must be equal to the training period m.
Furthermore, all base trainings must be considered in each
training plan. Finally, the training effort value is determined for
the candidate solution according to Eq. (3).

An example of mapping the candidate solution xi via permuta-
tion of the base training sessions πi to the final training plan yi for
a training period of the 30 days is illustrated in Table 1.

Let us suppose the base training set with five base trainings and
profits p¼ f1:31;0:43;0:52;4:48;1:91g. Then, the training effort
value for the corresponding training plan yi is determined by
ev¼68.90.

3.2. Repairing the infeasible solutions

Usually, candidate solutions that are constructed according to
Eq. (1) are infeasible, i.e., they violate a condition that limits the

calculated heart rate hr of constructed training plan to be below
the intensity factor K. In other words, each constructed solution
must satisfy the condition hrrK . When the infeasible solution is
detected it is repaired [40] in order to become feasible. An
algorithm illustrated in Algorithm 2 is applied to MBA for planning
the sports training sessions to handle the infeasible solutions.

Algorithm 2. MBA repairing algorithm.

Input: hr, y - infeasible solution.
Output: hr, y - feasible solution, if hrrK .
1: t ¼ 0; tl¼∅; max_k¼ 0;
2: while tod and hr4K do
3: i¼ randð1; dÞ4 i=2tl;
4: for j¼1 to d do
5: dif j ¼ try_swapðy; i; jÞ;
6: if dif j4max_k then
7: max_k¼ dif j;
8: k¼ j;
9: end if
10: end for
11: if kZ0 then
12: do_swapðy; i; kÞ;
13: hr¼ hr�max_k;
14: end if
15: tl¼ tl [ i;
16: t ¼ tþ1;
17: end while
18: return hr;

An input of MBA repairing algorithm (Algorithm 2) represents
the infeasible solution y with its calculated heart rate. An output
consists of the same variables, but the repaired candidate solution
can be either the feasible when the condition hrrK is satisfied or
infeasible when the satisfaction condition is not met.

The algorithm consists of two loops. The outer loop (lines 2–17)
is executed until all of the i-th base trainings are exhausted or the
satisfaction condition is met. In the inner loop (lines 4–10), all of
the j-th base trainings are selected one by one. Then, a pair of base
training (i,j) is constructed and the difference of the average heart
rates between the original and the modified permutation obtained
by swapping the i-th and j-th base trainings in the original
permutation π is identified. As a result, the inner loop is termi-
nated when the best move (i,k) having the maximal difference
max_k is obtained. This move is then applied to the original
permutation.

4. Experiments and results

The aim of our experimental work was to show that the
algorithm for planning the sports training is capable to create
plans for sports training sessions of the similar quality as those of
the coaches. The experiments relied on the data obtained during
the real training process by an amateur cyclist over more than four
years. During this period, more than 1000 files were produced
using the sport watches and transferred from them to the
computer in the form of XML activity files. Planning the number
of base training sessions was performed in a period of 2 months, in
which the specific athlete has prepared for the cycling National
Championship.

Ten base training sessions characteristic for the specific athlete
were selected by the coaches. Thus, the task of coaches was also to
prescribe the everyday training schedule in such a way that all the
base training sessions from the plan would be included. At the end

Table 1
Candidate solution mapping.

Dimension j

Elements i 1 2 3 4 5
Candidate solution xi 0.30 0.51 0.11 0.98 0.77
Permutation πi 4 3 5 1 2
Training plan yi 4 6 2 10 8

I. Fister et al. / Neurocomputing 149 (2015) 993–1002996



of the training period, it was expected that the athlete would be fit
and prepared for the competition.

Four experiments were conducted in order to check the
suitability of the proposed method as follows:

� constructing the training plans,
� investigating the influence of the fitness function evaluations,
� determining where the optimization makes sense,
� identifying the impact of the fitness function evaluations on the

convergence of results,
� comparing the results of the MBA with the other well known

evolutionary and swarm intelligence algorithms.

The parameter setting of the MBA algorithm during the experi-
ments was as follows. The size of base training set was set at n¼10,
while the training period lasted m¼55 days (2 months with 5–6
rest days). The population size was limited to Np¼40. The algo-
rithm's parameters pulse rate and loudness were fixed at the
values r¼0.2 and A¼0.8, while the frequency rates were limited
by their minimum and maximum values drawn in the interval
QA ½0:0;2:0�. The problem variables occupied values in the interval
xiA ½0;1�. The algorithm was run 25 times. As a termination
condition, the numbers of fitness function evaluations (FEs) were
used. These values of control parameters were set after extensive
testing. The task of the planning was to find the training plan with
the error rate zero and the maximum training effort value.

The MBA algorithm is stochastic and therefore, the different
results are obtained in each run. In order to measure this
phenomenon, the standard statistical measures, like minimum,
maximum and average values together with the median, and
standard deviation of error rates were obtained over 25 indepen-
dent runs. On the other hand, decreasing or increasing the
intensity factor K over specific bounds causes that the solution
cannot be found in some runs when. However, the results of the
MBA can be improved by repairing infeasible solutions.

In the remainder of this paper, creating the base training set is
presented in detail. Then, the results of the experiments are
illustrated. This section concludes with a discussion.

4.1. Creating the base training set

The base training set was created from the several character-
istic XML activity files which were created for the specific athlete
in the past. Although the numbers of these XML activity files
had increased enormously over the time, the coaches selected only
ten files in order to complete a base training set. The files in this
set were identified by their own identification numbers, and were
distinguished from each other according to the time duration and
the average heart rate. Additionally, an appropriate profit value
was assigned to each file that was used in the planning process.

The format of XML activity files is standardized and therefore,
compatible with the major of sports application that are available
on different web portals and mobile devices [41]. Using these
sports application, we can analyze the data obtained by our
training, which provide a unique form of virtual communication,
virtual competitions or even help us in sports training advertising.

The activities saved in XML files are also portable between
many web services and portals. Algorithm 3 illustrates a small part
of the sample activity. In this piece of code, the activity is defined
and then the statistics data about it are summarized.

Algorithm 3. Activity in XML.

/ Activity Sport¼“Biking”S
/ Id S 2011-08-02T07:26:02.000Z //Id S
/ Lap StartTime¼“2011-08-02T07:26:02.000Z”S

/ TotalTimeSeconds S 6000.06 //TotalTimeSeconds S
/ DistanceMeters S 47329.76 //DistanceMeters S
/ MaximumSpeed S 16.06399917602539 //MaximumSpeed S
/ Calories S 1547 //Calories S
/ AverageHeartRateBpm S
/ Value S 130 //Value S
//AverageHeartRateBpm S
/ MaximumHeartRateBpm S
/ Value S 171 //Value S
//MaximumHeartRateBpm S

Each activity starts with an identification of the sport discipline
where it was tracked. In XML notation, this data is embraced
within the / Activity Sport S tags. Essentially, the following data
are important for this study: time duration in seconds, identified
within / TotalTimeSeconds S and //Total TimeSeconds S tags,
and average heart rate within / AverageHeartRateBpm S and
//AverageHeartRateBpm S tags.

Algorithm 4. Parsed data from XML.

01 100.00 130
02 353.88 151
03 257.30 133
04 29.68 133
05 66.45 127
06 61.30 168
07 215.13 156
08 273.25 141
09 176.63 126
10 144.76 148

In order to obtain an extracted data, a parsing of the XML
activity file is needed. During our experiments, a parser written in
Python was developed. For instance, Algorithm 4 presents a short
example of the extracted data, where the first number denotes the
identification number of the base training, the second is the total
duration time of this activity in minutes, and the third the average
heart rate.

Finally, the entire base training set as proposed by coaches is
presented in Table 2, where in addition to parsed data, the profit
values are presented.

Note that the average time duration TD, average heart rates HR,
and average profit values p of all base training sessions are also
presented in the last row of the table. Essentially, the presented
trainings can be divided into long- and short-duration. The former
have profit values pir1:0, while the latter piS1:0. For example,

Table 2
The base training set.

Base training Duration (min) Average heart rate Profits values

1 100.00 130.00 1.19
2 353.88 151.00 0.46
3 257.30 133.00 0.49
4 29.68 133.00 4.21
5 66.45 127.00 1.72
6 61.30 168.00 3.26
7 215.13 156.00 0.80
8 273.25 141.00 0.52
9 176.63 126.00 0.63

10 144.76 148.00 1.06

Average 167.84 141.30 1.43
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the bicycle training 6 lasting 1 h with an average heart rate 168
and profit value of 2.74 belongs to short-duration training. In
average, the bicycle training lasts nearly 3 h with an average heart
rate of 141.30.

4.2. Construction of the training plans

An aim of this experiment was to generate the feasible training
plans by varying the intensity factor in interval KA ½136;144� with
steps of one BpM. As a result, nine different training plans were
constructed. The observed interval of intensity factors was not
selected accidentally, because the instances with K5HR are under
constrained, while the instances with KbHR are over constrained
and therefore harder for solving as showed during extensive
experiments. The algorithm was terminated after FEs¼50,000
fitness function evaluations.

In order to identify, how the intensity factor K influences the
construction of the training plans, the factor is varied in the
interval K in ½136;144�. Thus, the average heart rate of trainings
in base training set HR � 141 was observed as well. The results of
this experiment are illustrated in Table 3, where the proposed
number of base training sessions (BT) obtained by mentioned
values of intensity factors K can be seen. Note that the quality of
training plan expressed by the training effort value (ev) is also
included into the table. It applies here, the higher the value of ev,
the more effort is needed by the athlete to finish the training plan.

From Table 3, it can be seen that the MBA algorithm prefers the
long-duration base trainings in the construction of the training
plans. In line with this, the short-duration trainings, like 4 and
6 are rarely proposed by the process. On the other hand, the MBA
algorithm obtains a lot of solutions (i.e., base training plans) with
er¼0 and different effort values ev for each intensity factor K.
Although the solutions with maximum effort values are presented
in the table, coaches have a whole range of base trainings at their
disposal. Therefore, the right training plan is not difficult to be
selected by coaches for athletes with different requirements.

4.3. Influence of the fitness function evaluations

An influence of the fitness function evaluations was investi-
gated in this experiment. Therefore, the numerical values obtained
by planning the MBA algorithm for sports training sessions in
short-term (FEs¼500), medium-term (FEs¼5,000), and long-term
(FEs¼50,000) runs. Data accumulated over 25 runs are presented
in Table 4 according to standard statistical measures, like mini-
mum (min), maximum (max), average (avg), median (median) and
standard deviation (stdev) of the error rate. The mentioned values
of the various termination conditions were determined after
extensive tests.

The results of the experiment show almost four characteristics
according to

� the minimum: the results are not dependent on the duration of
run critical. This means that the MBA algorithm is capable of a
quick convergence.

� the average: the more quality solutions can be obtained by the
long-term runs, in average. The similar conclusion is valid also
by measures, like maximum and median.

� the standard deviation: these values decrease when the num-
ber of fitness function evaluations increase.

In summary, the wide specter of solutions can be obtained by
coaches using the MBA algorithm for planning the sports sessions.
However, the proper selection between the proposed training
plans depends on the athlete's current form and on the strictness
of the coaches.

4.4. Where the optimization makes sense

In this experiment, effects of the intensity factor K on the
results according to the average training effort ev and calculated
heart rate hr were investigated. In line with this, border values of
intensity factors K need to be indicated, where the problem
becomes under- and over-constrained. Thus, the intensity factor
was varied in the interval KA ½132;151� BpM in steps of one by
both measures. The results of planning aggregated over 25
independent runs are presented in Fig. 1 during the short-term,
medium-term, and long-term runs.

This figure is divided into two diagrams. The former illustrates
the results according to the calculated heart rate, while the latter
according to the training effort value. As can be seen from the
diagram in Fig. 1a, all three lines representing different runs match
a reference line denoting the linear incrementing of the intensity
factor K in the interval KA ½135;147�. These matches indicates that

Table 3
Predicted number of trainings.

BT/K 136 137 138 139 140 141 142 143 144

1 4 4 5 3 6 4 4 5 2
2 5 6 3 10 10 10 10 6 9
3 10 7 10 9 9 9 9 8 10
4 6 3 6 8 5 5 1 2 6
5 9 10 2 6 7 2 8 4 4
6 1 2 1 2 2 1 3 3 5
7 2 1 4 1 8 8 7 7 7
8 8 9 9 4 3 3 6 9 3
9 7 8 8 5 4 7 2 1 1
10 3 5 7 7 1 6 5 10 8

ev 71.56 72.24 73.99 71.80 74.40 78.98 78.40 75.30 71.93

Table 4
The results of the planning sports sessions by the MBA algorithm.

K FEs Min Max Avg Median Stdev

135 500 0.0000 0.1455 0.0242 0.0182 0.0354
5000 0.0000 0.0000 0.0000 0.0000 0.0000

50,000 0.0000 0.0000 0.0000 0.0000 0.0000
136 500 0.0000 0.1091 0.0341 0.0364 0.0273

5000 0.0000 0.0000 0.0000 0.0000 0.0000
50,000 0.0000 0.0000 0.0000 0.0000 0.0000

137 500 0.0000 0.1273 0.0438 0.0364 0.0347
5000 0.0000 0.0000 0.0000 0.0000 0.0000

50,000 0.0000 0.0000 0.0000 0.0000 0.0000
138 500 0.0000 0.2182 0.0674 0.0364 0.0637

5000 0.0000 0.0000 0.0000 0.0000 0.0000
50,000 0.0000 0.0000 0.0000 0.0000 0.0000

139 500 0.0182 0.8000 0.1363 0.0545 0.1750
5000 0.0000 0.0182 0.0023 0.0000 0.0060

50,000 0.0000 0.0000 0.0000 0.0000 0.0000
140 500 0.0000 2.7636 0.2232 0.0545 0.5560

5000 0.0000 0.0182 0.0045 0.0000 0.0079
50,000 0.0000 0.0000 0.000 0.0000 0.0000

141 500 0.0182 3.8909 0.7532 0.3091 1.0288
5000 0.0000 0.0182 0.0023 0.0000 0.0060

50,000 0.0000 0.0000 0.0000 0.0000 0.0000
142 500 0.0000 4.2364 1.2904 0.7091 1.4199

5000 0.0000 0.0182 0.0053 0.0000 0.0083
50,000 0.0000 0.0182 0.0008 0.0000 0.0036

143 500 0.0182 5.0909 1.3390 0.2545 1.6826
5000 0.0000 0.0182 0.0053 0.0000 0.0083

50,000 0.0000 0.0182 0.0015 0.0000 0.0050
144 500 0.0545 6.6909 3.1648 3.2000 2.0559

5000 0.0000 0.0182 0.0083 0.0000 0.0092
50,000 0.0000 0.0182 0.0053 0.0000 0.0083
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the MBA found the correct solutions. Unfortunately, below this
interval the problem is under-constrained, while above this the
problem is over-constrained. That is, in these regions algorithms
cannot find any solution. Furthermore, values of hr did not
improve any more. As a result, the optimization makes sense only
in the interval KA ½135;147�.

On the other hand, Fig. 1b shows that the effort value ev in the
interval, where the optimization make sense depends on the
intensity factor K. Interestingly, the presented line in the diagram
describes a step function, whose peaks and valleys occur at
random. A small increase in intensity factor K may cause a large
increase in effort value and vice versa. For example, an training
effort value by K¼143 is ev¼63 in long-term run, while this is
increased to 67 when the K is increase by 1. This behavior of effort
value may be very useful for coaches that may adapt the appro-
priate training plans according to the athlete's current form.

4.5. Convergence graphs

An influence of the fitness function evaluations on the results
of the MBA algorithm for planning the sports training sessions is
the best illustrated in so named convergence graphs. The conver-
gence graphs present the motion of the best and average fitness
values during each generation. In our case, we analyzed the three
motions obtained according to the different duration of runs,
where the training plans by intensity value K¼138 were con-
structed. The results of each motion was averaged over 25
independent runs are illustrated in Fig. 2 dividing into three
diagrams. Note that the results are presented in logarithmic scale.

From these diagrams, it can be seen that the convergence of the
MBA algorithm is rapid as presented by lines denoting the best
fitness value. In contrast, the population diversity is lost gradually
as can be seen by the lines denoting the average fitness values.

4.6. Comparative study

In order to investigate the quality of the results obtained with
the MBA algorithm, a comparative study was conducted. In this
study, the results of the MBA algorithm were compared with the
results of the other evolutionary and swarm intelligence algo-
rithms, like DE and PSO as well as deterministic algorithm DET. In
line with this, the intensity factor was varied in interval
KA ½132;151� in steps of one. As a result, 20 instances of problem
are obtained capturing the wide region of instances in the
neighborhood of the average heart rate HR ¼ 141. All mentioned
algorithms used the same mapping of candidate solutions in the
real-valued search space to the integer represented solution in the

problem space, and the repairing algorithm as presented in
Algorithm 2. Deterministic algorithm obtains a permutation of
base trainings according to profit values pi. In each run, it produces
only one solution.

On the other hand, DE and PSO are population-based algo-
rithms. While DE belongs to a class of evolutionary algorithms,
PSO is member of swarm intelligence. Additionally, the DE control
parameters were configured as follows. The amplification factor of
the difference vector was set as F¼0.9, and the crossover control
parameter as CR¼0.5. A setup of the PSO control parameters were
following. Acceleration constants were c1 ¼ c2 ¼ 1:0, while an
inertia weights was calculated according to equation w¼ ðU�LÞ�
randð0;1ÞþL, where U and L denotes an upper and lower bound
respectively, while randð0;1Þ is the random number drawn from
interval ½0;1�. The population based algorithms in the experiment
(i.e., MBA, DE, and PSO) used the same population size Np¼40 and
terminated after FEs¼10,000 function evaluations. These algo-
rithms were run 25 times.

The results of this experiment according to measures, like error
rate er, training effort value ev, and time complexity tc in seconds
are illustrated in Table 5. Because of the paper limitation, only 10
instances of intensity factors, i.e., KA ½135;144� can be viewed in
this table.

As can be seen from Table 5, DE and PSO solved all the
instances of intensity factor Kwith er¼0, while the MBA algorithm
solved exactly (i.e., with er¼0) instances from K¼135 to K¼139.
The results of planning the instances with KZ140 became too
hard for the MBA algorithm. Unfortunately, the deterministic
algorithm did not solve any instance exactly. According to measure
ev, it can be seen that the highest values have been obtained by
the PSO algorithm, while the lowest by the DET, in general. The DE
algorithm gained slightly higher values of ev, in average.

In order to evaluate the quality of the results statistically,
Friedman tests [42,43] were conducted to compare the average
ranks of the compared algorithms. Thus, a null-hypothesis is
placed to state: two algorithms are equivalent and therefore, their
ranks should be equal. When the null-hypothesis is rejected, the
Bonferroni–Dunn test [44] is performed. In this test, the critical
difference is calculated between the average ranks of those two
algorithms. If the statistical difference is higher than the critical
difference, the algorithms are significantly different.

Two Friedman tests were performed regarding data obtained
by optimizing 20 instances according to two measures for each of
four algorithms. The tests were conducted at the significance level
0.05. The results of the Friedman non-parametric test can be seen
in Fig. 3 that is divided into two diagrams. Each diagram shows
the ranks and confidence intervals (critical differences) for the
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Fig. 1. Analyzing the results of planning the sports trainings: (a) calculated heart rate (hr) and (b) training effort value (ev).
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algorithms under consideration with regard to the dimensions of
the functions. Note that the significant difference between two
algorithms is observed if their confidence intervals denoted as
thickened lines in Fig. 3 do not overlap.

Fig. 3a shows that the results of PSO, DE and MBA outper-
formed the results of DET algorithm according to error rate. The
PSO and DE are better than the MBA, but this advantage is not
significant. As a result, the MBA algorithm can obtain the results of
enough quality that can successfully be used for planning the
sports training. The situation does not provide any consider
change when the results are compared according to training effort
value (Fig. 3b). Also here, the results of DET algorithm are
significantly outperformed by the results of PSO, DE and MBA.

However, it is worth pointing out that this conclusion is based
on the application of planning the sports training sessions, further
detailed parametric studies may draw slightly different conclu-
sions. Therefore, we do not intent to say that one algorithm is
always better than others. This is consistent with the No free lunch
theorem [45].

4.7. Discussion

What kind of training sessions, when and how many times it
needs to be performed? In the past, answer to these questions was
mainly reserved to the domain of coaches? However, it could be
different in the near future. The results of our study had shown
how some kind of artificial intelligence can be used for modifying
and streamlining the work of coaches and athletes. Moreover,
these training plans could in the future be determined automati-
cally according to the history of training sessions, especially in the
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Fig. 2. Convergence graphs: (a) FEs¼500; (b) FEs¼5000; and (c) FEs¼50,000.

Table 5
Comparing various algorithms.

K Measures DET MBA DE PSO

135 er 0.1273 0.0000 0.0000 0.0000
ev 63.0316 61.7948 62.4247 62.4856
tc 0.00 2.85 2.34 3.80

136 er 0.5273 0.0000 0.0000 0.0000
ev 57.2807 63.9139 65.1461 64.1193
tc 0.00 2.45 2.06 3.01

137 er 0.2364 0.0000 0.0000 0.0000
ev 55.1045 63.6534 62.7466 64.3801
tc 0.00 2.34 1.92 2.73

138 er 0.5091 0.0000 0.0000 0.0000
ev 50.6650 63.0621 63.3742 65.0272
tc 0.00 2.16 1.82 2.44

139 er 1.5091 0.0000 0.0000 0.0000
ev 50.6650 64.5781 65.6398 65.5509
tc 0.00 2.07 1.75 2.42

140 er 2.5091 0.0008 0.0000 0.0000
ev 50.6650 64.8648 64.9766 63.9104
tc 0.00 1.97 1.64 2.35

141 er 0.2364 0.0008 0.0000 0.0000
ev 45.5031 65.8986 67.2025 68.0683
tc 0.00 1.84 1.62 2.22

142 er 0.6909 0.0023 0.0000 0.0000
ev 45.4803 67.1543 64.2022 66.2178
tc 0.00 1.82 1.51 2.12

143 er 1.6909 0.0333 0.0000 0.0000
ev 45.4803 65.1553 62.1186 64.9102
tc 0.00 1.78 1.57 2.11

144 er 2.6909 0.0977 0.0000 0.0000
ev 45.4803 64.8997 64.1220 64.9602
tc 0.00 1.76 1.45 2.08
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case of the quantifying each type of training session in the next
training period.

The prepared algorithm is not a replacement for the coaches. In
contrast, it serves as a help tool for them. Using this algorithm, the
coaches can automate their manual work by prescribing the
training plans for specific athletes everyday. In line with this, they
can be more focused on the monitoring the activities of their
athletes, further improving their forms, and repairing any errors
which may arise during training.

5. Conclusion

A modern technology adopts all aspects of human life. This
could not be resisted either to sport domain. Today, we cannot
imagine any sports training session without technology aids. For
instance, sport watches are capable of measuring the average
heart rate as achieved by athlete during the sport activity (train-
ing), duration time of it, and even detailed data about his/her
position during the training. The detailed path of movement, the
average speed and configuration of terrain can be reconstructed
from these data. Usually, these data are saved on the sport watch
after activity and can be exported in form of XML activity file on a
personal computer for the further analysis.

Especially useful, data in XML activity files are appropriate to
coaches for indication of the athlete's current form and determi-
nation of the further training sessions in order to reach his/her full
form for the specific incoming competition. Manual analysis of
these files in order to find the required amount of base training
sessions demands from the coach a lot of efforts, especially, when
he/she is responsible for more athletes.

In line with this, the MBA algorithm is proposed as an
intelligent planner for sports training sessions. It is capable of
forecasting the training plans for specific athlete on the basis of
exported XML activity files created by an athlete. The training plan
comprises the number of base training sessions for the specified
training period intended for the same athlete. Thus, the original
bat algorithm is modified in order to solve the planning for the
sports training. The proposed MBA algorithm was applied for
planning the cycle training of specific athlete based on ten base
training sessions. The obtained results showed that the predicted
training plans comply to the high standard of cycle coaches.

In the future work, we would like to direct our attention on
analysis of XML activity files using the data mining methods. As a
result, characteristics of particular trainings should be extracted.
Then, the most characteristics trainings according to duration time
and average heart rates may be selected in order to create the base
training set automatically. On the other hand, the data mining
methods could be used to monitor a progress of an athlete during
training period. Finally, developing the swarm multi-population in

order to simulate the cooperative coevolution during the SI search
process as proposed in [46] seems to be a very promising idea for
the future work.
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