
TOWARDS THE SELF-ADAPTATION OF THE BAT ALGORITHM
Iztok Fister Jr.a, Simon Fongb, Janez Bresta, Iztok Fistera

a University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17, 2000 Maribor, Slovenia
Email: iztok.fister2@uni-mb.si, janez.brest@uni-mb.si, iztok.fister@uni-mb.si

b University of Macau, Faculty of Science and Technology, Av. Padre Tomas Pereira, Taipa, Macau SAR
Email: ccfong@umac.mo

ABSTRACT
Bat algorithm is one of the younger members of swarm in-
telligence algorithms that was introduced by Yang in 2010.
So far, several variants based on this algorithm have been
proposed for coping with the continuous and discrete prob-
lems. This paper introduces a novel self-adaptive bat algo-
rithm (SABA) that borrows the self-adapting mechanism
from self-adapted differential evolution known under the
name jDE. This algorithm was tested on ten benchmark
functions taken from publications. The obtained results
were very promising and showed that this algorithm might
be very suitable for use, especially, in the continuous opti-
mization.

KEY WORDS
bat algorithm, swarm intelligence, optimization, self-
adaptation

1 Introduction

Nowadays, optimization has become more and more im-
portant in domains, like finances, industries, sport, phar-
macy, etc. The task of the optimization is to find the mini-
mum or maximum of objective function relating to a prob-
lem that needs to be solved. Typically, the minimal costs
of production are searched for in many industries. For ex-
ample, the problem of how to finish a specific work order
with minimal material usage has arisen in the clothing in-
dustry [1]. However, the clothing industry is not alone ex-
ample.

The similar optimization problems have been arisen
in many industries that are efficiently solved using the well-
known algorithms, like:

• artificial bee colony [2],

• bat algorithm [3],

• differential algorithm [4],

• firefly algorithm [5],

• particle swarm optimization [6], and

• many more [7].

The mentioned algorithms are generally inspired by
nature. In these algorithms, developers wish to mimics

the natural behavior of different biological systems in or-
der to solve particular problems using the digital comput-
ers. Adaptation is one of the more important characteristic
for surviving the individuals in biological systems that are
subject to ruthless changing environment [8]. This mecha-
nism enables the individuals in biological systems to adapt
themselves to the changing conditions within their environ-
ments. The adaptation is not just a unique characteristic of
the biological systems, because this mechanism has also
been incorporated into artificial systems and optimization
algorithms.

The optimization algorithms are controlled by algo-
rithm parameters that can be changed deterministically,
adaptively, and self-adaptively [9]. Deterministic param-
eters are altered by using some deterministic rule (e.g.,
Rechenberg’s 1/5 success rule [10]). In contrast, adap-
tive controlled parameters are subject to feedback from
the search process that serves as an input to a mechanism
used that determines the direction and magnitude of the
change [9]. Finally, the self-adaptive controlled parameters
are encoded into representation of solution and undergo
acting the variation operators, like crossover and mutation
in evolutionary algorithms [11].

This paper proposes a self-adaptive bat algorithm
(SABA) for continuous optimization. However, this self-
adaptive variant of a bat algorithm (BA) can also be later
applied to real-world problems. An origin of the BA algo-
rithm goes to the year 2010, when Xin-She Yang [12, 13,
14] created a new optimization algorithm inspired by the
behavior of micro-bats that use a special mechanism called
echolocation. Echolocation is used by bats for orientation
and prey seeking. The original BA was applied to vari-
ous benchmark functions, in which it achieved the good
results. The convergence rate was improved in study [3],
where the authors hybridized the original BA with differ-
ential evolution strategies (HBA). On the other hand, Wang
and Guo [15] successfully hybridized the BA with a har-
mony search (HS/BA) [16].

The original bat algorithm employs two strategy pa-
rameters: the pulse rate and the loudness. The former reg-
ulates an improving of the best solution, while the later
influences an acceptance of the best solution. Both the
mentioned parameters are fixed during the execution of the
original bat algorithm. In SABA, these parameters are self-
adapted. The aim of this self-adaptation is twofold. On the

 Proceedings of the IASTED International Conference

February 17 - 19, 2014 Innsbruck, Austria
Artificial Intelligence and Applications (AIA 2014)

DOI: 10.2316/P.2014.816-011 400

one hand, it is very difficult to guess the valid value of the
parameter. On the other hand, this value depends on the
phase in which the search process is. This means, the pa-
rameter setting at the beginning of the search process can
be changed, when this process becomes matured. There-
fore, the self-adaptation of these parameters is applied in
SABA.

The proposed SABA algorithm were applied to an
optimization of a benchmark function suite consisting of
10 well-known functions from the publications. The ob-
tained results using SABA improved the results achieved
by the original BA. Additionally, the proposed algorithm
was compared also with the other well-known algorithms,
like firefly (FA) [5], differential evolution (DE) [17], and
artificial bee colony (ABC) [18]. The results from this com-
parison showed that the results of the SABA are compara-
ble with the results of the other up-to-date algorithms.

The structure of this paper is as follows. Section 2
presents the original bat algorithms. The self-adaptive bat
algorithm is described in Section 3. Section 4 illustrates
the experiments and results detailed. The paper concludes
by summarizing the performed work and outlines further
directions for development.

2 The original bat algorithm

The original bat algorithm was developed in 2010 by Xin-
She Yang [12, 13, 14]. The inspiration for his work came
from behavior of micro-bats and especially, their special
mechanism named echolocation. Echolocation is a mech-
anism that bats use for orientation and finding the preys.
Bats are not the only creatures using such a mechanism.
For instance, dolphins use this mechanism for finding prey
in the seas [19].

Nowadays, BA and its variants are applied for solv-
ing many optimization and classification problems, as well
as several engineering problems in practice. In detail, the
taxonomy of the developed BA applications is represented
in [19], where the applications of BA algorithms have been
divided into the following classes of optimization prob-
lems: continuous, constrained, and multi-objective. In ad-
dition, they were also used for classification problems, like
clustering, neural networks, and feature selection. Finally,
BAs were used in many branches of engineering, e.g., im-
age processing, industrial design, scheduling, electronics,
spam filtering, and even in sport.

The original bat algorithm is population based, where
each individual represents the candidate solution. The
candidate solutions are represented as vectors xi =
(xi1, . . . , xiD)T for i = 1 . . .Np with real-valued elements
xij , where each elements can capture values from interval
xij ∈ [xlb, xub]. Thus, xlb and xub denote the correspond-
ing lower and upper bound, while the population size is
determined by Np parameter.

The pseudo-code of the original BA algorithm is il-
lustrated in Algorithm 1, where bats’ behavior is captured
within the fitness function of the problem to be solved. The

Algorithm 1 Pseudo-code of the original bat algorithm
Input: Bat population xi = (xi1, . . . , xiD)T for i =
1 . . .Np,MAX FE .
Output: The best solution xbest and its corresponding
value fmin = min(f(x)).

1: init bat();
2: eval = evaluate the new population;
3: fmin = find best solution(xbest); {initialization}
4: while termination condition not meet do
5: for i = 1 to Np do
6: y = generate new solution(xi);
7: if rand(0, 1) > ri then
8: y = improve the best solution(xbest)
9: end if{ local search step }

10: fnew = evaluate new solution(y);
11: eval = eval + 1;
12: if fnew ≤ fi and N(0, 1) < Ai then
13: xi = y; fi = fnew;
14: end if{ save best solution conditionaly }
15: fmin=find best solution(xbest);
16: end for
17: end while

operation of the original BA algorithm presented in Algo-
rithm 1 can be described as follows. In general, the algo-
rithm consists of the following components [19]:

• initialization (lines 1-3): initializing the algorithm pa-
rameters, generating the initial population, evaluating
it, and searching for the best solution xbest in the ini-
tial population,

• generate new solution (line 6): moving the virtual
bats in the search space according to physical rules
of bat echolocation,

• local search step (lines 7-9): improving the best so-
lution using random walk direct exploitation (RWDE)
heuristic [20],

• evaluate new solution (line 10): evaluating the new
solution,

• save best solution conditionaly (lines 12-14): saving
the new best solution under some probability Ai sim-
ilar to simulated annealing [21],

• find best solution (line 15): searching for the current
best solution.

Note that these components are denoted in the al-
gorithm either as function names, when the function call
is performed in one line or as a component name desig-
nated by a comment between two curly brackets, when
it comprises more lines. Initialization of the bat popula-
tion consist of tree steps. At first, the population is ini-
tialized randomly (in function init bat). Then, solutions
are evaluated (in function evaluate the new population)

401

and finally, the current best solution is found (in function
find best solution). Generating the new solutions is per-
formed according to the following equations:

Q
(t)
i = Qmin + (Qmax −Qmin)N(0, 1),

v
(t+1)
i = vt

i + (xt
i − best)Q

(t)
i ,

x
(t+1)
i = x

(t)
i + v

(t+1)
i ,

(1)

whereN(0, 1) is a random number generated from a Gaus-
sian distribution with zero mean and a standard deviation
of one. A RWDE heuristic [20] implemented in the func-
tion improve the best solution modifies the current best so-
lution according to the equation:

x(t) = best+ εA
(t)
i N(0, 1), (2)

where N(0, 1) denotes the random number generated from
a Gaussian distribution with zero mean and a standard de-
viation of one, ε being the scaling factor, and A

(t)
i the

loudness. A local search is launched with the proba-
bility of pulse rate ri. As already stated, the probabil-
ity of accepting the new best solution in the component
save the best solution conditionaly depends on loudness
Ai. Actually, the original BA algorithm is controlled by
two algorithm parameters: the pulse rate ri and the loud-
ness Ai. Typically, the rate of pulse emission ri increases
and the loudness Ai decreases when the population draws
nearer to the local optimum. Both characteristics imitate
natural bats, where the rate of pulse emission increases and
the loudness decreases when a bat finds a prey. Mathemati-
cally, these characteristics are captured using the following
equations:

A
(t+1)
i = αA

(t)
i , r

(t)
i = r

(0)
i [1− exp(−γε)], (3)

where α and γ are constants. Actually, the α parame-
ter controls the convergence rate of the bat algorithm and
therefore, plays a similar role as the cooling factor in the
simulated annealing algorithm.

In summary, the origin of BA can be found in an PSO
algorithm [6] hybridized with RWDE and simulated an-
nealing heuristics. The former represents the local search
that directs the bat search process towards improving the
best solution, while the latter takes care of the population
diversity. In other words, the local search can be connected
with exploitation, while simulated annealing using the ex-
ploration component of the bat search process. The ex-
ploitation is controlled by the parameter r and exploration
by the parameter A. As a result, the BA algorithm tries to
explicitly control the exploration and exploitation compo-
nents within its search process.

3 The self-adaptive bat algorithm

Self-adaptation of control parameters means that the algo-
rithms control parameters (also strategy parameters) are en-
coded into representation of a candidate solution and un-
dergo acting the variation operators. In our case, a de-
veloped self-adaptive bat algorithm (SABA) considers the
self-adaptation of the control parameters, e.g., the loudness
A(t), and the pulse rate r(t).

In line with this, the existing representation of can-
didate solutions in the original bat algorithm consist-
ing of problem variables (x

(t)
i1 , . . . , x

(t)
iD)T is widened

with the control parameters A(t) and r(t) to x
(t)
i =

(x
(t)
i1 , . . . , x

(t)
iD, A

(t), r(t))T for i = 1 . . .Np, where Np de-
notes the population size. Additionally, these control pa-
rameters are modified according to the following equations:

A(t+1) =

{
A

(t)
lb + rnd0(A

(t)
ub −A

(t)
lb) if rnd1 < τ1,

A(t) otherwise ,
(4)

and

r(t+1) =

{
r
(t)
lb + rnd2(r

(t)
ub − r

(t)
lb) if rnd3 < τ2,

r(t) otherwise .
(5)

Note that the parameters τ0 and τ1 denotes the learn-
ing rates that were set, as τ0 = τ1 = 0.1, while rndi for
i = 1 . . . 4 designate the random generated value from in-
terval [0, 1]. Thus, the values of control parameters are lim-
ited according to intervals represented in Table 1.

Table 1. Boundary values of parameters

Parameter In Upper and lower bound
A(t) ∈ [0.001, 0.1]
r(t) ∈ [0.9, 1.0]

The self-adapting part of the SABA algorithm is per-
formed in the generate the new solution function (line 6
in Algorithm 1). It is notable that the control parame-
ters are modified in this function according to the learning
rate τ0 and τ1. In case when τ0 = τ1 = 0.1, the con-
trol parameters of each 10th candidate solution are mod-
ified, in average. The modified control parameters have
an impact on the application of the local search (compo-
nent local search step lines 7-9 in Algorithm 1) as well
as on the probability of saving the best solution (compo-
nent save best solution conditionaly lines 12-14 in Algo-
rithm 1). The problem variables and the corresponding
control parameters are saved by this component when it
comes to saving.

This self-adapting procedure was inspired by Brest et
al. [22] that proposed the self-adaptive version of DE, bet-
ter known as jDE. This self-adaptive algorithm improves
the results of the original DE significantly by continuous
optimization.

402

4 Experiments and results

Two goals were aimed our experimental work, as fol-
lows: to show that SABA can improved the results of
the original bat algorithm (BA), and to show that the re-
sults of SABA are comparable to the results of other well
known algorithms, like firefly (FA) [5], differential evolu-
tion (DE) [17], and artificial bee colony (ABC) [18]. In
line with this, the self-adaptive bat algorithm (SABA) was
developed and applied to well known benchmark function
suite taken from publications.

Function optimization was selected as a test bed prob-
lem for this study. The function optimization is included
into a class of continuous optimization problems that can
formally be defined as follows. Let f(s) be an objective
function, where x = (x1, . . . , xD) denotes a vector of D
design variables from a decision space x ∈ S. These de-
sign variables xj ∈ {lbj , ubj} are captured from an inter-
val [lbj , ubj], where lbj ∈ R and upper bounds ubj ∈ R
are their lower and upper bounds, respectively. Then, the
task of function optimization is to find the minimum of this
objective function.

In the rest of the paper, the function in benchmark
suite are presented, then some words are intended to the
experimental setup, and at the end of this section, the re-
sults obtained by the experiments are discussed in detail.

4.1 Benchmark suite

The benchmark suite was composed of ten well-known
functions selected from various publications. The defini-
tions the benchmark functions are summarized in Table 2
that consists of four columns denoted: the function tag f ,
the function name, the function definition, and the parame-
ter domain. Reader is invited to check a deep details about
test functions in the state-of-the art reviews [23, 24, 25].

Each function from the table is tagged with its se-
quence number from f1 to f10. Parameter domains limit the
values of parameters into interval between their lower and
upper bounds. As matter of fact, these determine the size of
the search space. In order to make the problems more heav-
ier to solve, the parameter domains were selected wider that
those prescribed in the standard publications. Additionally,
the problem becomes also heavier to solve when the di-
mensionality of the benchmark functions are increased. As
a result, benchmark functions of more dimensions need to
be optimized in the experimental work.

Properties of the benchmark functions can be seen in
Table 3 that also consists of four columns: the function tag
f , the optimal solution x∗, the value of the optimal solution
x∗, and the function characteristics. One of the more im-
portant characteristics of the function is the number of lo-
cal and global optima. According to this characteristic the
functions are divided either into uni-modal or multi-modal.
The former type of functions has only one global optimum,

1Valid for 2-dimensional parameter space.

Table 3. Properties of benchmark functions

f f∗ x∗ Characteristics
f1 0.0000 (0, 0, . . . , 0) Highly multi-modal
f2 0.0000 (0, 0, . . . , 0) Highly multi-modal
f3 0.0000 (1, 1, . . . , 1) Several local optima
f4 0.0000 (0, 0, . . . , 0) Highly multi-modal
f5 0.0000 (0, 0, . . . , 0) Highly multi-modal
f6 0.0000 (0, 0, . . . , 0) Uni-modal, convex
f7 -1.0000 (π, π, . . . , π) Several local optima
f8 -1.80131 (2.20319, 1.57049)1 Several local optima
f9 0.0000 (0, 0, . . . , 0) Several local optima
f10 0.0000 (0, 0, . . . , 0) Uni-modal

while the later is able to have more local and global optima
trowed across the whole search space.

4.2 Experimental setup

In this experimental study, we compared the results of
the following algorithms: BA, SABA, FA, DE, and ABC.
During the tests, the BA parameters were set as follows:
the loudness A0 = 0.5, the pulse rate r0 = 0.5, min-
imum frequency Qmax = 0.0, and maximum frequency
Qmax = 2.0. The same initial value for r0 and A0 were
also applied by SABA, while the frequency was captured
from the same interval Q ∈ [0.0, 2.0] as by the original bat
algorithm. FA run with the following set of parameters:
α = 0.1, β = 0.2, and γ = 0.9, whilst DE was configured
as follows: the amplification factor of the difference vector
F = 0.5, and the crossover control parameter CR = 0.9.
In the ABC algorithm, onlooker bees represented 50% of
the whole colony, whilst the another 50% of the colony
was reserved for the employed bees. On the other hand, the
scout bee was generated when its value was not improved
in 100 generations. In other words, the parameter limits
was set to value 100.

Each algorithm in tests were run with population size
100. Each algorithm was launched 25 times. The obtained
results of these algorithms were aggregated according to
their Best, the Worst, the Mean, the StDev, and the Median
values reached during 25 runs.

4.3 The results

The intention of our experimental work was to show that
the self-adaptive bat algorithm (SABA) can improve the
results the original bat (BA), when applied to a test suite
of ten benchmark functions. On the other hand, we want to
show that the obtained results are comparable with the re-
sults of the other algorithms in tests, like FA, DE and ABC.

In line with this, each algorithm solved the functions
of three different dimensions, i.e., D = 10, D = 30, and
D = 50. As a termination condition, the maximum num-
ber of fitness function evaluations MAX FE = 1000.D

403

Table 2. Definitions of benchmark functions

f Function name Definition Domain

f1 Griewangk’s function F (x) = −
∏n
i=1 cos

(
xi√
i

)
+
∑n
i=1

x2i
4000

+ 1 [−600, 600]
f2 Rastrigin’s function F (x) = n ∗ 10 +

∑n
i=1(x

2
i − 10 cos(2πxi)) [−15, 15]

f3 Rosenbrock’s function F (x) =
∑n−1
i=1 100 (xi+1 − x2i)2 + (xi − 1)2 [−15, 15]

f4 Ackley’s function F (x) =
∑n−1
i=1

(
20 + e−20e

−0.2
√

0.5(x2i+1+x
2
i) − e0.5(cos(2πxi+1)+cos(2πxi))

)
[−32.768, 32.768]

f5 Schwefel’s function f5(x) == 418.9829 ∗D −
∑D
i=1 si sin(

√
|si|) [−500, 500]

f6 De Jong’s sphere function f6(x) =
∑D
i=1 x

2
i [−600, 600]

f7 Easom’s function f7(x) = −(−1)D(
∏D
i=1 cos

2(xi)) exp[−
∑D
i=1(xi − π)

2] [−2π, 2π]
f8 Michalewicz’s function f8(x) = −

∑D
i=1 sin(xi)[sin(

ix2i
π
)]2·10 [0, π]

f9 Xin-She Yang’s function f9(x) = (
∑D
i=1 |xi|) exp[−

∑D
i=1 sin(x

2
i)] [−2π, 2π]

f10 Zakharov’s function f10(x) =
∑D
i=1 x

2
i + (1

2

∑D
i=1 ixi)

2 + (1
2

∑D
i=1 ixi)

4 [−5, 10]

BA

SABA

FA

DE

ABC

 1 2 3 4 5

Average rank (D=10)

 1 2 3 4 5

Average rank (D=30)

 1 2 3 4 5

Average rank (D=50)

Figure 1. Friedman non-parametric tests

was used. In line with this, the 10-dimensional functions
needed 10,000, the 30-dimensional 30,000, and the 50-
dimensional 50,000 fitness function evaluations, in order
to make the comparison fair. This means that the more
dimensional functions had more evaluations to obtain the
final solutions.

The results of optimizing the benchmark functions are
presented in Table 4. Although the results were also ob-
tained on the functions of all three dimensions, only the
results of those functions with a dimension D = 30 are
presented because of the limitation of paper length. The
best results are displayed as bold. As can be seen from Ta-
ble 4, ABC outperformed the results of all other algorithms
four times (f2, f4, f8, and f9), FA three times (f1, f3, and
f7), while the SABA and DE were the best one time (f6,
and f10) according to the mean values.

In order to evaluate the quality of results statistically,
Friedman tests [26, 27] were conducted that compare the
average ranks of the compared algorithms. Thus, a null-
hypothesis is placed that states: two algorithms are equiv-
alent and therefore, their ranks should be equal. When the
null-hypothesis is rejected, the Bonferroni-Dunn test [28] is
performed. In this test, the critical difference between the
average ranks of those two algorithms is calculated. If the
statistical difference is higher than the critical difference,
the algorithms are significantly different.

Three Friedman tests were performed regarding data
obtained by optimizing ten functions of three different di-
mensions according to five measures. As a result, each
algorithm during the tests (also the classifier) was com-
pared with regard to the 10 functions x 5 measures this
means, 50 different variables. Tests were conducted at the
significance level 0.05. The results of the Friedman non-
parametric test can be seen in Fig. 1 that is divided into
three diagrams. Each diagram shows the ranks and confi-
dence intervals (critical differences) for the algorithms un-
der consideration with regard to the dimensions of func-
tions. Note that the significant difference between two al-
gorithms is observed if their confidence intervals denoted
as thickened lines in Fig. 1 do not overlap.

The first diagram in Fig. 1 shows that there are not
any algorithm, which significantly outperforms the results
of the other algorithms, according to dimension D = 10.
From amongst all the five four algorithms, the DE was
slightly better than the SABA and ABC, and substantially
better than the FA and BA. The situation remained similar
even when the results were compared regarding the dimen-
sions D = 30 and D = 50. In the former case, the DE and
ABC significantly improved the results of the BA, while in
the latter case, the DE was significantly better than the FA
and BA.

In summary, the SABA outperformed the results of

404

Table 4. Obtained results of algorithms (D=30)

Function Measure BA SABA FA DE ABC

f1
Mean 1.16E+000 1.05E+000 6.65E-001 1.05E+000 1.09E+000
Stdev 3.55E-002 3.45E-002 1.50E-001 2.22E-002 1.23E-001

f2
Mean 9.28E+002 6.46E+002 2.44E+002 2.28E+002 7.33E+001
Stdev 1.73E+002 1.30E+002 1.79E+001 1.33E+001 2.24E+001

f3
Mean 2.84E+006 4.67E+005 1.12E+002 4.57E+002 5.18E+002
Stdev 9.58E+005 3.87E+005 3.11E+001 2.27E+002 4.72E+002

f4
Mean 2.00E+001 2.00E+001 2.11E+001 1.77E+000 7.17E+000
Stdev 3.70E-006 5.59E-006 5.79E-002 3.17E-001 1.03E+000

f5
Mean 8.14E+003 8.28E+003 6.78E+003 7.57E+003 2.64E+003
Stdev 5.49E+002 6.92E+002 5.51E+002 4.40E+002 3.30E+002

f6
Mean 5.87E-002 1.51E-005 5.19E+000 1.77E+002 1.63E+002
Stdev 1.18E-001 1.97E-006 1.72E+000 7.12E+001 1.96E+002

f7
Mean 0.00E+000 0.00E+000 -3.81E-030 0.00E+000 0.00E+000
Stdev 0.00E+000 0.00E+000 1.09E-030 0.00E+000 8.79E-136

f8
Mean -8.62E+000 -8.13E+000 -5.15E+000 -1.07E+001 -2.30E+001
Stdev 1.34E+000 1.44E+000 1.47E+000 6.70E-001 6.98E-001

f9
Mean 5.56E-003 3.64E-003 1.70E-004 2.46E-011 1.10E-011
Stdev 6.33E-002 7.91E-002 1.78E-004 1.20E-012 1.91E-012

f10
Mean 2.76E+002 1.91E+002 1.32E+004 3.78E+001 2.53E+002
Stdev 1.03E+002 1.15E+002 4.10E+001 8.74E+000 3.15E+001

the original BA substantially as can be seen in Fig. 1. In-
terestingly, the critical difference between both algorithms
does not decrease when the dimension of the functions is
increased (e.g., D = 50). Therefore, we could reason-
able assume that self-adaptation could improve the results
of the SABA by optimization of higher-dimensional func-
tions. However, this assumption must be confirmed in the
future. Additionally, the SABA outperformed also the re-
sults of the FA algorithm, while the results were compara-
ble with the results of the DE and ABC.

5 Conclusion

In this paper, we proposed a self-adaptive variant of the bat
algorithm named SABA. In this algorithm, control param-
eters are adapted in the similar way as by the self-adaptive
DE algorithm known under the name jDE [22]. The experi-
mental results showed an improvement of the performance
of the proposed algorithm that encourages us to continue
with the started experiments. We hope that this algorithm
may be suitable for solving problems of higher dimensions.
In the future, we would also wish to apply this self-adaptive
method to other heuristic algorithms, e.g. cuckoo search.

Acknowledgement

The authors are thankful for the financial support from the
research grant of Grant no. MYRG152(Y3-L2)-FST11-ZY,
offered by the University of Macau, RDAO.

References

[1] I. Fister, M. Mernik, and B. Filipič, “A hybrid self-
adaptive evolutionary algorithm for marker optimiza-
tion in the clothing industry,” Applied Soft Comput-
ing, vol. 10, no. 2, pp. 409–422, 2010.

[2] D. Karaboga and B. Basturk, “On the performance
of artificial bee colony (abc) algorithm,” Applied soft
computing, vol. 8, no. 1, pp. 687–697, 2008.

[3] I. J. Fister, D. Fister, and X.-S. Yang, “A hybrid bat
algorithm,” Electrotechnical review, vol. 80, no. 1-2,
pp. 1–7, 2013.

[4] R. Storn and K. Price, “Differential evolution–a sim-
ple and efficient heuristic for global optimization over
continuous spaces,” Journal of global optimization,
vol. 11, no. 4, pp. 341–359, 1997.

[5] I. Fister, I. J. Fister, X.-S. Yang, and J. Brest, “A com-
prehensive review of firefly algorithms,” Swarm and
Evolutionary Computation, 2013.

[6] J. Kennedy and R. Eberhart, “Particle swarm opti-
mization,” in Neural Networks, 1995. Proceedings.,
IEEE International Conference on, vol. 4, pp. 1942–
1948, IEEE, 1995.

[7] I. J. Fister, X.-S. Yang, I. Fister, J. Brest, and D. Fis-
ter, “A brief review of nature-inspired algorithms for
optimization,” Electrotechnical review, vol. 80, no. 3,
2013.

405

[8] O. Holland and C. Melhuish, “Stigmergy, self-
organization, and sorting in collective robotics,” Ar-
tificial Life, vol. 5, no. 2, pp. 173–202, 1999.

[9] A. Eiben and J. Smith, Introduction to Evolutionary
Computing. Berlin: Springer-Verlag, 2003.

[10] I. Rechenberg, Evolutionstrategie: Optimirung Tech-
nisher Systeme nach Prinzipen des Biologischen Evo-
lution. Stuttgard: Fromman-Hozlboog Verlag, 1973.

[11] I. Fister, M. Mernik, and B. Filipič, “Graph 3-coloring
with a hybrid self-adaptive evolutionary algorithm,”
Computer Optimization and Application, vol. 54,
pp. 741–770, Apr. 2013.

[12] X.-S. Yang, “A new metaheuristic bat-inspired algo-
rithm,” Nature Inspired Cooperative Strategies for
Optimization (NICSO 2010), pp. 65–74, 2010.

[13] X.-S. Yang, Nature-inspired metaheuristic algo-
rithms. Luniver Press, 2011.

[14] X.-S. Yang and X. He, “Bat algorithm: literature re-
view and applications,” International Journal of Bio-
Inspired Computation, vol. 5, no. 3, pp. 141–149,
2013.

[15] G. Wang and L. Guo, “A novel hybrid bat algorithm
with harmony search for global numerical optimiza-
tion,” Journal of Applied Mathematics, vol. 2013, Ar-
ticle ID 696491, 2013.

[16] Z. W. Geem, J. H. Kim, and G. Loganathan, “A new
heuristic optimization algorithm: harmony search,”
Simulation, vol. 76, no. 2, pp. 60–68, 2001.

[17] K. V. Price, R. M. Storn, and J. A. Lampinen, Differ-
ential evolution a practical approach to global opti-
mization. Springer-Verlag, 2005.

[18] D. Karaboga and B. Akay, “A comparative study of
artificial bee colony algorithm,” Applied Mathematics
and Computation, vol. 214, no. 1, pp. 108–132, 2009.

[19] I. Fister, “A comprehensive review of bat algorithms
and their hybridization,” Master Thesis, University of
Maribor, Slovenia, 2013.

[20] S. Rao, Engineering optimization : theory and prac-
tice. New York, NY, USA: John Wiley & Sons, Inc.,
2009.

[21] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Opti-
mization by simulated annealing,” Science, vol. 220,
no. 4598, pp. 671–680, 1983.

[22] J. Brest, S. Greiner, B. Bošković, M. Mernik, and
V. Žumer, “Self-adapting control parameters in dif-
ferential evolution: A comparative study on numer-
ical benchmark problems,” Evolutionary Computa-
tion, IEEE Transactions on, vol. 10, no. 6, pp. 646–
657, 2006.

[23] M. Jamil and X.-S. Yang, “A literature survey of
benchmark functions for global optimisation prob-
lems,” International Journal of Mathematical Mod-
elling and Numerical Optimisation, vol. 4, no. 2,
pp. 150–194, 2013.

[24] X.-S. Yang, “Appendix a: Test problems in opti-
mization,” in Engineering Optimization (X.-S. Yang,
ed.), pp. 261–266, Hoboken, NJ, USA: John Wiley &
Sons, Inc., 2010.

[25] X.-S. Yang, “Firefly algorithm, stochastic test func-
tions and design optimisation,” International Journal
of Bio-Inspired Computation, vol. 2, no. 2, pp. 78–84,
2010.

[26] M. Friedman, “The use of ranks to avoid the as-
sumption of normality implicit in the analysis of vari-
ance,” Journal of the American Statistical Associa-
tion, vol. 32, pp. 675–701, December 1937.

[27] M. Friedman, “A comparison of alternative tests of
significance for the problem of m rankings,” The An-
nals of Mathematical Statistics, vol. 11, pp. 86–92,
March 1940.

[28] J. Demšar, “Statistical comparisons of classifiers over
multiple data sets,” Journal of Machine Learning Re-
search, vol. 7, pp. 1–30, December 2006.

406

