
Research Article
Gesture Recognition from Data Streams of
Human Motion Sensor Using Accelerated PSO Swarm Search
Feature Selection Algorithm

Simon Fong,1 Justin Liang,1 Iztok Fister Jr.,2 Iztok Fister,2 and Sabah Mohammed3

1Department of Computer and Information Science, University of Macau, Macau
2Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
3Department of Computer Science, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B 5E1

Correspondence should be addressed to Iztok Fister; iztok.fister1@um.si

Received 17 November 2014; Accepted 7 March 2015

Academic Editor: Jian-Nong Cao

Copyright © 2015 Simon Fong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Human motion sensing technology gains tremendous popularity nowadays with practical applications such as video surveillance
for security, hand signing, and smart-home and gaming.These applications capture humanmotions in real-time fromvideo sensors,
the data patterns are nonstationary and ever changing. While the hardware technology of such motion sensing devices as well as
their data collection process become relatively mature, the computational challenge lies in the real-time analysis of these live feeds.
In this paper we argue that traditional data mining methods run short of accurately analyzing the human activity patterns from
the sensor data stream. The shortcoming is due to the algorithmic design which is not adaptive to the dynamic changes in the
dynamic gesture motions. The successor of these algorithms which is known as data stream mining is evaluated versus traditional
datamining, through a case of gesture recognition overmotion data by usingMicrosoftKinect sensors.Three different subjects were
asked to read three comic strips and to tell the stories in front of the sensor. The data stream contains coordinates of articulation
points and various positions of the parts of the human body corresponding to the actions that the user performs. In particular,
a novel technique of feature selection using swarm search and accelerated PSO is proposed for enabling fast preprocessing for
inducing an improved classification model in real-time. Superior result is shown in the experiment that runs on this empirical data
stream. The contribution of this paper is on a comparative study between using traditional and data stream mining algorithms
and incorporation of the novel improved feature selection technique with a scenario where different gesture patterns are to be
recognized from streaming sensor data.

1. Introduction

With the advance in the sensing technology [1] that is rel-
atively easy-to-deploy and cost-effective in operation, video
motion sensor finds its applications popularly across different
domains, just to name a few successful cases in environ-
mental sensing, useful applications such as hand motion
gesture detection by smartphones for remote interaction [2],
monitoring humanmovements formedical rehabilitation [3],
daily activities in elderly homes [4], entertainments, and
sports [5], as well as advanced computer-human interaction
research [6, 7]. While the communication mechanisms and
the general operation of the sensor applications have been

intensively studied, the decision making of such sensor
system which is often known as the analytical “brain” has
not yet been explored in details. Kinect sensor, for example,
[8], is a peripheral I/O device designed to provide a natural
interface to gaming consoles without the need of conven-
tional controllers. This sensing device features a simple color
camera, depth sensor, andmultiarraymicrophone, capable of
delivering swift audio and visual data streams for supporting
facial recognition, partial or full-body motion recognition,
and acoustical detection recognition.

In general, human motion recognition is the process of
first detecting and recording changes in position of a human
posture or gesture (that depends on the context of a full

Hindawi Publishing Corporation
Journal of Sensors
Volume 2015, Article ID 205707, 16 pages
http://dx.doi.org/10.1155/2015/205707

http://dx.doi.org/10.1155/2015/205707

2 Journal of Sensors

body or hands only), relative to its surroundings or backdrops
that are corresponding to the previous positions in the video
sequence. The collected data from sensors include motions
of infrared signals, optical visions, radio frequency energy,
or ultrasounds, depending on the types of motion sensors
being used. Assuming that the deployed sensors are the eyes
and ears that continuously and reliably collect perceived
data from a moving subject, the data quickly stream to a
preliminary image-processing that extracts the features from
the images and then to a central processor that functions as
a decision-support for the applications by interpreting the
changing information of the features.

As a generalized process applicable to many applications,
the remaining tasks after the data are collected and delivered
to the decision-support center consist of the following:
image processing, data preprocessing, model induction, rule
extraction, and intelligence dissemination. In modern sensor
hardware, the image processing is usually embedded as some
low-level middleware in the device which processes and
extracts information from raw images into characteristic
features in abstract level.

Data preprocessing involves data transformation, data
cleaning, and often feature selection for reducing the fea-
ture space for enhanced recognition accuracy; our previous
papers have addressed in length this task for distributed
wireless sensor networks [9, 10]. We focus in this paper on
the tasks of model induction and rule extraction, specif-
ically by using data streaming algorithms and lightweight
feature selection scheme suitable for high-speed incremental
machine-learning, for gesture recognition.

This paper investigates the remaining tasks after the data
are collected and delivered to the decision-support center
with the aim of finding the right combination of classification
algorithms and feature selection algorithms for accurately
recognizing human gestures on the fly. The sensing data
concerned in this paper are the data that are collected
from Microsoft Kinect sensor, which are used to capture
the gesture, in terms of the body positions in 3D and their
corresponding velocities and acceleration while the user
poses in various postures. Our focus is the rigorous and
comparative performance analysis over two groups of classi-
fication algorithms, namely, batch-learning and incremental
or data-stream learning, in the light of achieving top accuracy
at the shortest possible preprocessing times. We illustrate the
efficacy of a newly proposed feature selectionmethod around
an illustrative example, that is, how to recognize human
gesture pattern in an application of video sensors.

The main research challenge here is about finding the
most appropriate model induction algorithm for gesture
pattern recognition. The challenge rests on several stringent
requirements in video motion sensor: first of all, the amount
of data feed is potentially infinite, and the data delivery
is continuous like a high-speed train of information. The
processing hence is expected to be real-time and instantly
responsive. This implies that the classification induction
algorithm being deployed must be lightweight, incremental,
and accurate for sure. The model update needs to be done
quickly and on the fly upon each arrival of the new instance of
data. As an additional feature, pertaining to the suitability for

video sensor where the decision support process/operation
may have to be embedded in a small mobile device, the
memory requirement is opt to be as little as possible for
obvious reasons of energy saving and fitting into a tiny device
size. In other words, the learned model, probably in form
of generalized nonlinear mappings between the values of
the features to the predicted target classes, must be compact
enough to be executed in a small run-time memory. No
room is wasted for storing the features and their relations
that neither are significant nor contribute little to the model
accuracy. To this end, without using feature selection is out of
the question. That is because the number of original features
extracted from the video sequences could be very high.
Feature selection is a heuristic process which retains only the
significant features as an optimal subset of the full features,
representative enough to induce an accurate classification
model for pattern recognition.

Another complication on top of quantitatively computing
the nonlinear relations between the feature values and the
target classes is the temporal nature of such sensor data
stream. One must crunch on the data stream long enough
for modeling seasonal cycles or regular patterns if they ever
exist. There are no straightforward relations that can easily
map the attribute data into a specific classwithout a long-term
observation. This impacts considerately on the data mining
algorithm design that should be capable of just reading and
forgetting the data stream (so is called “one-pass” algorithm),
retaining nothing but just the required statistics for reasoning
the long-term relations among the attributes values and the
target classes.

Taken into account the aforementioned unique compu-
tational challenges associated with the motion data from
video sensor, a rigorous analytical evaluation is both crucial
and necessary in comparing some popular data mining
algorithms, for gesture pattern recognition.This evaluation as
reported in this paper offers insights to developers who want
to design a video sensor network for the purpose of recogniz-
ing human activities or gestures through data streammining.

The remaining of the paper is organized as follows.
Section 2 introduces the background of our research via a
discussion in both aspects of the experimental layout and
the types of data mining algorithms to be tested with. In
particular, the video sensor for measuring motion data as a
result of human activities is described, and traditional and
incremental decision trees are compared and contrasted. Sec-
tion 3 covers the technical details of the data stream mining
algorithms. Specifically the shortcoming of the traditional
algorithms is discussed, as well as how the new functions
of data stream mining algorithms that help overcome the
limitation are narrated. An empirical video sensor dataset is
applied in the experiment, in Section 4, with the aim of com-
paring several data mining algorithms vis-à-vis with respect
to gesture recognition. Lastly Section 5 concludes the paper.

2. Background

2.1. Gesture Recognition and Dataset. In 2013, researchers
Madeo et al. from University of Sao Paulo studied a gesture
segmentation problem using support vectormachine [11] and

Journal of Sensors 3

reviewed temporal aspect of hand gesture analysis [12] and
how gestures which are captured by video sensor can be
recognized by incorporating the temporal aspects with refer-
ences to the bodily positions [13]. Although the focus of their
research is on gesture phase segmentation the research team
pointed out that the gesticulation behavior may influence
the performance of a classifier. It was known that different
human users who were videoed doing the same gesture may
yield different gesticulation behavior. Therefore an effective
machine learning approach is needed in accurately classifying
the motion pattern data into their corresponding gestures.

Their experimental dataset which is available for down-
load is composed by 7 video sequences captured by using
Microsoft Kinect sensor. In front of the Microsoft Kinect
sensor, 3 human subjects were instructed to read 3 comic
strips and to tell the stories from the comic strips using hand
gestures and bodily postures, while the sensor is recording
the motions. At the end of the image processing, the video
contains a sequence of images, one for each frame, indexed
by a timestamp. The video sequence is then formatted into
a matrix of text file, with rows of data representing the
temporal data instances and columns that characterize the
spatial positions or 𝑋-𝑌-𝑍 3D coordinates of 6 articulation
points. The articulation points are identified by the current
positions of the limbs and body parts, such as the head, spine,
left hand, left wrist, right hand, and right wrist.Themeasures
of the positions were normalized into numeric values. Each
data instance is the gesture information extracted per video
frame, with each of which uniquely identified by a timestamp.
The data instances are postprocessed by the help of a human
specialist who manually segmented the file and associated
it with a label of gesture. This manual postprocessing was
needed for generating a ground truth for classification for
the sake of evaluating the performance of the classification
algorithms under test.

There are 32 attributes or features in the dataset, which are
combined from the static positions of the body parts as in the
video frame and the motion information. The target classes
are the five phases of the gestures which are individually
abstracted as Hold, Preparation, Rest, Retraction, and Stroke.
A total of 50 attributes are used to characterize each instance
that amounts to thousands depending on the length of the
stories to be played. Out of the 50 attributes, 18 are the
positions of the body parts, and 32 are the velocity and
acceleration, in both vectorial and scalar forms of hands and
wrists. Table 1 shows the 50 attributes. There are a total of
9,900 data instances which are extracted from the 7 videos
available for training/testing the classification algorithms.

As an illustration, the three prime positions of a left hand
are visualized for showing the fluctuation in values over time
in Figure 1. Furthermore the normalized values of the three
coordinates are visualized as parallel coordinate graph in
Figure 2 that displays the wide ranges of the attribute values
though they have been normalized between 0 and 1. The
mapping relations of the three coordinates to the six phases
(target classes) are visualized in 2D and 3D in Figures 3 and
4, respectively. They both point to the fact that the mapping
relations which constitute the construction of a classification
model are indeed very nonlinear. Highly nonlinear models

lhx
lhy
lhz

lhx-predicted
lhy-predicted
lhz-predicted

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1.0

2.0

3.0

4.0

5.0

6.0

Figure 1: Fluctuation of coordinate values on the time-domain of
the motion patterns from video sensor.

are known to be computationally difficult to induce especially
if they need to achieve a good balance between generality
and accuracy. With the additional requirement for data
stream mining, processing must be fast which poses certain
challenge in algorithm design.

2.2. Traditional and Incremental Model Learning Methods.
Sensor data analysis is emerging and it demands an efficient
classification model that is capable of mining data streams
and making a prediction for unseen samples. Traditional
classification approach is referred to a method of top-
down supervised learning [14], where a full set of data
is used to construct a classification model, by recursively
partitioning the data into forming mapping relations for
modelling a concept. Since these models are built based
on a stationary dataset, model update needs to repeat the
whole training process whenever new samples arrive, adding
them to incorporate the changing underlying patterns. The
traditional models might have a good performance on a full
set of historical data, and the data are relatively stationary
without anticipating much new changes. In dynamic stream
processing environment, like gesture recognition using a
video sensor, however, data streams are ever evolving and
the classification model would have to be frequently updated
accordingly.Therefore a new generation of algorithms, gener-
ally known as incremental classification algorithms or simply,
data stream mining algorithms has been proposed to solve
this problem [15].

Take decision tree construction for example, heuristic
function is an important evaluation method that determines
the split attributes for converting leaves into nodes, for
instance, information gain used in C4.5 [16] and Hoeffd-
ing tree [17]. Traditional methods require the full dataset
(newly arrival data and historical data) to update decision
model while incremental methods implement a single-pass
approach which is unnecessary to reload full dataset. Figure
5 shows the flow-charts of classification model induction by
using these two families of learning methods.

As a technical drawback in the traditional methods,
holding the whole execution process of model-induction in
runtime memory is not favorable especially when the input
training data are too large. Hence, incremental methods load
only a small fragment of the input data stream at a time
rather than filling all in one go, for refreshing the classification

4 Journal of Sensors

Table 1: The gesture attributes of the sensor data.

Positions Motions
(1) lh𝑥: position of left hand (𝑥 coordinate) (1) Vectorial velocity of left hand (𝑥 coordinate)
(2) lh𝑦: position of left hand (𝑦 coordinate) (2) Vectorial velocity of left hand (𝑦 coordinate)
(3) lh𝑧: position of left hand (𝑧 coordinate) (3) Vectorial velocity of left hand (𝑧 coordinate)
(4) rh𝑥: position of right hand (𝑥 coordinate) (4) Vectorial velocity of right hand (𝑥 coordinate)
(5) rh𝑦: position of right hand (𝑦 coordinate) (5) Vectorial velocity of right hand (𝑦 coordinate)
(6) rh𝑧: position of right hand (𝑧 coordinate) (6) Vectorial velocity of right hand (𝑧 coordinate)
(7) h𝑥: position of head (𝑥 coordinate) (7) Vectorial velocity of left wrist (𝑥 coordinate)
(8) h𝑦: position of head (𝑦 coordinate) (8) Vectorial velocity of left wrist (𝑦 coordinate)
(9) h𝑧: position of head (𝑧 coordinate) (9) Vectorial velocity of left wrist (𝑧 coordinate)
(10) s𝑥: position of spine (𝑥 coordinate) (10) Vectorial velocity of right wrist (𝑥 coordinate)
(11) s𝑦: position of spine (𝑦 coordinate) (11) Vectorial velocity of right wrist (𝑦 coordinate)
(12) s𝑧: position of spine (𝑧 coordinate) (12) Vectorial velocity of right wrist (𝑧 coordinate)
(13) lw𝑥: position of left wrist (𝑥 coordinate) (13) Vectorial acceleration of left hand (𝑥 coordinate)
(14) lw𝑦: position of left wrist (𝑦 coordinate) (14) Vectorial acceleration of left hand (𝑦 coordinate)
(15) lw𝑧: position of left wrist (𝑧 coordinate) (15) Vectorial acceleration of left hand (𝑧 coordinate)
(16) rw𝑥: position of right wrist (𝑥 coordinate) (16) Vectorial acceleration of right hand (𝑥 coordinate)
(17) rw𝑦: position of right wrist (𝑦 coordinate) (17) Vectorial acceleration of right hand (𝑦 coordinate)
(18) rw𝑧: position of right wrist (𝑧 coordinate) (18) Vectorial acceleration of right hand (𝑧 coordinate)

(19) Vectorial acceleration of left wrist (𝑥 coordinate)
(20) Vectorial acceleration of left wrist (𝑦 coordinate)
(21) Vectorial acceleration of left wrist (𝑧 coordinate)
(22) Vectorial acceleration of right wrist (𝑥 coordinate)
(23) Vectorial acceleration of right wrist (𝑦 coordinate)
(24) Vectorial acceleration of right wrist (𝑧 coordinate)
(25) Scalar velocity of left hand
(26) Scalar velocity of right hand
(27) Scalar velocity of left wrist
(28) Scalar velocity of right wrist
(29) Scalar velocity of left hand
(30) Scalar velocity of right hand
(31) Scalar velocity of left wrist
(32) Scalar velocity of right wrist

0.00

0.05

1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1
3
2

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Va
lu

es

Attributes

lh
x

lh
y

lh
z

rh
x

rh
y

rh
z hx hy hz sx sy sz lw
x

lw
y

lw
z

rw
x

rw
y

rw
z

Figure 2: Normalized coordinate values of the motion patterns from video sensor.

Journal of Sensors 5

Figure 3: Visualization of three coordinate values with respect to
their target phases in 2D.

model incrementally as shown in Figure 5. In incremental
learning, Hoeffding bound (HB) is used to decide whether
an attribute should be split to establish new nodes provided
that sufficient samples for that attribute have appeared in the
data stream. The new approach is designed for incremental
decision trees, the pioneer of which is very fast decision tree
(VFDT) and sometimes it is more generally called Hoeffding
tree (HT) [17]. HT is a classical work using HB in the node-
splitting test. This is attributed to the statistical property of
HB that controls the node-splitting error rate on the fly.

3. Incremental Learning Model for
Data Stream Mining

3.1. Batch-Learning Classification Problems. Here we review,
via mathematics, why traditional model induction process
may not functionwell formining data stream from video sen-
sor. Assume an instance of data arrives for model induction
from the stream at timestamp 𝑡, 𝐷

𝑡
; it carries a vector of data

of multiple attributes and a corresponding class value 𝑦
𝑡
as

defined in

𝐷
𝑡
= [𝑋
𝑡
, 𝑦
𝑡
] . (1)

During a time slot (𝑡 = 1, 2, . . . , 𝑇) over the number of
timestamp 𝑇, the data are collected into a data block 𝐷

𝑇
,

where 𝑇 > 0. 𝐷
𝑇
is defined in

𝐷
𝑇

=

𝑇

∑

𝑡=1

𝐷
𝑡
=

[
[
[
[

[

𝑋
1

𝑦
1

.

.

.
.
.
.

𝑋
𝑇

𝑦
𝑇

]
]
]
]

]

. (2)

With the data block𝐷
𝑇
which was collected so far on hand, a

heuristic function is used for inducing a classification model.
Let 𝐻(⋅) be such heuristic function; greedy search approach
that works in the manner of divide-and-conquer is usually
employed by traditional decision tree model that attempts
to induce a globally optimal decision tree, TRGLOBAL. This
tree is ensured as global, because of the availability of the
full collected dataset 𝐷

𝑇
. The role of 𝐻(⋅) is to one-by-one

rank and select the attributes in the order of the highest

Figure 4: Visualization of three coordinate values with respect to
their target phases in 3D.

information gain [18], as splitting tree nodes in the case of
decision tree. There are other incremental learning methods
though incremental decision tree is used for illustration here.
So for each attribute 𝑋

𝑖
, of indices 𝑖 and 𝑗 where 𝑖 ≤ 𝑀 and

𝑗 ≤ 𝑁, for 𝑀, is the maximum number of attributes and 𝑁

is the maximum number of instances received so far, 𝑥
𝑖𝑗
is

the splitting value. The function tries to pick the attribute 𝑋
𝑖

that has themaximum splitting value, by𝑥
𝑖𝑗
= argmax𝐻(𝑥

𝑖𝑗
)

from the splitting values ranging from 𝑥
𝑖1
to 𝑥
𝑖𝑗
, which we

have already known from 𝐷
𝑇
. This process ensures that the

resultant model is globally optimal as far as the full data is
collected in 𝐷

𝑇
, and it is defined in

Maximize
𝑀

∑

𝑖=1

𝑁

∑

𝑗=1

𝐻(𝑥
𝑖𝑗
) . (3)

For any given new instance that arrives in the future time
𝑡, 𝑋
𝑡
, the induced model will map it to a predicted class ̂

𝑦
𝑡

𝑘

where 𝑘 is the index to the possible set of classes, 𝐾. With
reference to the data that have been collected and used for
training so far, the induced model is being built with the
aim of minimizing the classification error, as defined in (4).
The Train(⋅) and Test(⋅) functions are generic, depending
on the implementation and the choice of the classification
algorithms. In general the Train(𝐷

𝑇
, 𝐻(⋅)) function takes

two parameters, one is the data which would be used for
supervised learning and 𝐻(⋅) is the heuristic function to be
used in learning from the data 𝐷

𝑇
. The Test(TRGLOBAL, 𝑋

𝑡
)

function produces a prediction result by testing the classifi-
cation model which is supposed to be globally optimal over a
testing sample 𝑋

𝑡 received at timestamp 𝑡:

TRGLOBAL = Train (𝐷
𝑇
, 𝐻 (⋅))

̂
𝑦
𝑡

𝑘
= Test (TRGLOBAL, 𝑋

𝑡
)

Error𝑡
𝑘
=

{

{

{

1, if ̂
𝑦
𝑡

𝑘
̸= 𝑦
𝑡

𝑘

0, otherwise

}}}}}}}

}}}}}}}

}

󳨐⇒ subject to Minimize
𝑇

∑

𝑡=1

𝐾

∑

𝑘=1

Error𝑡
𝑘
.

(4)

Now consider a situation at timestamp 𝑡, the data is
accumulated up to 𝐷

𝑡
, and a classification model TRGLOBAL

has been induced, so far so good.When new data𝐷
𝑡+1

arrives

6 Journal of Sensors

Check if splitting-
node should occur

Are all the
attributes
evaluated?

Evaluate attributes
by heuristic function

Select an attribute
that has the greatest
gain value as a new
splitting-node

Generated
tree

Yes

No

Traverse the
current tree HT

Update the statistic
count(l) at the current

Count(l) mod

Evaluate attributes
by heuristic function

Compare the best and
the second best gain

values

Updated
tree

Select a splitting-
node by HB

No

Yes

Data streamFull dataset

Traditional batch learning Incremental stream learning

leaf l

nmin = 0?

−1.0

2.0

Figure 5: Comparison of approaches for traditional and incremental tree-building.

at 𝑡 + 1, the classification model TRGLOBAL now needs to be
updated by repeating the induction process defined by (3) and
(4) with the inclusion of the new data, 𝐷

𝑡
+ 𝐷
𝑡
+ 1. The time

taken for model rebuilding will only get longer as 𝑡 and 𝐷
𝑡

increase. Each time it requires loading in all historical 𝐷
𝑇

repeatedly.
In mining sensor data, the collected data instances are

massive in volume and ever new data are being generated
frequently without end (in some cases like 24/7 video surveil-
lance). How to keep up with the latest model efficiently is an
open problem. For frequently updating model, recomputing
historical data is not applicable when the data repository
contains large millions of records. Some sort of incremental
approach is required.

To solve this incremental problem, the authors in [17]
proposed an alternative method for incrementally inducing
a classification model, TRINCR. This method is also known
as any-time algorithm where the training data is read once
only without storing or reloading it anymore. The induction
method builds a tree by selecting an attribute for node-
splitting by estimating the sufficient statistics that records the
counts of each attribute value. This is done by computing
the Hoeffding bound (HB) as defined in (5) that checks
how often the attribute value 𝑥

𝑖𝑗
of attribute 𝑋

𝑖
would have

corresponded to class 𝑦
𝑘
:

HB = √
𝑅
2 ln (1/𝛿)

2𝑛
, (5)

where the class distribution is measured by𝑅 and the amount
of instances that have been seen belonged to a class is 𝑛.
Unlike the traditional approach, for attribute 𝑋

𝑖
the method

checks on the splitting-value by nominating two best values.
At any time, we have the best value of 𝐻(⋅) called 𝑥

𝑖𝑎
such

that 𝑥
𝑖𝑎

= argmax𝐻(𝑥
𝑖𝑗
). Likewise, the second best value

is 𝑥
𝑖𝑏
so 𝑥
𝑖𝑏

= argmax𝐻(𝑥
𝑖𝑗
), ∀𝑗 ̸= 𝑎. These two best

values are chosen incrementally as the induction goes and
newdata arrives.Thedifference between these two best values
is calculated as in Δ𝐻(𝑋

𝑖
) = Δ𝐻(𝑥

𝑖𝑎
) − Δ𝐻(𝑥

𝑖𝑏
) for each

attribute 𝑋
𝑖
where 𝑖 ∈ 𝐼. For 𝑛 number of instances that have

been observed so far, a confidence interval is computed byHB
as in (5), called 𝑟true by which we can be sure of relating the
attribute value 𝑥

𝑖𝑗
to class 𝑦

𝑘
. Incrementally, just by observing

the confidence intervals as the only retained statistics for each
attribute𝑋

𝑖
, 𝑟−HB ≤ 𝑟true < 𝑟+HBwhere 𝑟 = (1/𝑛)∑

𝑛

𝑖
𝑟
𝑖
. For

assuring an attribute is to be nominated for node-splitting,
a minimum amount of observed samples, 𝑛min is required.
Over the observed samples, if the inequality holds true for
𝑟+HB > 1, and 𝑟true < 1, then the attribute 𝑥

𝑖𝑎
being tested is

the best candidate by the statistics based on only a part of the
data stream over the entire data streamwith good confidence.

In this way, we estimate the splitting-value 𝑥
𝑖𝑗
of attribute

𝑋
𝑖
, without the need of knowing all attribute values from

𝑥
𝑖1
to 𝑥
𝑖𝑁
. It hence frees us from reloading the full data for

training the classification model as it learns incrementally
when additional data come.The inducedmodel can be useful
in prediction at any time as well as being trained at any
time by adjusting the statistics of the splitting values. While
being able to embrace unlimited incoming samples from the
data stream, the incremental learning is designed with the
optimization goal of keeping the error minimum as follows:

TRINCR = Train (𝐷
𝑡
, 𝐻 (⋅) , 𝛿, 𝑛min)

̂
𝑦
𝑡

𝑘
= Test (TRINCR, 𝑋

𝑡
)

Error𝑡
𝑘
=

{

{

{

1, if ̂
𝑦
𝑡

𝑘
̸= 𝑦
𝑡

𝑘

0, otherwise

}}}}}}}

}}}}}}}

}

Subject to Minimize
𝑇

∑

𝑡=1

𝐾

∑

𝑘=1

Error𝑡
𝑘
.

(6)

Journal of Sensors 7

3.2. Incremental Learning Algorithms as Solutions. Two main
schools of algorithmswere designed for incremental learning:
functional-based and decision tree-based. The former group
of algorithms constructs a black-box model which is repre-
sented by numeric weights and coefficients for mapping the
relations between the inputs and the predicted outputs. Two
of the most popular functional-based incremental learning
algorithms are KStar and Updatable Naı̈ve Bayes.

The full name of KStar is “Instance-Based Learner Using
an Entropic Distance Measure.” As the name suggests, it
learns incrementally per instance by some similarity function
that measures the entropic distance between the test instance
and the other instances.Motivated by information theory, the
underlying similarity function solves the smoothness prob-
lem by summing the probabilities over all possible decision
paths for attaining good overall performance. Due to the
large amount of summation over all the possible paths, KStar
usually required longer processing time than its counterparts.
The details of the algorithm and its entropy-based distance
function are described in full in [19]. In the same article, KStar
was shown to outperformother rule based and instance based
learning algorithms using some empirical datasets.

Updatable Näıve Bayes is extended from the famous
Näıve Bayes classifiers which embrace a family of simple
probabilistic classifiers founded on the principle of Bayes’
theorem. The algorithm is designed with assumptions of
possessing strong independence between the features. An
advantage of this assumption is that it only requires a small
amount of training data to estimate the means and variances
of the features (variables) for computing the probabilities
of all the possible outcomes for performing classification.
Updatable Näıve Bayes is the online version of Näıve Bayes
where the same algorithm continually updates its variables
for tuning the hypothesis as it runs; it continually receives a
new data instance and predicts its target class based on the
current hypothesis; the new instance is used to further update
its hypothesis accordingly too.

The other major group of algorithms is decision tree
based. By the any-time tree induction principle as discussed
in Section 3.2, several research papers have proposed dif-
ferent approaches to improve the accuracy of VFDT in the
past decade. Some selected algorithms, together with KStar
and Updatable Naı̈ve Bayes will be put into experimental
test in this paper. Such incremental decision tree algorithms
using HB in node splitting test are so called Hoeffding tree
(HT).

HOT [18] proposed an algorithm producing some
optional tree branches at the same time, replacing those
rules with lower accuracy by optional ones.The classification
accuracy has been improved significantly while learning
speed is slowed because of the construction of optional tree
branches. Some of the options are inactive branches consum-
ing computer resources are to be removed; some are random
choices of trees for speed-up called random Hoeffding tree
(RHT), and so forth. ADWIN [20] that stands for adaptive
sliding window algorithm proposes a solution to detect
changes by observing the recently seen data instances within
a variable-sized sliding window. The node splitting value is
judged on the variation in the average value of the instances as

seen inside the window. Another adaptive algorithm is called
“Concept Drift Active Learning Strategies” or just Active [21].
Active learning aims at learning an accurate model with as
little tree branches as possible. It is known that during data
streaming in, the data distribution in the data stream is prone
to differ over time resulting in concept drift, hence the learnt
model needs to adapt by relearning. Usually data stream
learning focuses on checking through the uncertain instances
which can be found near the decision boundary. So if the con-
cept drift happens in other areas other than the boundary, the
learningmay fail to adapt. Active learning strategiesmake use
of randomization of search space for evenly learning from the
data stream. Another challenge associated with incremental
learning in data streams is the huge volume of search space (as
hyperplane) fromwhich a representative feature subset needs
to be derived, for efficientmodel induction without incurring
a large latency for high-speed data stream mining. Usually
the larger the amount of features in the data, the higher the
cardinality of the dimensions, the huger the search space,
and the extremely longer time it requires for processing. The
next subsection deals with some techniques called feature
selection to tackle this problem.

3.3. Feature Selection by Swarm Search and APSO. A contem-
porary type of feature selection algorithm, specially designed
for choosing an optimal subset from a huge hyperspace is
called swarm search-feature selection (SS-FS)Model [22]. SS-
FS is wrapper-based feature selectionmodel which retains the
accuracy of each trial classifier built from a candidate feature
subset, picks the highest possible fitness, and deems the
candidate feature subset as the choice output.Theworkflowof
the SS-FS Model is shown in Figure 6. It can be seen that the
operation iterates starting from a random selection of feature
subset, continues to refine the accuracy of the classification
model by searching for a better feature subset, in stochastic
manner. The flow enables the classification model and the
chosen feature subset finally converges.

The wrapped classifier is used as a fitness evaluator,
advising how useful the candidate subset of features is;
the optimization function searches for candidate subset of
features in stochastic manner. This approach if run by brute-
force testing out all the possible subsets, it will take a very long
time. For there are 50 features in the sensor data, there are
250 ≈ 1.1259 × 1015 possible trials of repeatedly building the
wrapped classifier. While the increase in data features goes
by 𝑂
2, the high computation costs intensify proportional to

the amount of instances; in the case data stream mining, the
sensor feed may amount to infinity!

In this regard, a search strategy called Swarm Search is
used. Instead of testing on every possible feature subset, the
SwarmSearchwhich is enabled bymultiple search agentswho
work in parallel would be able to find the most currently
optimal feature subset at any time. In order to shorten the
search process, a speed-up is implemented in our proposed
model by incorporating a speed-up in the initialization step
in the Swarm Search, called Accelerated Particle Swarm
Optimization (APSO) [23].

PSO searches the space of an objective function by
adjusting the trajectories of individual agents, called particles,

8 Journal of Sensors

Feature selection

APSO optimization

Find initial search positions

Compute CCV

Original data with
full attributes Dataset

Data cleaning

Feature subset
candidate

Training dataset
with selected with selected

features features

Classification model
training

Classifier

Fitness calculation

Termination
criteria satisfied?

Output optimized classifier
and its performance

indicators

Fitness score,

Modifying the search

Feature subset to be

Search space

purged

space
No

Yes

number of iteration

Testing dataset

abcd

abc

ab

a b c d e

ac ad bc bd ae cd be ce de

abe bcd ace ade bce bde cdeabd acd

abce abde acde bcde

abcde

0

Figure 6: Workflow of swarm search feature selection model.

as the piecewise paths formed by positional vectors in a qua-
sistochastic manner. The movement of a swarming particle
consists of two major components: a stochastic component
and a deterministic component. Each particle is attracted
towards the position of the current global best 𝑔∗ and its own
best location 𝑜

∗

𝑖
in history called “individual best”, while at the

same time it has a tendency to move randomly. Let 𝑜
𝑖
and V
𝑖

be the position vector and velocity for particle 𝑖, respectively.
The velocity vector is defined by

V𝑡+1
𝑖

= V𝑡
𝑖
+ 𝛼𝜖
1
[𝑔
∗
− 𝑜
𝑡

𝑖
] + 𝛽𝜖

2
[𝑜
∗

𝑖
− 𝑜
𝑡

𝑖
] , (7)

where 𝜖
1
and 𝜖
2
are two random vectors and each entry takes

the values between 0 and 1. The parameters 𝛼 and 𝛽 are the
learning parameters for accelerating the particles with typical
value of 𝛼 = 𝛽 = 2. One noticeable improvement is the use
an inertia function 𝜃(𝑡) so that V𝑡

𝑖
is replaced by 𝜃(𝑡)V𝑡

𝑖
where

the velocity vector with the inertia function is defined by

V𝑡+1
𝑖

= 𝜃V𝑡
𝑖
+ 𝛼𝜖
1
[𝑔
∗
− 𝑜
𝑡

𝑖
] + 𝛽𝜖

2
[𝑜
∗

𝑖
− 𝑜
𝑡

𝑖
] , (8)

where 𝜃 ∈ [0, 1] with a typical value of 0.5. This is similar
to introducing a virtual mass to stabilize the motion of the
particles, so the swarm search can converge more quickly.

The reason of using the individual best is primarily to
increase the diversity in the quality solutions; however, this
diversity can be simulated using some randomness. A simpli-
fied version which could accelerate the convergence of the
algorithm is to use the global best only. Thus, in this version
of APSO the velocity vector is generated by a simpler formula.
Consider

V𝑡+1
𝑖

= V𝑡
𝑖
+ 𝛼𝜖
𝑛
+ 𝛽 [𝑔

∗

𝑖
− 𝑜
𝑡

𝑖
] , (9)

where 𝜖
𝑛
is drawn from 𝑁(0, 1) to replace the second term.

The update of the position now becomes simply,

𝑜
𝑡+1

𝑖
= 𝑜
𝑡

𝑖
+ 𝑜
𝑡+1

𝑖
. (10)

In order to speed up the convergence sooner, we can define
the update of the location in a single step,

𝑜
𝑡+1

𝑖
= (1 − 𝛽)𝑜

𝑡

𝑖
+ 𝛽𝑔
∗
+ 𝛼𝜖
𝑛
. (11)

Journal of Sensors 9

This simpler version of position update will deliver the same
order of convergence. Typically, 𝛼 = 0.1L∼0.5L where 𝐿 is the
scale of each variable, while 𝛽 = 0.1∼0.7 is sufficient for most
cases. It is worth indicating that velocity does not appear in
(11), and there is no need to deal with initialization of velocity
vectors except the starting positionsmust be set appropriately.

In order to set the initial starting positions for APSO,
some feature ranker function that must be quick and simple
should be applied. In our proposed data stream mining
model, a very simple and efficient feature selection called
clustering coefficients of variation (CCV) is used for finding
the ideal starting positions for APSO. CCV is based on a
very simple principle of variance-basis that finds a subset
of features useful for optimally balancing the classification
model induction between generalization and overfitting.
CCV is founded on a basic belief that a good attribute in a
training dataset should have its data vary sufficiently wide
across a range of values, so that it is significant to characterize
a useful prediction model. The coefficient of variation (CV)
is expressed as a real number from −∞ to +∞ and it
describes the standard deviation of a set of numbers relative
to their mean. It can be used to compare variability even
when the units are not the same. In general CV informs
us about the extent of variation relative to the size of the
observation, and it has the advantage that the coefficient
of variation is independent of the units of observation.
The coefficient of variation, however, will be the same over
all the features of a dataset as it does not depend on the
unit of measurement. So you can obtain information about
the data variation throughout all the features, by using the
coefficient of variation to look at all the ratios of standard
deviations to mean in each feature. Intuitively, if the mean
is the expected value, then the coefficient of variation is the
expected variability of a measurement, relative to the mean.
This is useful when comparingmeasurements acrossmultiple
heterogeneous data sets or across multiple measurements
taken on the same data set – the coefficient of variation
between two data sets, or calculated for two attributes of
measurements in the case of feature selection, can be directly
compared, even if the data in each are measured on very
different scales, sampling rates or resolutions. In contrast,
standard deviation is specific to themeasurement/sample it is
obtained from, that is, it is an absolute rather than a relative
measure of variation. In statistics, it is sometimes known as
measure of dispersion, which helps compare variation across
variables with different units. A variable with higher coeffi-
cient of variation is more dispersed than one with lower CV.

Let 𝑋 be a training dataset with 𝑛 instances of vector
whose values are characterized by a total of 𝑚 attributes or
features. An instance is an 𝑚-dimensional tuple, in the form
of (𝑥
1
, 𝑥
2
, . . . , 𝑎

𝑚
). For each 𝑥

𝑎
where 𝑎 ∈ [1, . . . , 𝑚], can be

partitioned into subgroups of different classes where 𝑐 ∈ 𝐶

is the total number of prediction target classes. So that 𝑥
𝑎

∈

{𝑥
1

𝑎
, 𝑥
2

𝑎
, . . . , 𝑥

𝑐

𝑎
}. Consider

V
𝑎
=

𝑐

∑

𝑐=1

√[∑
𝑛

𝑛=1
(𝑥𝑐
𝑛
− 𝑥𝑐
𝑎
)
2

] /𝑛

𝑥𝑐
𝑎

.
(12)

𝑥𝑐
𝑎
is the mean of all the 𝑎th feature values that belong

to class 𝑐. V
𝑎
is the sum of all coefficients of variation for

each class 𝑐 where 𝑐 ∈ [1, . . . , 𝐶], for that particular 𝑎th
feature. The coefficient of variation is expressed as a real
number from −∞ to +∞. The subsequent step required
in CCV after calculating the CV is to find a threshold in
order to decide which features and how many features are
to be retained. The underlying concept behind this task is
Bia-Variance dilemma. Some recent studies stated that the
decomposition of a supervised learner’s error into bias and
variance terms can provide considerable insight into the
prediction performance of the classifier learner.

Assume a target function: 𝑡(𝑥) = 𝑔(𝑥) + 𝜀. Then the
expected squared error over fixed size training sets 𝐷 drawn
from 𝑃(𝑋, 𝑇) can be expressed as sum of three components:

∑

𝐷

[∫
𝑥

∫
𝑡

(ℎ (𝑥) − 𝑡)
2
𝑝 (𝑡 | 𝑥) 𝑝 (𝑥) 𝑑𝑡 𝑑𝑥]

= 𝜎
2
+ bias2 + variance,

𝜎
2
= unavoidable Error,

bias2 = ∫(∑

𝐷

[ℎ (𝑥)] − 𝑔 (𝑥))

2

𝑝 (𝑥) 𝑑𝑥,

ℎ (𝑥) = ∑

𝐷

[ℎ (𝑥)] ,

variance = ∫∑

𝐷

[(ℎ (𝑥) − ℎ (𝑥))
2

] 𝑝 (𝑥) 𝑑𝑥.

(13)

Our goal is to minimize the expected loss, which we have
decomposed into the sum of a (squared) bias, a variance, and
a constant noise term. As we shall see, there is a trade-off
between bias and variance, with very flexible models (which
can possibly overfit) having low bias and high variance,
and relatively rigid models (under fit) having high bias and
low variance. In order to achieve this optimum equilibrium
between bias and variance, a simple 𝐾-means clustering
technique is employed. It tries partition the data point into
two clusters: one to be retained and the other one to be
removed. The goal is to assign membership of a cluster to
each data point. Clustering algorithm helps to find the ideal
cluster positions 𝜇

𝑖
, 𝑖 = 1, . . . , 𝑘 of the clusters that minimize

the distance from the data points to the cluster centroids, with
the following objective function:

arg = min
𝑐

2

∑

𝑖=1

∑

𝑥∈𝑐𝑖

𝑑 (𝑥, 𝜇
𝑖
)

= argmin
𝑐

2

∑

𝑖=1

∑

𝑥∈𝑐𝑖

󵄩󵄩󵄩󵄩𝑥 − 𝜇
𝑖

󵄩󵄩󵄩󵄩

2

,

(14)

where 𝑐
𝑖
is the set of points that belong to cluster 𝑖. The

clustering algorithmuses the square of the Euclidean distance
𝑑(𝑥, 𝜇

𝑖
) = ‖𝑥 − 𝜇

𝑖
‖
2.

Given a data set 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, the estimation

function is 𝑓(𝑥) = 𝑎
0
𝑥
0+

𝑎
1
𝑥
1+

𝑎
2
𝑥
2+

. . . = ⃗𝑎𝑥⃗. As it was

10 Journal of Sensors

mentioned before, adding more parameters into the model
as features, the complexity of the model rises, so does the
variance while bias steadily falls. The function of 𝐾-means
is to divide the data set into two groups according to the
values of coefficient of variation. The values of variance-bias
are different for the data points in different clusters that reflect
the complexity of model. It is known the more a complex
model, the more bias it is, and vice versa. So we are reducing
the complexity ofmodel by choosing some valuable attributes
by separating the variance. The total error of two groups:

group
1
= bias2 ↑ + variance ↓ + 𝜎

2
, (15)

group
2
= bias2 ↓ + variance ↑ + 𝜎

2
. (16)

One of the two groups (15) and (16) with data points
representing the combinations of variances and biases is to
be chosen as the optimal feature subset. A quick and effective
division method call HyperPipes [24] is utilized for this task.
HyperPipes is a probabilistic learning tool that is very similar
to Näıve Bayes, except for the fact that it does not record the
frequency count of how attributes correspond to classes. In
essence, an attribute either corresponds to a hypothetical class
or it does not, regardless of how many times this is the case.
The learner will record all of the attributes and their corre-
spondence with the class in a table of Booleans. The learner
will determine the class based on the score of the attributes
added up (0 for if it does not exist and 1 for if it does).

4. Mining Sensor Data Streams

4.1. Evaluation Method. The experiment contains two parts:
firstly, we compare two groups of classification learning
methods, traditional batch learning and incremental learning
pertaining to their classification performance such as accu-
racy, kappa, precision and recall, and so forth. The names of
the classification learning algorithms, together with a short
description are shown in Table 2. The choices of algorithms
for both groups are popular methods that have been used
widely in the literature. The data stream mining algorithms
which are put under test here are mainly inherited from the
Hoeffding principle in growing a decision tree. In addition,
two nondecision tree type of incremental learning such as
Updateable Näıve Bayes and KStar are tested in the compar-
ison. Secondly the timing performance is evaluated for the
two groups of classification, in relation to the cost-benefit of
accuracy improvement at the price of extra running time.

The experiment was conducted on the computing plat-
form of a Dell Precision T7610 PC with Intel Xeon Processor
E5-2670 v2 (TenCoreHT, 2.5 GHzTurbo, 25MB) and 128GB
RAM. The programming environment is Java Development
Kit 1.5. For the algorithms, they are implemented on MOA
platform. Default parameter values are set for all experimen-
tation runs. For a fair evaluation over the efficacy of the
algorithms, 10-fold cross-validation is used for obtaining an
unbiased estimate of the accuracy performance of the clas-
sification models. The data is divided into 10 subsets of equal
portion; themodels by the same algorithmare built 10 rounds,
each round sparing out one of the 10 subsets from training the
model, as unseen data for performance validation.

60
65
70
75
80
85
90
95

100HP
NB

BN

DT

RF

SVM

NN
RHT

HT

HOT

NBup

AC

AW

Kstar

Accuracy
Original
Cfs

FS-PSO
FS-APSO

Figure 7: Radar chart of sensor data classification performance in
accuracy.

4.2. Sensor Data Classification. The sensor data that is subject
to the experiment of performance evaluations is treated with
4 types of preprocessing methods for feature selection. The
first preprocessing does no feature selection we simply call
it “Original” meaning the sensor data is in its original form
as collected from the video sensor; the second method is
preprocess with Correlation-based feature selection, namely
Cfs which is a popular approach in data mining, the third
preprocessing is done with swarm search feature selection
using PSO, called FS-PSO; and the fourth preprocessing is the
same as the third method except standard PSO is replaced by
Accelerated PSO, called FS-APSO.

The experiment conducted over a number of combina-
tions of feature selection preprocessing methods and classi-
fication algorithms, from both traditional and incremental
learning types. The performance results are harvested in
terms of Accuracy, Kappa (Kappa statistics), True Positives
rate, false positive rate, precision, recall, F-measure, model
building time per run, preprocessing time, and number of
features selected. The results are tabulated in Tables 3 and
4 for traditional classification algorithms and incremental
classification algorithms respectively. Some selected impor-
tant performance indicators such as Accuracy, Kappa, True
Positive rate, False Positive rate, Time and size of selected
feature subset are graphed in radar charts respectively in
Figures 7–12.

4.3. Discussion of the Results. The radar charts are laid out
by placing the 7 traditional classification algorithms on the
right side of the chart, and the 7 incremental algorithms on
the left, for easy comparison.The accuracymeasure is defined

Journal of Sensors 11

Table 2: Classification algorithms used in experiments.

Traditional classifier Description

HyperPipe (HP)
For each category a HyperPipe is constructed that contains all points of that category (essentially
records the attribute bounds observed for each category). Test instances are classified according to
the category that “most contains the instance”

Naviie Bayes (NB)
Naive Bayes classifier using estimator classes. Numeric estimator precision values are chosen
based on analysis of the training data. For this reason, the classifier is not an Updateable Classifier
(which in typical usage is initialized with zero training instances)

BayesNet (BN)
Bayes network learning using various search algorithms and quality measures.
Base class for a Bayes network classifierprovides data structures (network structure, conditional
probability distributions, etc.) and facilities common to Bayes Network learning algorithms like
𝐾2 and 𝐵

Decision tree (DT) Generating a pruned C4.5 decision tree
Random forest (RF) Constructing a forest of random trees

Support vector machine (SVM) A wrapper class for the libsvm tools (the libsvm classes, typically the jar file, need to be in the
classpath to use this classifier)

Neural network (NN)
A classifier that uses backpropagation to classify instances. The nodes in this network are all
sigmoid (except for when the class is numeric in which case the output nodes become
unthresholded linear units)

Incremental classifier Description
Random Hoeffding tree (RHT) Random decision trees for data streams
Hoeffding tree (HT) Very fast decision tree implementation using Hoeffding bound
Hoeffding option tree (HOT) Hoeffding tree: Single tree that represents multiple trees

NBUpdateable (NBup) This is the updateable version of Naive Bayes. This classifier will use a default precision of 0.1 for
numeric attributes when buildClassifier is called with zero training instances

Active (AC) Active learning classifier for evolving data streams

Adwin (AW)
ADaptive sliding WINdow method. This method is a change detector and estimator. It keeps a
variable-length window of recently seen items, with the property that the window has the
maximal length statistically consistent with the hypothesis “there has been no change in the
average value inside the window”

Kstar 𝐾
⋆ is an instance-based classifier; that is, the class of a test instance is based upon the class of

those training instances similar to it, as determined by some similarity function

by the number of correctly classified instances over the total
instances in the sensor data. In the case of batch learning by
traditional algorithms, the accuracy is the ratio of correctly
classified instances over all the 99,000 instances. In the case of
incremental learning, the accuracy is measured by averaging
all the intermediate accuracies resulted from each data
segment over a series of tests. In Figure 7 the overall accuracy
by the traditional classification algorithms is slightly higher
than those by the incremental algorithms: average accuracy
82.98296% for traditional versus 74.08409% for incremental.
The top performers are Neural Network and KStar. The per-
formance in general for the preprocessing methods of origi-
nal and Cfs is out-performed by FS-PSO and FS-PSO. Gener-
ally Cfs consistently offered improvement in accuracy for tra-
ditional algorithms, thoughmarginally. For incremental algo-
rithms however Cfs do not always have enhance the accuracy.
This may be due to the fact that the calculation of correlation
between targets and attributes in the incremental mechanism
does not work well with nonstationary data, and vice versa.
The swarm search type of feature selections (FS) unanimously
outperformed Cfs. The improvement by FS is most obvious
for NB, RHT, HOT, NBup, and KStar algorithms. These

algorithms have a phenomenon in common as their model
structures are loosely represented by a large set of numeric
variables. Like HOT and RHT for example, the decision trees
are in multiple forms, gathering a pool of possible model
candidate during the induction process. NB,NBup, andKStar
are represented by a large number of conditional probabilities
and statistical variables. These models are relatively loosely
defined; hence the stochastic search by PSO is appropriate
and effective in finding the optimal feature subsets leading
to a big leap in performance improvement. The proposed
new version of APSO for Swarm Search, namely FS-APSO
nevertheless shows its superior respective to performance
improvement over the standard PSO version by FS-PSO. FS-
APSO is better than FS-PSO in all cases except NB.Moreover,
for HT, PSO has very poor performance in upholding the
accuracy whereas APSO solved the problem. By far, FS-APSO
has shown the maximum accuracy improvement compared
to original and Cfs, indicating that FS-APSO would be
a feasible feature selection scheme for the other family
members of Hoeffding tree. When it comes to performance
indicators like Kappa and True Positive rate, the algorithms
show similar patterns as described above in Figures 8 and 9

12 Journal of Sensors

Table 3: The performance results of classifying sensor data using traditional algorithms.

Traditional slassifier/feature
selection Accuracy Kappa TP FP Precision Recall 𝐹-measure

Model
building time

(s)

Preprocessing
time (s)

selected
features

HyperPipe (HP)
Original 77.6822 0.6666 0.777 0.084 0.803 0.777 0.772 0 0 50
Cfs 73.6661 0.6159 0.737 0.078 0.817 0.737 0.733 0 0 23
FS-PSO 78.0264 0.672 0.78 0.083 0.814 0.78 0.774 0 2 36
FS-APSO 78.3706 0.6764 0.784 0.084 0.817 0.784 0.777 0 2 32

Naive Bayes (NB)
Original 66.2077 0.5257 0.662 0.085 0.732 0.662 0.68 0.08 0 50
Cfs 69.7074 0.569 0.697 0.08 0.744 0.697 0.707 0.01 0 23
FS-PSO 79.5181 0.6953 0.795 0.076 0.791 0.795 0.789 0.01 9 15
FS-APSO 78.7149 0.6835 0.787 0.079 0.785 0.787 0.78 0 9 12

BayesNet (BN)
Original 82.2146 0.7417 0.822 0.052 0.835 0.822 0.828 0.37 0 50
Cfs 82.7309 0.7459 0.827 0.057 0.828 0.827 0.827 0.04 0 23
FS-PSO 85.0832 0.78 0.851 0.05 0.849 0.851 0.849 0.05 17 25
FS-APSO 86.1733 0.7952 0.862 0.049 0.859 0.862 0.86 0.05 12 19

Decision tree (DT)
Original 87.4355 0.8147 0.874 0.044 0.875 0.874 0.874 0.2 0 50
Cfs 87.6649 0.8178 0.877 0.044 0.876 0.877 0.876 0.11 0 23
FS-PSO 89.0419 0.8379 0.89 0.042 0.889 0.89 0.89 0.11 36 23
FS-APSO 89.3287 0.842 0.893 0.041 0.891 0.893 0.892 0.07 20 13

Random forest (RF)
Original 91.1073 0.8654 0.911 0.048 0.911 0.911 0.904 0.21 0 50
Cfs 92.7711 0.8916 0.928 0.036 0.927 0.928 0.924 0.09 0 23
FS-PSO 91.3941 0.87 0.914 0.046 0.913 0.914 0.908 0.08 34 21
FS-APSO 93.4596 0.9024 0.935 0.032 0.934 0.935 0.933 0.11 31 13

Support vector machine (SVM)
Original 75.2151 0.5961 0.752 0.155 0.678 0.752 0.659 2.05 0 50
Cfs 75.961 0.6123 0.76 0.143 0.742 0.76 0.678 0.96 0 23
FS-PSO 76.0757 0.6145 0.761 0.141 0.738 0.761 0.682 0.39 349 14
FS-APSO 77.2806 0.6359 0.773 0.133 0.748 0.773 0.706 0.42 296 13

Neural network (NN)
Original 90.0172 0.8512 0.9 0.042 0.898 0.9 0.897 24.44 0 50
Cfs 89.0419 0.8369 0.89 0.041 0.889 0.89 0.888 8.35 0 23
FS-PSO 89.2714 0.8403 0.893 0.043 0.889 0.893 0.89 14.71 5212 35
FS-APSO 90.3614 0.8565 0.904 0.04 0.901 0.904 0.901 12.49 4685 32

respectively. False positive rate which is also known as false
alarm rate is an undesirable feature in machine learning.
Figure 10 shows that RHT with Cfs incurred the highest false
alarm rate, inferring the unsuitability of correlation-based
feature selection for data stream mining especially when
many random trees are being generated during runtime. FS-
APSO managed to subside the false alarm rate in all cases.
KStar in particular works extremely well with FS-APSObeing
able to maintain the lowest false alarm rate of all.

The amounts of features that are selected as an optimal
subset by different combination of algorithms are shown
in Figure 12. It can be seen that FS-APSO is capable of

maintaining only the minimum amount of features which
are significant enough for inducing classification models of
the highest accuracies in most of the cases. Followed by FS-
PSO the standard version of APSO, likewise can select fewer
features than Cfs in all except NN, BN and HP. Less number
of features to be selected may imply simpler deployment of
classification or prediction in sensor data, without the need
of using a full array of features, each of these features may
require certain processing resource and sensing abilities. In
other words, it would be cost-effective if fewer features were
to be required yet being able to attain a good level of accuracy
in sensor data classification.

Journal of Sensors 13

Table 4: The performance results of classifying sensor data using incremental algorithms.

Incremental classifier/feature
selection Accuracy Kappa TP FP Precision Recall 𝐹-measure

Model
building time

(s)

Preprocessing
time (s)

selected
features

Random Hoeffding tree (RHT)
Original 61.1589 0.4226 0.612 0.158 0.607 0.612 0.589 0.02 0 50
Cfs 57.0281 0.3233 0.57 0.245 0.522 0.57 0.523 0.01 0 23
FS-PSO 72.8055 0.5749 0.728 0.143 0.658 0.728 0.68 0.01 5 24
FS-APSO 74.4119 0.5923 0.744 0.142 0.665 0.744 0.681 0.01 5 16

Hoeffding tree (HT)
Original 75.6741 0.6309 0.76 0.113 0.725 0.76 0.735 0.35 0 50
Cfs 76.2478 0.6402 0.763 0.103 0.735 0.763 0.745 0.08 0 23
FS-PSO 67.9289 0.5569 0.719 0.153 0.669 0.719 0.677 0.03 16 16
FS-APSO 76.7068 0.6457 0.767 0.104 0.739 0.767 0.747 0.03 15 15

Hoeffding option tree (HOT)
Original 66.2077 0.5262 0.662 0.085 0.732 0.662 0.68 0.2 0 50
Cfs 69.5927 0.5674 0.696 0.081 0.742 0.696 0.706 0.04 0 23
FS-PSO 77.7395 0.6657 0.777 0.09 0.763 0.777 0.762 0.02 11 13
FS-APSO 78.8296 0.6856 0.788 0.077 0.788 0.788 0.782 0.02 10 13

NBUpdateable (NBup)
Original 66.3798 0.5281 0.664 0.085 0.733 0.664 0.682 0.07 0 50
Cfs 69.5927 0.5676 0.696 0.08 0.743 0.696 0.706 0.02 0 23
FS-PSO 76.9363 0.6588 0.769 0.082 0.768 0.769 0.764 0.01 9 15
FS-APSO 78.7149 0.6835 0.787 0.079 0.785 0.787 0.78 0.01 12 12

Active (AC)
Original 67.7567 0.5387 0.678 0.092 0.719 0.678 0.694 0.17 0 50
Cfs 69.2484 0.5554 0.692 0.092 0.718 0.692 0.702 0.12 0 23
FS-PSO 68.0436 0.5342 0.68 0.105 0.703 0.68 0.689 0.17 55 18
FS-APSO 70.2238 0.5647 0.702 0.095 0.72 0.702 0.709 0.14 50 20

Adwin (AW)
Original 72.9776 0.6035 0.73 0.091 0.735 0.73 0.731 1.55 0 50
Cfs 73.3792 0.6101 0.734 0.088 0.74 0.734 0.732 0.44 0 23
FS-PSO 70.0516 0.5566 0.701 0.118 0.71 0.701 0.698 0.47 176 13
FS-APSO 74.5267 0.619 0.745 0.099 0.743 0.745 0.732 0.38 142 10

Kstar
Original 82.1572 0.734 0.822 0.085 0.834 0.822 0.818 0 0 50
Cfs 90.0746 0.8536 0.901 0.038 0.902 0.901 0.9 0 0 23
FS-PSO 94.0333 0.9117 0.94 0.026 0.94 0.94 0.94 0 2121 12
FS-APSO 95.9266 0.94 0.959 0.014 0.959 0.959 0.959 0 1817 9

Lastly, the factor of runtime is considered together with
other accuracy performance. Figure 11 shows a comparison
of preprocessing times incurred by different mixes of feature
selection and classification algorithms. Cfs takes almost
no-time which is indeed a benefit although Cfs is under-
performing in accuracy and other performance indicators. By
comparing only FS-PSO and FS-APSO which are stochastic
in nature and they do need to take time to search for the
optimal feature subset, it is interesting to observe which is
more efficient. FS-APSO with the benefits of precalculating
the qualified features, very quickly by CCV, as initial starting
search position, shortens the runtime in all cases (except

NBup) when compared to FS-PSO. HP is amazingly quick
with both FS-PSO and FS-APSO, followed by RHT which
completes the preprocessing in a relatively short time. KStar,
NN, SVM, and AC however require relatively the longest
preprocessing in both types of FS methods. By glancing over
the results on Figure 11 it can be seen that the preprocessing
in the traditional group of classification algorithms takes
slightly longer than the incremental group of algorithms in
data stream mining. This could be explained by the nature of
the traditional classifiers which are embedded in the swarm
search as a fitness evaluation function is time-consuming
over the stationary data. On the other hand, the incremental

14 Journal of Sensors

Table 5: Comparison of gain in accuracy per preprocessing second
for different algorithms.

FS-PSO FS-APSO
Traditional Classifier

HyperPipe (HP) 0.1721 0.3442
Naive Bayes (NB) 1.4789333 1.3896889
BayesNet (BN) 0.1687412 0.3298917
Decision tree (DT) 0.0446222 0.09466
Random forest (RF) 0.0084353 0.0758806
Support vector machine (SVM) 0.0024659 0.006978
Neural network (NN) −0.0001431 7.347𝐸 − 05

Average: 0.2678793 0.3201961
Incremental classifier

Random Hoeffding tree (RHT) 2.32932 2.6506
Hoeffding tree (HT) −0.484075 0.0688467
Hoeffding pption tree (HOT) 1.0483455 1.26219
NBUpdateable (NBup) 1.1729444 1.027925
Active (AC) 0.0052164 0.049342
Adwin (AW) −0.016625 0.0109092
Kstar 0.0055993 0.0075781
Average: 0.5801037 0.7253416

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1HP
NB

BN

DT

RF

SVM

NN
RHT

HT

HOT

NBup

AC

AW

Kstar

Kappa
Original
Cfs

FS-PSO
FS-APSO

Figure 8: Radar chart of sensor data classification performance in
Kappa.

algorithms that mine along the data stream when being used
as the fitness function performs much quicker because of its
incremental nature.

In order to have a fairness comparison with respect to
time, a new indicator called gain is proposed in this paper.
Gain is simply the performance increase factor, considering
the increment of accuracy (accuracy %with feature selection,

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1HP
NB

BN

DT

RF

SVM

NN
RHT

HT

HOT

NBup

AC

AW

Kstar

True positives
Original
Cfs

FS-PSO
FS-APSO

Figure 9: Radar chart of sensor data classification performance in
true positive.

accuracy % of original) over the number of seconds con-
sumed in preprocessing. Ideally we favour a combination of
algorithms with a high-gain, meaning it can yield the highest
increase in accuracy while incurring the shortest preprocess-
ing time. For the comparison of different combinations of
algorithms, in view of this gain indicator, a gain value for each
of them is computed and tabulated in Table 5.

As it is shown in Table 5, the highest average gain is the
group of incremental learning algorithms coupled with FS-
APSO (0.7253), followed by the same incremental group with
FS-PSO (0.5801) and then traditional algorithms with FS-
APSO (0.3202) and traditional group with FS-PSO comes last
(0.2679). Individually the top performance in gain is by RHT
combinedwith FS-APSO. Both RHT and FS-APSO employed
a lot of randomization functions, yet they are complimenting
each other in operation. NN in turn has the least gain for it
has a rigid mechanism in machine learning by adjusting its
internal weights and activation function.

To sumup, it ismost feasible to utilize our newly proposed
FS-APSO for data stream mining, particularly for RHT
algorithm. Alternatively, NB, DT, and RF are good choices
considering their relatively high accuracy and moderate
amount of preprocessing times.

5. Conclusion

As long as a sensing device is operating, it collects a large
amount of data streams all the time. Fresh data are being gen-
erated at all times that it requires an incremental computation
which is able to monitor large scale of data dynamically. As a
result, the algorithmdesign of datamining sensor application
shall consider a lightweight incremental algorithm that is

Journal of Sensors 15

HP
NB

BN

DT

RF

SVM

NN
RHT

HT

HOT

NBup

AC

AW

Kstar

False positives
Original
Cfs

FS-PSO
FS-APSO

7.81E − 03

1.56E − 02

3.13E − 02

6.25E − 02

1.25E − 01

2.50E − 01

Figure 10: Radar chart of sensor data classification performance in
false positive.

1
2
4
8

16
32
64

128
256
512

1024
2048
4096HP

NB

BN

DT

RF

SVM

NN
RHT

HT

HOT

NBup

AC

AW

Kstar

Time
FS-PSO
FS-APSO

Figure 11: Radar chart of sensor data classification performance in
time.

capable of robustness, high accuracy and minimum prepro-
cessing latency. In this paper, we investigated the possibility
of using a group of incremental classification algorithm for
classifying the collected data streams from video sensor for
gesture recognition. As a case study empirical data stream
was used that was donated by a research team from the

0
5

10
15
20
25
30
35
40
45
50HP

NB

BN

DT

RF

SVM

NN
RHT

HT

HOT

NBup

AC

AW

Kstar

Number of features
Original
Cfs

FS-PSO
FS-APSO

Figure 12: Radar chart of sensor data classification performance in
number of selected features.

research team of Madeo et al. at University of Sao Paulo,
Brazil. The data collected are visual feeds of composed
video captured by Microsoft Kinect sensor. The video data
are transformed into 50 numeric variables extracted from
videos with people gesticulating, aiming at studying Gesture
Phase Segmentation initial. We compared the traditional
classification model induction and their counter-part in
incremental inductions. In particular we proposed a novel
lightweight feature selection method by using Swarm Search
and Accelerated PSO, which is supposed to be suitable for
data stream mining. The evaluation result showed that the
incremental method obtained a higher gain in accuracy per
second incurred in the preprocessing. The contribution of
this paper is experimental insights for anybody who wishes
to design a similar gesture recognition application from
video sensors in choosing the appropriate decision support
algorithms especially in scenario of mining activity patterns
that are temporal and streaming in nature. In the future, we
will want to extend the data stream mining of such sensor
data with extra capabilities of sensing more complex gestures
for richer information in the experimentation.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] N. Kiryati, T. R. Raviv, Y. Ivanchenko, and S. Rochel, “Real-
time abnormal motion detection in surveillance video,” in

16 Journal of Sensors

Proceedings of the 19th International Conference on Pattern
Recognition, pp. 1–4, December 2008.

[2] J. Ruiz, Y. Li, and E. Lank, “User-defined motion gestures for
mobile interaction,” in Proceedings of the 29th Annual CHI Con-
ference on Human Factors in Computing Systems (CHI ’11), pp.
197–206, Vancouver, Canada, May 2011.

[3] K. M. Culhane, M. O’Connor, D. Lyons, and G. M. Lyons,
“Accelerometers in rehabilitationmedicine for older adults,”Age
and Ageing, vol. 34, no. 6, pp. 556–560, 2005.

[4] J. W. Lee, A. Helal, Y. Sung, and K. Cho, “Context-driven con-
trol algorithms for scalable simulation of human activities in
smart homes,” in Proceedings of the 10th IEEE International
Conference on Ubiquitous Intelligence and Computing (UIC ’13)
and 10th IEEE International Conference on Autonomic and
Trusted Computing (ATC ’13), pp. 285–292, December 2013.

[5] L. Cheng, S. Hailes, D. Leung, F. Fan, Y. Yang, and Z. Cheng,
“An experimental study on a motion sensing system for sports
training,” in Proceedings of the 5th European Conference on
Wireless Sensor Networks (EWSN ’08), Bologna, Italy, 2008.

[6] Y. Sung and K. Cho, “Collaborative programming by demon-
stration in a virtual environment,” IEEE Intelligent Systems, vol.
27, no. 2, pp. 14–17, 2012.

[7] K. Cho, H. Cho, and U. Kyhyun, “Inferring stochastic regular
grammar with nearness information for human action recog-
nition,” in Proceedings of the International Conference on Image
Analysis and Recognition (ICIAR ’06), pp. 193–204, 2006.

[8] Microsoft, “‘Project Natal’ 101,” 2009.
[9] H. Yang, S. Fong, G. Sun, andR.Wong, “A very fast decision tree

algorithm for real-time data mining of imperfect data streams
in a distributed wireless sensor network,” International Journal
of Distributed Sensor Networks, vol. 2012, Article ID 863545, 16
pages, 2012.

[10] H. Yang, S. Fong, R. Wong, and G. Sun, “Optimizing classifi-
cation decision trees by using weighted näıve bayes predictors
to reduce the imbalanced class problem in wireless sensor
network,” International Journal of Distributed Sensor Networks,
vol. 2013, Article ID 460641, 15 pages, 2013.

[11] R. C. B. Madeo, C. A. M. Lima, and S. M. Peres, “Gesture
unit segmentation using support vector machines: segmenting
gestures from rest positions,” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing (SAC ’13), pp. 46–52,
March 2013.

[12] R. C. B. Madeo, P. K. Wagner, and S. M. Peres, “A review of
temporal aspects of hand gesture analysis applied to discourse
analysis and natural conversation,” International Journal of
Computer Science and Information Technology, vol. 5, pp. 1–20,
2013.

[13] R. C. B. Madeo, Support vector machines and gesture analysis:
incorporating temporal aspects [M.S. thesis], Universidade de
Sao Paulo, Sao Paulo Researcher Foundation, São Paulo, Brazil,
2013, (Portuguese).

[14] L. Rokach and O. Maimon, “Top-down induction of decision
trees classifiers—a survey,” IEEE Transactions on Systems, Man
and Cybernetics Part C: Applications and Reviews, vol. 35, no. 4,
pp. 476–487, 2005.

[15] C. C. Aggarwal, Ed., Data Streams: Models and Algorithms, vol.
31, Springer, 2007.

[16] R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann, San Francisco, Calif, USA, 1993.

[17] P. Domingos and G. Hulten, “Mining high-speed data streams,”
inProceedings of the 6thACMSIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD '00), pp. 71–80,
ACM, New York, NY, USA, 2000.

[18] B. Pfahringer, G. Holmes, and R. Kirkby, “New options for
hoeffding trees,” in Proceedings of the Australian Joint Confer-
ence on Artificial Intelligence, pp. 90–99, Gold Coast, Australia,
December 2007.

[19] J. G. Cleary and L. E. Trigg, “K∗: an instance-based learner using
an entropic distance measure,” in Proceedings of the 12th Inter-
national Conference on Machine Learning, pp. 108–114, 1995.

[20] A. Bifet and R. Gavalda, “Learning from time-changing data
with adaptive windowing,” in Proceedings of the SIAM Interna-
tional Conference on Data Mining, pp. 443–448, 2007.

[21] I. Žliobaitė, A. Bifet, B. Pfahringer, and G. Holmes, “Active
learning with evolving streaming data,” in Machine Learning
and Knowledge Discovery in Databases: European Conference
(ECML PKDD ’11), Athens, Greece, September 5–9, 2011, vol.
6913 of LectureNotes in Computer Science, pp. 597–612, Springer,
Berlin, Germany, 2011.

[22] S. Fong, S. Deb, X.-S. Yang, and J. Li, “Metaheuristic swarm
search for feature selection in life science classification,” IEEE
IT Professional Magazine, vol. 16, no. 4, pp. 24–29, 2014.

[23] X.-S. Yang, S. Deb, and S. Fong, “Accelerated particle swarm
optimization and support vector machine for business opti-
mization and applications,” in Networked Digital Technologies:
Third International Conference, NDT 2011, Macau, China, July
11–13, 2011. Proceedings, vol. 136, pp. 53–66, Springer, Berlin,
Germany, 2011.

[24] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations,
Morgan Kaufmann, 2005.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

