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Abstract. Searching for a set of rules, with which the knowledge hid-
den in data is extracted, can also be applied for multi-class classification.
In line with this, a collection of nature-inspired algorithms are selected
for determining the set of rules capable of classifying the samples into
three or more classes. This set is encoded into representation of individ-
uals and undergoes acting the variation operators. The results of various
nature-inspired algorithms, obtained after their application on more UCI
classification databases, are compared with each other, and revealed that
some of them can be potential candidates for real-world applications.
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1 Introduction

A multi-class classification is a problem of classifying the instances (samples)
into one of three or more classes. This is an extension of more known binary
classification, where samples are classified into two classes only. The rule-based
classification models identify and utilize a set of rules in the form of IF-THEN
rules that, together, represent the knowledge captured by the algorithm. In the
multi-class classification, the specific class to which a definite sample belongs, is
determined by the consequent of the rule. Although there are a lot of traditional
methods for solving this problem (e.g., Bayesian networks) [1], this study pro-
poses the application of nature-inspired algorithms to this hard nut to crack. The
main advantages of these algorithms over the traditional methods are that they
are typically less computationally expensive [13]. Most of the statistical machine
learning methods are described as complex mathematical functions, and they
are rather incomprehensible and opaque to humans [15]. On the other hand,
nature-inspired algorithms can ensure accuracy and comprehensibility – a fact
that is important in Explainable Artificial Intelligence [2].

Studying the approaches based on the population-based metaheuristics for
discovering the classification rules is still very popular in the research commu-
nity [14]. Although the first approaches appeared more than 15 years ago with
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the rise of big data, exploring and developing new approaches is still very fruit-
ful. One of the first algorithms for classification rule discovery was proposed by
Parpinelli et al. and was called Ant-Miner [16]. Ant-miner was based on Ant
Colony Optimization (ACO). On the contrary, the development of algorithms
that were based on other inspirations of nature-inspired algorithms was also at
full pace. The first algorithm based on Particle Swarm Optimization was pro-
posed by Sousa back in 2004 [17]. A plethora of newer nature-inspired algorithms,
in combination with some conventional machine learning methods, are also used
for solving classification tasks [3,12]. It is worth mentioning that there is a very
thin line between algorithms for Numerical Association Rule Mining (NARM) [9]
and algorithms for discovering the classification rules. In other words, NARM
algorithms with smaller modifications can also be applied for discovering classi-
fication rules.

This paper presents an extension of an approach that was published last
year at the ICCS conference [8], where a new method for discovering classifica-
tion rules based was proposed on the Firefly Algorithm (FA). This method was
tailored only for solving binary classification problems. In this paper we step
further, and extend this method for also coping with multi-class classification
problems.

The main contributions of this paper are the following:

– extension of binary classification to multi-class classification,
– inspired by the recent NARM algorithm [10], new measures are modeled in

the fitness function,
– extensive experimental comparison among different nature-inspired algo-

rithms are conducted.

The structure in the remainder of the paper is as follows. Section 2 dis-
cusses the basic information needed for understanding the subjects that follow.
In Sect. 3, the design of the proposed algorithm for three-class classification is
explained in detail. The experiments and results are the subjects of Sect. 4, while
the paper concludes with Sect. 5, that also outlines the directions for the future
development.

2 Basic Information

This section is devoted to discussing information potential readers need to under-
stand the subjects treated in the remainder of the paper. In line with this, the
basics are discussed about the concept of nature-inspired algorithms. The section
is concluded with a description of the NiaClass concept, within which the algo-
rithm began to be developed.

2.1 Nature-Inspired Algorithms

Primarily, the nature-inspired population-based algorithms comprise two fami-
lies: (1) Evolutionary Algorithms (EA) [7], and (2) Swarm Intelligence (SI) based
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algorithms [4]. The former are inspired by the Darwinian struggle for existence,
where, similarly as in nature also in simulated evolution, only the fittest individu-
als (i.e., solutions) can survive in the hard environmental conditions (simulated
by the fitness function). One of the more prominent members of this class is
undoubtedly Differential Evolution (DE) [18]. The latter mimics the behavior of
social living insects and animals revealing some kinds of optimization process.
Obviously, the social living swarm of birds present good examples of these behav-
iors (inspiration for the Particle Swarm Optimization (PSO) [11]) and swarm of
insects, precisely fireflies (inspiration for the Firefly Algorithm (FA) [19]).

Indeed, this paper focuses on three nature-inspired algorithms for solving
rule-based classification models, i.e., DE, PSO, and FA, operating using real-
valued representation. The DE is well known evolutionary algorithm especially
appropriate for continuous optimization [5]. The PSO and FA are SI-based algo-
rithms suitable for solving problems arising in almost all application domains.
Among the mentioned algorithms, the FA was successfully applied also for clas-
sification problems [8].

2.2 NiaClass - A Classification Platform in Python

The basic concept of the NiaClass classifier is to use stochastic nature-inspired
population-based algorithms implemented in Python programming language in
order to find the optimal set of classification rules for a given datasets [8]. The full
source code of NiaClass software is available on Github1. Actually, the authors
plan to extend a collection of those algorithms in the future as well.

3 Proposed Method

Although the proposed method enables multi-class classification of an arbitrary
number of classes, here, we are focused on three-class classification problem due
to its simplicity. The problem can be defined formally as follows: Let us assume
a 3-class classification problem on database Db consisting of M features is given,
where each feature attribute is a tuple:

Attrk = 〈type, off , cont, [D|c]〉, for k = 1, . . . ,M, (1)

and
type − set of attribute types, i.e. type ∈ {num, cat},

off − attribute offset within solution vector xi,

cont − control random variable,
D − vector of numeric 3-class attribute domains,
c − vector of discrete 3-class attributes.

Thus, the vector of the three-class attribute domain is defined as D =
(D1,D2,D3), where Dl = [lb, ub] for l = 1, . . . , 3, and the vector of discrete
1 https://github.com/lukapecnik/NiaClass.
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3-class attributes as c = (c1, c2, c3) with elements cl ∈ AttrSetk for l = 1, . . . , 3.
Indeed, attributes consist of rules for classifying the sample into the correspond-
ing class. Then, the solution vector of the nature-inspired algorithm is repre-
sented as follows:

xi = (xi,1, . . . , xi,L), for i = 1, . . . , N, (2)

where N is the population size, and L denotes the number of elements, calculated
as:

L = (1 + 2 · class · #numeric attr) + (1 + class · #category attr) + 1, (3)

where class denotes the number of classes (in our case, class = 3),
#numeric attr the number of numerical features, and #category attr is the
number of categorical features. Interestingly, the numerical attributes are rep-
resented as a tuple 〈xAttrk.off , . . . , xAttrk.off+6〉 consisting of seven, and the
categorical attributes as a tuple 〈xAttrk.off , . . . , xAttrk.off+3〉 consisting of four
elements.

The variable cont ∈ {0, 1} of the k-th attribute is mapped from the search
space to the problem space as follows:

Attrk.cont =

{
0, if xAttrk.off≤threshold,

1, otherwise.
(4)

However, when the variable cont = 0, the feature of this class is omitted from
the classification.

The k-th element representing the numeric 3-class attribute domains is
mapped from the solution vector as follows:

Attr
(num)
k .Dl.lb =

ubl − lbl
UBl − LBl

· lbl + lbl.

Attr
(num)
k .Dl.ub =

ubl − lbl
UBl − LBl

· ubl + lbl,

for l = 1, . . . , 3, (5)

where ubl = Attrk.off .x2(l−1)+2 and lbl = Attrk.off .x2(l−1)+1. Obviously, the
relation ubk > lbk must be ensured by the equation.

Similarly, the k-th element representing the categorical attribute is mapped
from the solution vector as follows:

Attr
(cat)
k .cl = �Attrk.off .x2(l−1)+1 ∗ |Attr

(cat)
k .cl|�, (6)

where the term |Attr
(cat)
k .cl| denotes the number of the attributes describing the

feature.
Finally, the attributes are composed into IF-THEN rules as follows:

P (Attr1, S1) ∧ . . . ∧ P (Attrk, Sk),∧ . . . ∧ (AttrM , SM ) ⇒ class, (7)

where P (.) denotes a predicate returning either true or false, Attrk the attribute
of the k-th feature and Sk the corresponding value of the feature in the sample,
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and class = {class1, class2, class3} is the three-class classification set. If the k-th
attribute is categorical, the predicate verifies if the discrete value of the attribute
is equal to one of the three predicted values of the Attr

(cat)
k , while, in the case

of a numerical attribute, it verifies if the sample value is higher than the lower
bound and lower than the higher bound of the numeric attribute Attr

(num)
k in

each of the observed three-classes. This means that there are three classification
rules decoded per one solution vector.

The mapping from the search to the problem space is illustrated in Fig. 1,
where the values of variables cont are represented in black, threshold in red,
while all the other values are painted in the corresponding class colors, i.e., a
set of rules for class1 is represented in green, rules for class2 are represented in
blue and rules for class3 in brown.

Fig. 1. Search space to problem space mapping. (Color figure online)

The fitness function in the optimization process of the proposed method is
calculated after applying the mapped solution vector Attr to the classification
problem on problem database Db, and it is composed of three terms as follows:

f(Attr,Db) = −score() + 0.5 · ldc − 0.5 · oc, (8)

where the first term is score function, that can be any classification metric such
as accuracy, precision, F1-score or Cohen’s κ, in other words:

score = {accuracy, precision,F1-score, κ}.

The value ldc denotes the length differences’ coefficient, and oc denotes the coef-
ficient of intervals’ overlapping. Both coefficients were multiplied by the weight
of 0.5, as we expect that the metric should still be the most important factor of
the final fitness.

The pseudo-code of the proposed method is presented in the Algorithm 1,
from which it can be see that the algorithm suits the general form of the nature-
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Algorithm 1. NiaClass for building rule-based classification models
1: 〈D, c〉 ← preprocess characteristics of numeric/discrete features (Db)
2: population ← initialize real valued vectors xi randomly
3: 〈best fitness,Attr best〉 ← find the best (population)
4: while not termination condition met do
5: for each xi ∈ population do
6: xtrial ← modify individual using variation operators (xi)
7: Attr ← decode (xtrial)
8: fitness = f(Attr,Db))
9: if fitness is better than ’decode (xi)’ then

10: xi ← xtrial � Replace the worse individual
11: end if
12: if fitness is better than best fitness then
13: best fitness ← fitness
14: Attr best ← Attr
15: end if
16: end for
17: end while
18: Return best set of rules Attr best

inspired algorithms. After initialization, evaluation of initial population, and
finding the best solution (line 1 and 3), each individual undergoes acting the
variation operators (line 6) by generation of trial solution. The rule-based clas-
sification model is constructed by appropriate genotype-phenotype mapping as
described in Eq. 7 (line 7) and evaluated according to Eq. 8 (line 8). If the quality
of constructed pipeline from the trial is better than the quality of individual,
the individual is replaced with the trial (lines 9–11). In similar way, the best
solution with corresponding fitness is determined in lines 12–15.

4 Experiments and Results

The goal of our experimental work was to show that the proposed NiaClass
classifier is suitable for both, binary and multi-class classification problems, and
that by adding certain information obtained through preprocessing of the fitness
function, we can further improve the final results. In line with this, extensive
experimental work was conducted, where all experiments were performed on an
HP ProDesk 400 G6 MT computer running Microsoft Windows 10, an Intel (R)
Core (TM) i7-9700 CPU @ 3.00 GHz processor, and 8 GB of installed physical
memory.

A list of datasets from the UCI Machine Learning Repository [6] used in the
experiments and their characteristics are shown in Table 1. The missing values
of the numerical attributes were replaced by the mean of the feature, while the
missing categorical values were replaced by the mode of the feature in the case
of the Cylinder Bands dataset.
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Table 1. Datasets used in the experiments.

Dataset Type of attributes Instances Features Missing data

Haberman Integer 306 3 No
Ecoli Real 336 8 No
Yeast Real 1484 8 No
Cylinder Bands Real, integer, categorical 512 39 Yes

When fitting the NiaClass classifier, we used a population size of 90 individ-
uals using 5000 evaluations of the fitness function. In the optimization process,
we used the Differential Evolution (DE), Firefly Algorithm (FA) and Particle
Swarm Optimization (PSO). Settings of their parameters are shown in Table 2.

Table 2. Parameter settings of the optimization algorithms in the experiment.

Algorithm Parameters

DE F = 1, CR = 0.8
FA alpha = 0.5, betamin = 0.2, gamma = 1.0
PSO C1 = 2.0, C2 = 2.0, w = 0.7, vMin = −1.5, vMax = 1.5

The final results were obtained after 25 independent runs of each algorithm
for each dataset using: (1) The basic fitness function that does not take into
account the information about the numerical intervals, and (2) The extended
fitness function capable of using the information from the dataset preprocessing
step. Before each run, the dataset was divided into training and test sets in a
ratio of 0.2, and after fitting, the classification was performed using the test set.
The results are shown in Table 3.

Interestingly, nature-inspired algorithms using the extended fitness function
failed to dominate their counterparts using the basic fitness function on the
observed datasets. Although we expected that using the extended fitness function
would improve the results significantly, this claim holds only for the results
obtained on the Haberman dataset. Indeed, the best results were achieved by
the PSO algorithm when comparing in terms of the optimization algorithms.

4.1 Discussion

As can be seen from the results of our experiments, we were unable to improve
the results obtained by the nature-inspired algorithms using the basic fitness
function compared with those achieved by using the the extended fitness func-
tion. The cause for this was most likely due to the fact that the fitness function
for determining the class of an individual from the training set was very simple,
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Table 3. Detailed results of classification according to accuracy.

Dataset Fitness Algorithm Min Max Mean Median Std

Haberman Basic DE 0.6452 0.8226 0.7323 0.7258 0.0434

FA 0.6290 0.8065 0.7381 0.7419 0.0462

PSO 0.6290 0.7903 0.7335 0.7419 0.0422

Upgraded DE 0.6613 0.8387 0.7310 0.7419 0.0451

FA 0.6613 0.8065 0.7400 0.7419 0.0346

PSO 0.6290 0.8710 0.7245 0.7258 0.0605

Ecoli Basic DE 0.5441 0.7794 0.6476 0.6618 0.0803

FA 0.3235 0.6471 0.5347 0.5441 0.0765

PSO 0.5735 0.8088 0.7006 0.7059 0.0750

Upgraded DE 0.4412 0.7941 0.6335 0.6471 0.0717

FA 0.3971 0.6618 0.5376 0.5441 0.0800

PSO 0.3088 0.8088 0.6429 0.6471 0.1168

Cylinder Bands Basic DE 0.6019 0.7222 0.6778 0.6852 0.0334

FA 0.5833 0.7685 0.6607 0.6574 0.0416

PSO 0.6111 0.7870 0.6985 0.7037 0.0437

Upgraded DE 0.5370 0.7593 0.6419 0.6389 0.0483

FA 0.5278 0.7037 0.6274 0.6204 0.0502

PSO 0.5833 0.7130 0.6563 0.6574 0.0366

Yeast Basic DE 0.3367 0.4646 0.3954 0.3939 0.0335

FA 0.2593 0.4276 0.3390 0.3401 0.0402

PSO 0.3333 0.4983 0.4168 0.4141 0.0389

Upgraded DE 0.2626 0.3670 0.3244 0.3266 0.0260

FA 0.2290 0.4074 0.3088 0.3131 0.0404

PSO 0.3131 0.4478 0.3636 0.3603 0.0363

and, therefore, additional coefficients considered in the extended fitness function
did not contain enough information about the quality of the rule based clas-
sifiers, or even the selected weights were inappropriate. It was also difficult to
determine the parameter setting, and the suitability of the selected optimization
algorithms for the experimental datasets is also questionable.

Indeed, the purpose of the study was to show that the problem of rule-
based classification models could be solved successfully using nature-inspired
algorithms beside the traditional methods. This preliminary work has proven
this hypothesis. In line with this, the FA has exposed the best results among the
algorithms in test, while the DE algorithm did not turn out too well. Therefore,
new experiments must be conducted in order to show the best characteristics
of this kind of algorithms necessary for achieving better results in solving the
problem.
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5 Conclusion

The rule-based multi-class classification is very interesting area of machine learn-
ing that was typically solved using traditional methods, like Bayesian networks.
In this paper, the classification problem was solved using the nature-inspired
algorithms, where each set of rules was encoded into a representation of individ-
uals and indicated the property of a specific class. Three different nature-inspired
algorithms were employed in this study, i.e., DE, PSO, and FA. The first algo-
rithm belongs to a class of EAs, while the other two to the SI-based algorithms’
family. Normally, all three algorithms operate with real-valued representation,
and are obviously included into the NiaClass repository.

The proposed algorithms were applied to four UCI Machine Learning Repos-
itory datasets. The results were observed according to two fitness functions, i.e.,
the basic and extended, where the latter also explores the preprocessing infor-
mation. Although the results of experiments showed that using the extended
measure by the nature-inspired algorithms did not improve the results of the
classification significantly, the study revealed the potential of the proposed algo-
rithms especially in the sense of their complexity.

Although the authors are aware that the preliminary results are slightly worse
than the results achieved by the traditional algorithms, they found many poten-
tial directions for improving the results in the future. For instance, better results
could be achieved by finding the optimal algorithms, their parameter settings
and fitness function weights using a separate optimization process. We could also
try to improve the fitness function of the NiaClass classifier’s fitting method by
mining other potentially useful information from datasets that we could consider
in the fitness value, or even by implementing a separate procedure that would
literally, in some way, build a fitness function for each data set separately.
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