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Abstract—Association Rule Mining is a machine learning method for discovering the interesting relations between the attributes in a
huge transaction database. Typically, algorithms for Association Rule Mining generate a huge number of association rules, from which
it is hard to extract structured knowledge and present this automatically in a form that would be suitable for the user. Recently, an
information cartography has been proposed for creating structured summaries of information and visualizing with methodology called
”metro maps”. This was applied to several problem domains, where pattern mining was necessary. The aim of this study is to develop a
method for automatic creation of metro maps of information obtained by Association Rule Mining and, thus, spread its applicability to
the other machine learning methods. Although the proposed method consists of multiple steps, its core presents metro map
construction that is defined in the study as an optimization problem, which is solved using an evolutionary algorithm. Finally, this was
applied to four well-known UCI Machine Learning datasets and one sport dataset. Visualizing the resulted metro maps not only justifies
that this is a suitable tool for presenting structured knowledge hidden in data, but also that they can tell stories to users.

Index Terms—information cartography, metro map, Evolutionary Algorithms, Machine Learning, eXplainable Artificial Intelligence
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1 INTRODUCTION

A SSOCIATION Rule Mining (ARM) is a Machine Learn-
ing (ML) method for discovering the interesting re-

lations between attributes in a huge transaction database.
Usually, algorithms for ARM generate a huge number of
association rules collected in large datasets. Hence, we are
confronted with the problem of how to extract structured
knowledge from the large datasets and then present this
knowledge automatically to the user in a suitable form.
Nowadays, this problem is being solved with eXplainable
Artificial Intelligence (XAI) methods that explain to users
how decisions, usually affecting human lives, are made by
deployed AI models in practice. While the models created
by ML methods, like linear/logistic regression, decision
tree, k-nearest neighbors, are transparent and, thus, easy
to understand, the models built by methods, like tree en-
sembles, random forest, deep learning, are too complex and
therefore act as a black-box to users [1]. Consequently, dan-
ger has arisen on creating and using decisions that are not
justifiable, legitimate, or do not allow detailed explanations
of their behavior [2].

To overcome this problem, the XAI helps users to un-
derstand, trust, and effectively manage the emerging gen-
eration of AI partners [3]. Such explainable systems al-
ready help users to understand the information generated
from the ML models in medicine, transportation, security
and economy, among others [1]. These systems use several
explanation techniques, like: explanation by simplification,
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feature relevance explanation, explanation by example and
visual explanation [1]. Recently, a metro map of the infor-
mation concept has been developed [4] that is capable of
creating structured summaries of information. The name
was selected as a metaphor for a real cartographic map, i.e.
in the same way that these maps help people understand
their surroundings, metro maps help them understand the
information landscape [5]. Moreover, visualization with
metro maps (also information cartography) can tell stories
to users, on the one hand, and provide them with good
directions, on the other. Indeed, the metro map consists of a
set of lines, where each line interprets the same story from a
different aspect. Metro stops on these lines introduce salient
pieces of information, while the interrelations among these
pieces ensure the plot of the story.

The first algorithm for ARM was Apriori, which was
proposed back in 1994 by Agrawal [6]. Apriori is still the
most popular algorithm for mining association rules. This
was also considered to be one of the top 10 algorithms
in ML [7]. Some of the other well-established algorithms
in this domain are Eclat [8], FP-Growth [9], Genetic Asso-
ciation Rules (GAR) [10], the Multi-Objective Differential
Evolution algorithm formining Numeric Association Rules
(MODENAR) [11], and BatMiner [12].

Several algorithms were proposed for reducing the re-
dundant or even meaningless association rules. For instance,
Feng et al. [13] employed an algorithm for rule mining based
on the theory of soft sets. Recently, the logical formulas over
soft sets were proposed by Feng et al. [14] for solving the
same problem. On the other hand, Luna et al. [15] used a
series of algorithms based on the MapReduce framework
and applied this for mining frequent patterns hidden in
big data. To reduce long execution times by nature-inspired
population-based algorithms for ARM, Djenouri et al. [16]
developed a Genetic Algorithm running on Clusters of
GPUs (CGPUGA) that improved performance of state-of-
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the-art significant for ARM on big datasets. [17], [18]
Interestingly, the visualization of association rules has

rarely been treated in literature. Indeed, the papers which
referred to this topic can be summarized in the following
review: The authors in [19] presented a design that is able
to handle hundreds of multiple antecedent association rules
in a three dimensional display with minimum human inter-
action, low occlusion percentage, and no screen swapping.
The authors in [20] show that the use of Mosaic plots and
their variant, called Double Decker plots, can be applied
for visualizing association rules. Ong et al. [21] prototyped
the two visualizations, called grid view and tree view, for
visualizing the association rules in their application called
CrystalClear. Appice and Buono [22] presented a graph-
based visualization that supports data miners in the analysis
of multi-level spatial association rules, while Herawan et
al. [23] proposed an approach for visualizing soft maximal
association rules. Hahsler [24] proposed the R-extension
package arulesViz for visualizing the association rules using
the most popular visualization techniques. A very interest-
ing interactive visualization technique, which lets the user
navigate through a hierarchy of association rule groups, is
presented by Hahsler and Chelluboina [25]. The authors in
paper [26] explored Hasse diagrams for the visualization of
Boolean association rules. Fister et al. [27] have proposed
a method for identifying dependencies among mined as-
sociation rules based on population-based metaheuristics
and complex networks. However, there are also generic
tools, like the CloseViz [28] and the SPMF open-source data
mining library Version 2 [29], specialized primarily in pat-
tern mining, offering visual implementation of discovered
data mined by ML algorithms that could also be used for
visualization of ARM.

Information cartography is a process of building mod-
els (i.e., information maps) based on non-geographical
data [30]. It draws on the metaphor of an information
landscape populated by information landscapes forming an
information map, and enables an analysis of data having a
”geographic hook”. In order to be visualized, information
needs to be spatialized, i.e., transformed into a coordinate
system and placed on a surface such as a map. The first
definition of the term in the sense of visualization was made
by Stephen Paling in [31], where he established that maps
are among the best information systems and require little
documentation to be used commonly and to be understand-
able.

The majority of people are linear thinkers and process
information in a linear manner, i.e., analytically. Linear
thinking is known as a step-by-step progression, where a
response to one step must be elicited before another step is
taken [32]. It is connected with the logical, analytical, and
sequential processing of information in contrast to circular,
non-linear, and parallel ones. Typically, this kind of thinker
operates in a two-dimensional world where time is of the
utmost importance [33]. The concept of information maps in
ARM comply strongly with the perception of linear thinkers,
where attributes in metro lines describe a linear sequence
of attributes, while the mutual connections between metro
lines reveal how the attributes in one metro lines affect the
attributes in others, and vice versa. These linear sequences
can also be seen from a time point of view. This type of infor-

mation cannot be obtained by the other ARM visualization
methods (e.g., scatter plot, mosaic plot, complex networks
etc.).

A seminal work in automatic creation of the metro maps
was performed by Shahaf et al. in 2012 [4] that treated their
construction as an optimization problem. The proposed
method was applied to analyzing the concise structured
set of documents, from which structured summaries of
information were created. In paper [34], the same authors
solved the problem of information overload arisen in sci-
entific literature by proposing the same methodology. The
zoomable metro maps, proposed by Shahar et al. [5], help
users that might be interested in information of different
levels of granularity. In paper [35], Shahaf et al. showed
that metro maps can even tell stories, as well as provide
good directions. Interestingly, the authors of the majority
of the reviewed papers proposed deterministic methods for
constructing the metro maps.

The aim of the study is to develop a method for creating
the metro maps of ARM information automatically. The
proposed method acts as follows: The ARM information are
hidden in ARM datasets produced by algorithms for ARM
in the form of implication rules X ⇒ Y . In general, these
rules are represented as conjunctions of more antecedent
and more consequent attributes. At first, each complex rule
is simplified to a set of simple ones consisting of one an-
tecedent and one consequent. These rules serve as building
blocks for the construction of an attribute graph. The at-
tribute graph consists of nodes representing attributes (e.g.
X , Y ), and direct edges denoting an implication relation
(e.g. X ⇒ Y ). The construction of a metro map is defined
as an optimization problem that searches for the best metro
lines within the attribute graph. The problem is solved using
an Evolutionary Algorithm (EA), because it can be applied
to the problems where no specific knowledge is discovered
and enables parameters to be set adaptively. Finally, the
metro map is visualized.

The main contributions of this paper can be summarized
as follows:
• the first application of information cartography for

visualizing the association rules,
• widening the applicability of information cartography

to ARM,
• supplementing the set of visual explanation techniques

for post-hoc explainability with information cartogra-
phy.

The software is planned to be included into the Universal
ARM Solver package [36].

The paper is structured as follows: Section 2 introduces
the basic information needed for understanding the subject
that follows. In Section 3, the proposed method for informa-
tion cartography in ARM is illustrated in detail. Section 4
presents the results of the method by constructing metro
maps of information obtained by five well known datasets,
while the paper concludes with a summary of the performed
work and outlines directions for future work.

2 BASIC NOTATION

The present section consists of two subsections. The former
introduces the problem of ARM, while the latter describes
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the formal definition of the objectives necessary for identify-
ing the information cartography in ARM as an optimization
problem.

2.1 Association Rule Mining
ARM can be defined formally as follows: Let us assume,
a set of objects O = {o1, . . . , oN} and transaction dataset
TD = {T} are given, where each transaction T is a subset
of objects T ⊆ O. Then, an association rule is defined as an
implication:

X ⇒ Y, (1)

where X ⊂ O, Y ⊂ O, and X ∩ Y = ∅. In order to estimate
the quality of the mined association rule, two measures are
defined: confidence and support. The confidence is defined
as:

conf (X ⇒ Y ) =
n(X ∪ Y )

n(X)
, (2)

whereas support is:

supp(X ⇒ Y ) =
n(X ∪ Y )

|T |
, (3)

where the function n(.) calculates the number of repetitions
of a particular rule within TD , and |T | is the total number
of transactions in TD . Let us emphasize that two additional
variables are defined, i.e. minimum confidence Cmin and
minimum support Smin. These variables denote a threshold
value limiting the particular association rule with lower
confidence and support from being taken into consideration.

In our study, transaction databases are represented as a
matrix of columns corresponding to features and rows cor-
responding to transactions with assigned attributes. Before
using the databases, objects need to be created. Actually,
the objects are represented as <feature,attribute> pairs
obtained by enumerating the feature and corresponding
attributes from a domain of values that the definite feature
can capture. Typically, objects in the ARM databases are des-
ignated fully by concatenation of the feature and attribute
using the underlined character.

2.2 Formal definition of objectives
The concept of a metro map is applied in order to vi-
sualize the archive of mined association rules [5]. In
our study, the metro map is defined formally as M =
(G,Π), where G = (A,E) denotes an attribute graph
of vertices A = {X1, . . . , XN}, representing objects (i.e.,
<feature,attribute> pairs), and edges E = {r1, . . . , rM},
representing simple rules, together with incident function
ψG that associates an ordered pair ψG(rk) = (X,Y ) with
direct edge rk, when a simple association rule exists in the
form of X ⇒ Y , and Π represents a set of metro lines
π ∈ Π, where each metro line is defined as a permutation
of edges r1, . . . , rτ . In the definitions, variables N and M
denote the maximum number of vertices and maximum
number of edges, respectively. Thus, the simple association
rule consists of only one antecedent and one consequent,
where the former is mapped to the source node X ∈ G
and the latter to the sink node Y ∈ G of the corresponding
attribute graph, while the path X ⇒ Y leads from the
source to the sink node.

In general, the association rules in the archive consist of
more antecedents and more consequences, in other words:

X1 ∧X2 ∧ . . . ∧Xp ⇒ Y1 ∧ Y2 ∧ . . . ∧ Yq. (4)

The simple association rules are obtained from the mined
rules by pairing each antecedent with each consequent, in
other words:

(X1 ⇒ Y1), (X1 ⇒ Y2), . . . , (Xp ⇒ Yq). (5)

In this process of simplifying rules, the p × q pairs of
simple rules are obtained representing direct edges in the
association graph.

In the ARM domain, there are three types of attributes,
i.e. categorical, numerical, and mixed. The categorical at-
tributes consist of a domain of discrete values, while the
numerical ones are assigned to a domain of continuous real
values that must be discretized before use. The last attribute
type can employ elements from both of the aforementioned
domains.

The objects can appear in mined association rules as: (1)
antecedent only, (2) consequent only, or (3) antecedent in
one and consequent in the other rule. In line with this, these
are divided into three subsets, i.e. Source(G), Sink(G), and
Intern(G). In graph G, the objects in antecedent subset X ∈
Source(G) represent source nodes with indegree zero, the
objects in consequent subset Y ∈ Sink(A) are sink nodes
with outdegree zero, while the objects in the mixed subset
〈X|Y 〉 ∈ Intern(G) denote the intern nodes with indegree
and outdegree higher than zero. Indeed, the antecedent set
consists of nodes suitable for starting metro stops on the
metro lines, the consequent set for the final metro stops,
while the intern set determines the intermediate metro stops
and outlines a definite path towards achieving a certain end
destination.

The algorithm for constructing the metro map for visual-
izing the association rules needs to fulfill the following four
objectives:
• maximum line coherence,
• maximum map size,
• high coverage,
• high structure quality.

The maximum line coherence limits the number of interme-
diate metro stops in some metro line, and is expressed by
the following relation:

coherence(M) ≤ τ, (6)

where the variable τ determines the maximum number
of intermediate metro stops. The maximum map size is
referring to the number of metro lines K , in other words:

|M| ≤ K. (7)

Indeed, we are interested in covering our information do-
main by the number of the metro lines that are close to K ,
and all the metro lines must be as coherent in the number of
metro stops as possible.

The coverage estimates how well the selected metro line
exploits the attributes in the transaction database. In line
with this, the lift measure of association rule Lift(X ⇒ Y )
is used that is expressed as:

Lift(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)× supp(Y )
. (8)
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Actually, we are interested for rules with lift value > 1,
that determines the degree to which the probability of
occurrence of the antecedent and this of the consequent are
dependent on one another, and makes those rules poten-
tially useful for prediction. The coverage of the whole metro
line π ∈ Π is expressed as:

coverage(π) =
1

|π|
∑
r∈π

Lift(r), (9)

where r represents the particular simple association rule
X ⇒ Y . Finally, the coverage of the metro map is a simple
average of all the proposed metro lines, in other words:

coverage(Π) =

√
|Π|
|M|

∑
π∈Π

coverage(π), (10)

where |Π| is the sum of edges (i.e., rules) in all the metro

lines. Indeed, the ratio
√
|Π|
|M| expresses the connectivity of

the observed metro line. The ratio prefers the metro line
with many long metro lines, and violates those with many
short ones.

The metro map structure quality demands that all the
metro stops in each metro line cannot follow to the some
metro stops that appear before the observed one in the other
metro line. In the other words, all consequent attributes of
an attribute xi,k in the i-th metro line cannot appear as an
antecedent of the same attribute in all the other metro lines.
For instance, let us assume two metro lines πi and πj :

πi : (xi,1 ⇒ . . .⇒ xi,k ⇒ xi,k+1 ⇒ . . .⇒ xi,τi︸ ︷︷ ︸
Cons(xi,k|πi)

,

πj : (xj,1 ⇒ . . .⇒ xj,l−1︸ ︷︷ ︸
Ante(xi,k|πj)

⇒ xj,l ≡ xi,k ⇒ . . .⇒ xi,τi
(11)

Then, a violation between two metro lines χ(πi|πj) ap-
pears, when an intersection of the observed consequent
Cons(xi,k|πi) and antecedent Ante(xi,k|πj) is not empty.
Mathematically, the violation is expressed as:

χ(πi|πj) =

{
0, if Cons(xi,k|πi) ∩Ante(xi,k|πj) = ∅,
−1, otherwise,

(12)

for i = 1, . . . , |M| − 1 and j = i+ 1, . . . , |M|.
In the sense of the defined objectives, the problem of

metro map construction is defined formally as:

max coverage(Π), (13)

subject to

sQuality(Π) =

|M |−1∑
i=1

|M |∑
j=i+1

χ(πi|πj), (14)

where πi, πj ∈ Π. Let us mention that the value of
sQuality(Π) in Eq. (14) refers to the number of violations
which occurred in constructing the metro map. When the
value is zero, the valid metro map is obtained.

3 PROPOSED METHOD

The proposed method for information cartography in ARM
consists of the following four steps (Fig. 1):
• creating the ARM database,
• association rule simplification,
• attribute graph definition,
• metro map construction,
• metro map visualization.

The ARM database is a result of the ARM algorithm, where
the modern stochastic population-based nature-inspired al-
gorithms, like BatMiner, can also be used instead of the
classical approaches, like Apriori or FPGrowth.

On the other hand, the results of the ARM algorithms
are slightly confusing for information cartography in the
sense that all objects in the mined association rules can
emerge as antecedent in one and consequent in another rule.
In a mathematical sense, we must ensure that any of the
following three inequations: Source(G) 6= ∅, Sink(G) 6= ∅,
and Intern(G) 6= ∅ is valid. The aforementioned conditions
are satisfied in our study by proper filtering, where the set
of the most similar rules is searched for by using the linear
programming algorithm.

The main characteristics of the ARM databases are that
the mined association rules are in a broad form with many
antecedent, as well as consequent, attributes. This form is
not appropriate for the creation of attribute graphs and,
therefore, rules need to be transformed into a simplified
form. The simplification rule procedure was discussed in
detail in the previous section and therefore avoided here.

The third step is dedicated for creating the attribute
graph G = (A,E), where all the simplified association
rules are incorporated in the adjacent matrix AG = (ai,j)
of dimension N ×N , where:

ai,j =

{
1, if X ⇒ Y,
0, otherwise. (15)

It should be mentioned that no loops are allowed in this
graph because of a(i, i) = 0 for i = 1, . . . , N . In order to
characterize the type of attribute graph, a metric Average
Path Length (APL) is introduced that identifies the end-to-
end hop distances among all possible node pairs over the
graph [37]. Finally, the classification of attributes in the three
distinguished sets (i.e. Source(G), Intern(G), and Sink(G))
is also performed in this step.

In the remainder of the section, the fourth step is de-
scribed, where the metro map M = (G,Π) is constructed,
while the visualization of the metro map is examined in the
next section.

3.1 EA for metro map construction
Although several authors of the existing methods for cre-
ating metro maps proposed deterministic algorithms, the
EA was introduced in our study. The motivation behind us-
ing this kind of stochastic nature-inspired population-based
algorithms was due to their advantages over traditional
optimization algorithms (such as gradient-based methods)
that can be summarized as follows [38]: (1) Conceptual sim-
plicity, (2) Broad applicability, (3) Their ability to outperform
traditional methods on real problems, (4) The potential to
use knowledge and hybridize with the other methods, (5)
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Fig. 1: Concept of metro map creation in association rule mining.

Parallelism, (6) Their robustness to dynamic changes, (7)
Their capability of self-optimization, and (8) Their ability
to solve problems that have no known solutions.

The EA for metro map construction demands modifica-
tions of the following algorithm components [39]:
• representation of a solution,
• variation operators (i.e. crossover and mutation),
• survivor and parent selection,
• fitness function evaluation,
• initialization,
• termination condition.

The problem of metro map construction is constrained,
because every feasible solution must satisfy the relation
sQuality(Π) = 0.

3.1.1 Representation of solutions
Each solution in the population of Np individuals represents
a metro map yi that is encoded as follows:

yi = ( ni︸︷︷︸
Control variable

, xi,1,xi,2 . . . ,xi,ni︸ ︷︷ ︸
Description of metro map Π

), (16)

where the first part of the representation is dedicated for
control meta-parameter ni that determines the number of
metro lines and determines individuals of variable length.
The second part consists of detailed descriptions for partic-
ular metro lines, expressed as:

xi,j = {xi,j,1, . . . , xi,j,|xi,j |}, for i = 1, . . . , n1, (17)

where each element xi,j,k for k = 1, . . . , |xi,j | encodes a
specific simple association rule X ⇒ Y , and |xi,j | deter-
mines the number of associative rules within the metro line
xi,j ∈ yi. The elements are ordered into a sequence of
implication rules:

xi,j,1 ⇒ xi,j,2 ⇒ xi,j,|xi,j |−1 ⇒ xi,j,|xi,j |. (18)

in such a way that each consequence of the k-th rule appears
as an antecedent in the k + 1-th rule, in other words: If
consecutive elements xi,j,k and xi,j,k+1 encode the rules
Xl ⇒ Yl and Xl+1 ⇒ Yl+1 in the metro line j, then the
relation Yl = Xl+1 must hold.

Indeed, the representation of solutions also includes
control parameter ni besides the problem variables. This
means that the parameter controlling the maximum number
of metro lines undergoes acting the variation operators and
thus adapts to the fitness landscape online.

3.1.2 Variation operators

The proposed algorithms support two variation operators,
i.e. crossover and mutation. While the crossover operates
on metro lines as a whole, the mutation is also capable
of modifying the structure inside a particular metro line.
Obviously, the application of crossover is controlled using
the probability of crossover pc, and mutation using the
probability of mutation pm.

3.1.2.1 Crossover: is defined as follows: At first, for
each target metro map y(org), a trial metro map y(tri) is
created using the same control parameters. Then, a parent
metro map y(par) is selected randomly and the metro lines
for the trial are taken either from the target or parent
metro maps according to probability pc. Mathematically, this
crossover is expressed as:

x
(tri)
i,j =


{
x

(par)
i,j , if |y(par)

i | < |y(org)
i |,

∅, otherwise,
if U(0, 1) ≤ pc,

x
(org)
i,j , otherwise,

(19)
for i = 1, . . . , |y(org)|. Consequently, the operator can pro-
duce infeasible solutions in two cases:

• the size of the parent metro map is smaller than the size
of the trial, i.e. |y(par)i,j | < |x(par)i,j |,
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• the first antecedent of the metro line representing the
starting metro stop is replicated twice.

In the first case, the corresponding metro line is deleted from
the trial solution, while in the second, the solution from the
parent solution is preferred.

3.1.2.2 Mutation: modifies the structure of the
metro line as follows: At first, the position of mutation k is
selected randomly according to the probability of mutation
pm. Then, an antecedent Xk is extracted from a correspond-
ing association rule 〈Xk ⇒ Yk〉, and the new consequent
Y

′

k is attached to the rule among all the possible consequent
as defined by the graph G = (A,E). Finally, the remaining
path from r

′

k+1 towards the drain is generated randomly.
Mathematically, the mutation is presented as follows: Let

us assume the metro line xi,j = (xi,j,k) for k = 1, . . . , |xi,j |
is given, where each element represents an association rule
xi,j,k = Xl ⇒ Yl, and a position of mutation k ∈ [1, |xi,j |]
is selected according to the probability of mutation pm, in
other words:

xi,j = (〈X1 ⇒ Y1〉︸ ︷︷ ︸
xi,j,1

, ..., 〈Xk ⇒ Yk〉︸ ︷︷ ︸
xi,j,k

, 〈Xk+1 ⇒ Yk+1〉︸ ︷︷ ︸
xi,j,k+1

, ..., 〈XL ⇒ YL〉︸ ︷︷ ︸
xi,j,L

).

The result of the mutation is expressed as follows:

x
′
i,j = (〈X1 ⇒ Y1〉︸ ︷︷ ︸

xi,j,1

, ..., 〈Xk ⇒ Y
′
k〉︸ ︷︷ ︸

x
′
i,j,k

, 〈X
′
k+1 ⇒ Y

′
k+1〉︸ ︷︷ ︸

x
′
i,j,k+1

, ..., 〈X
′
L ⇒ Y

′
L〉︸ ︷︷ ︸

x
′
i,j,L

).

where L = |xi,j | and all the modified values of the metro
line are denoted by apostrophes. Let us mention that the
operation also has an impact on the metro line length L that
can be increased or decreased within the allowed maximum
metro line length (i.e. L ≤ τ ).

3.1.3 Survivor and parent selection
One-to-one selection is applied as an operator of sur-
vivor selection that is borrowed from Differential Evolution
(DE) [40]. This selection works on the whole metro map yi.
Mathematically, it is expressed as follows:

x
(org)
i =

{
y

(tri)
i , if f(y

(tri)
i ≤ f(y

(org)
i ),

y
(org)
i , otherwise ,

(20)

where the better between trial y(tri)
i and target y(org)

i vector
is preserved as the candidate solution map that proceeds
into the next generation.

Parent selection is applied by a crossover operator for
generating the trial solution. Although there are many par-
ent selection operators, the parent selection implemented
in our study selects the parent randomly among the other
population members.

3.1.4 Fitness function evaluation
The problem of constructing metro maps is constrained in its
nature. However, constraints can be handled in several ways
in EC [39]. In our case, penalizing the infeasible solutions is
employed within the proposed EA, where the value of a
penalty function is assigned to the fitness function, when its
value is less than zero. When the penalty function becomes
zero, the coverage function takes the initiative. Mathemati-
cally, the fitness function is expressed as follows:

f(yi) =

{
coverage(yi), if sQuality(yi) = 0,

−sQuality(yi), otherwise.
(21)

The task of the optimization algorithm is to maximize the
value of the fitness function. The design of such the fitness
function is capable of preferring the more promising simple
association rules on the one hand, and ensures that the
constructed metro lines are proper. Let us mention that the
proposed fitness function also ensures the good behavior of
the algorithm on highly non-separable datasets, where the
metro-lines are highly interrelated.

3.1.5 Initialization
Initialization of individuals in the population is performed
randomly. At first, the number of metro lines is gener-
ated randomly from the interval [2,K]. Then, the unique
source node is selected from the set of source nodes. For
each source node, the random path in the attribute graph
G = (A,E) is searched for so that the maximum metro line
length τ is not exceeded.

3.1.6 Termination condition
In our study, the EA is terminated, when the fitness im-
provement is zero for more than the predefined Threshold
number of generations. The termination condition param-
eter is adaptive, because it demands a feedback from the
evolutionary search process in order to determine how big
the loss of the variability is in improving an average of the
fitness value within the population of solutions.

3.1.7 Pseudo-code of the algorithm
The pseudo-code of the proposed EA for constructing metro
maps is illustrated in Algorithm 1, in which all components
of a general EA as proposed by Eiben and Smith in [39] can
be indicated. Actually, all these components are described
in detail in the previous subsections. Therefore, here, we are
focused on a description of the common principles used by
solving the construction problem.

Algorithm 1 Pseudo-code of an EA.

1: procedure EVOLUTIONARY ALGORITHM
2: INITIALIZE population randomly;
3: EVALUATE each candidate solution;
4: while TERMINATION CONDITION not met do
5: SELECT PARENTS;
6: RECOMBINE pairs of parents;
7: MUTATE resulting offspring;
8: EVALUATE each candidate solution;
9: SELECT SURVIVOR solutions;

10: end while
11: return best solution
12: end procedure

Indeed, the construction process must fulfill four
objectives, where maximum coherence and maximum
map size are obeyed implicitly by the variation opera-
tors (functions ’RECOMBINE pairs of parents’ and ’MU-
TATE resulting offspring’). This means that only the feasi-
ble solutions are taken into consideration, while the others
are deleted from the population. Which parents enter into
the variation process is determined by the parent selection
operator (function ’SELECT PARENTS’). The other two ob-
jectives (i.e., high coverage and high structure quality) are
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captured in the fitness function of the evolutionary pro-
cess (function ’EVALUATE each candidate solution’) that
operates on the ’generate-and-test’ principle. In this sense,
only the best solutions according to the fitness function can
survive and transfer their good characteristics into the next
generations (function ’SELECT SURVIVOR solutions’). In
order to run the EA, also initialization (function ’INITIAL-
IZE population randomly’), termination condition (func-
tion ’TERMINATION CONDITION not met’), and repre-
sentation of solution (see Section 3.1.1) are incorporated
within the proposed EA.

The remainder of the section is devoted to analysis of
the time complexity of the proposed algorithm as well as
to discussion of the parameters controlling the behavior of
particular EA components.

3.1.7.1 Complexity and running time: Time com-
plexity depends on the problem size (the population size)
and the search space dimension (the length of individ-
uals) [41]. However, EAs are stochastic. This means that
there are no guarantees for the algorithm to reach an op-
timum. Moreover, this condition might never get satisfied
and, consequently, such algorithm could never stop. As a
result, performance measures, like the maximum number
of generations or evaluations of the fitness function, or
population diversity drop under some threshold, serve for
approximating the optimum of a given fitness function [39].
Consequently, we are interested about the mathematical
measures in the EA community (i.e., convergence velocity,
convergence rate, convergence order), describing the con-
vergence behavior of EAs more than the time complexity. In
line with this, the better the convergence rate, the better the
EA.

3.1.7.2 Parameters: Setting parameters has a crucial
impact on the performance of the algorithms. Although an
algorithm for metro map construction depends on even six
parameters, we can propose some hints for their proper
tuning. For instance, the maximum number of metro lines is
a self-adaptive control parameter, where the proper value is
drawn by the EA from some predefined interval of integer
values. Thus, the reasonable minimum value of the interval
should be set to 2, while the maximum value to the max-
imum number of the starting metro stops (i.e., Source(G))
found in the attribute graph. The last value can be delivered
easily by the proposed method. The termination condition
in our study is an adaptive control parameter that also could
be set loosely depending on the precision of the calculation.
The parameter population size needs to enable bias between
exploration and exploitation firmly within the evolutionary
search process, while setting the parameters probability of
crossover and probability of mutation complies with the
theory of Evolutionary Computation [39]. Finally, setting
the optimal number of metro stops stays the only control
parameter that needs explicit tuning, in which help of users
is also welcome by estimating the quality of the produced
metro maps. However, the reasonable interval of values for
this parameter should be set as follows: the minimum value
could be set to 3, while the maximum value to the average
path length as found in the corresponding attribute graph.

4 RESULTS AND DISCUSSION

The purpose of our experimental work was to show that
the huge amount of data obtained by algorithms for ARM
can be extracted automatically in the form of structured
knowledge called information cartography in ARM and
visualized by metro maps of ARM information. These maps
can help users understand information in many knowledge
domains. In line with this, we applied our proposed method
to five different datasets that accompany data from various
domains, e.g. biology, chemistry, and sports.

In summary, using metro maps has several advantages
for users. In line with this, the experimental study includes
the following research questions:

RQ-1: extract the most important association rules from a
huge amount of data,

RQ-2: find the more <feature,attribute> pairs by automated
extracting of information and to direct the attention of
users to them,

RQ-3: apply the proposed visualization method to new appli-
cation domain,

RQ-4: derive the story that metro maps narrate.
The information cartography in ARM is a very complex

task that comprises of five tasks as discussed in Section 3.
Therefore, the results of each phase (except association rule
simplification) are illustrated in detail in the remainder of
the paper. Especially, we focus on exposing the characteris-
tics of the algorithm for constructing metro maps.

4.1 ARM datasets creation
In our study, evaluating the efficiency of the proposed
method for information cartography in ARM was per-
formed on four public datasets from the UCI Machine
Learning repository [42] and one Sport dataset, consisting of
real data obtained from device trackers worn by sport ath-
letes (i.e. cyclists) during their sport training sessions [27].

The characteristics of the aforementioned datasets are
illustrated in Table 1. Let us emphasize that the results of
ARM for the first four datasets were obtained using the
Apriori algorithm [6], while for the Sport dataset they were
obtained by using the BatMiner [12].

TABLE 1: The ARM datasets characteristics.

Dataset Characteristics Mined rules
Instan. Featur. Attrib. All Filtered

Mushroom 8,124 23 126 24,408 998
Iris 150 5 24 182 88
Abalone 4,177 9 28 36,388 2,779
Wine 178 13 55 5,483 2,355
Sport 80 14 87 4,191 10

Indeed, the table consists of two parts, in which the
first indicates the characteristics of particular datasets, like
the number of instances, the number of features, and the
number of attributes, while the second contains the results
of the algorithm for ARM. The results are presented in two
columns: The column ’All’ denotes the number of all mined
association rules, while the column ’Filtered’ includes the
number of all rules obtained after filtering.

In a nutshell, the characteristics of the aforementioned
datasets are as follows: The Mushroom dataset contains
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logical rules for mushrooms, indicating if a specific one is
poisonous or edible. The dataset includes descriptions of
hypothetical samples corresponding to 23 species of gilled
mushrooms, where each species is identified as definitely
edible, definitely poisonous, or not recommended. The last
class was combined with the poisonous one. As a result,
there are two final classes, i.e. the edible (included into
865 rules as a consequent), and the poisonous mushrooms
(included into 133 rules as a consequent). All samples are
discrete values.

The Iris dataset collects transactions describing charac-
teristics for the classification of three different iris plants (i.e.
Setosa, Versicolour, and Virginica), where each transaction is
constructed from five features with 21 numerical attributes.
Thus, these transactions are divided equally among three
classes (33.3 % for each of the three classes).

The Abalone dataset is devoted to predicting the age
of abalone from physical measurements [42]. All measure-
ments are numerical. The age of abalone is determined
by cutting the shell through the cone, staining them, and
then counting the number of rings through a microscope.
Other measurements, which are easier to obtain, are used
to predict the age. There are four classes originally included
in the dataset. Thus, the first one is included into 69.95 %
of rules as a consequent, the second one in 30.05 % of rules
as a consequent, while the third one is not included in any
association rule as a consequent and is, therefore, eliminated
from the observation.

The data in the Wine dataset are obtained as the results
of a chemical analysis of wines grown in the same region in
Italy, but derived from three different cultivars. The analysis
determined the quantities of 13 constituents (features) found
in each of the three types of wines: the first is included into
59 rules as a consequent, the second included in 71 rules
as a consequent, and the third included in 48 rules as a
consequent. In summary, the number of attributes is equal
to 19, where each of these is numerical.

A Sport dataset was produced from the TCX files of a
professional, male cyclist with many years of experience,
who donated his data voluntary for the purposes of this
study. Every training session was tracked by a wearable
sports watch and the data imported into a training dataset.
In addition to these performance data, data for estimation of
the athlete’s psycho-physical conditions were also merged
with each training session by the sports trainer. As a result,
the measurements are of mixed types, i.e., numerical and
discrete. Let us emphasize that this dataset does not include
any results of classification.

4.2 Attribute graph definition

In this step, the rules in the filtered ARM dataset are
transformed into simple rules, at first. Because this step is
trivial, it is omitted from a detailed discussion here. Obvi-
ously, the simple rules serve as building blocks for attribute
graph definition. Actually, the results of the attribute graph
definition are presented in Table 2 which, in addition to the
attribute graph specification for the particular dataset (i.e.,
number of nodes, edges, and APL), also depicts the sizes
of the antecedent, consequent, and mixed sets that actually
represent the number of source, sink, and intern nodes in

TABLE 2: Characteristics of created attribute graphs.

Dataset Graph Story important nodes
Node Edge APL Source Intern Sink

Mushroom 16 116 23 4 10 2
Iris 18 38 5 10 5 3
Abalone 22 124 8 8 12 2
Wine 37 308 11 11 23 3
Sport 21 52 6 5 7 9

the attribute graph, respectively. Together, these nodes are
also called story important nodes.

As can be seen from the table, the Iris and Sport datasets
are relatively simple from the problem solving point of
view due to only five intern nodes (i.e. attributes). This
restricts the algorithm for a metro map construction to
search for solutions in a smaller search space, especially
when we assume that the majority of the other nodes in the
corresponding attribute graph are identified as source and
sink ones. The remaining attribute graphs are more complex
due to the higher number of nodes, as well as edges.

4.3 Metro map construction
The EA for the metro map construction used parameters set
as illustrated in Table 3, from which it can be seen that the
population size Np = 100 was applied in all experiments.
Actually, this value ensures a good bias between exploration
and exploitation, and avoids the evolutionary search process
getting stuck in local optima. Also, both probabilities, pc
and pm were set according to the guidelines valid in the
EC community. The EA was terminated when the EA did
not not improve the fitness values during the last 100
generations (parameter Threshold ). Obviously, the number
of metro lines K is problem dependent, while its value
refers to the number of source nodes in the attribute graph.
Therefore, the optimal value of this parameter was self-
adapted in our study. The most specific was setting of the
length of metro lines τ that depends on the average path
length of the constructed attribute graph. This parameter is
also problem specific on the one hand and strong affects
the quality of the constructed metro maps on the other.
Because the quality of metro maps is left to the judgment
of the users, the proper setting of this parameter needs to
be made by a user manually, by selecting the best solution
from a collection of constructed metro maps. Each dataset
was optimized 25 times, and the results of the best run
obtained by constructing the metro maps based on five
aforementioned datasets were selected for further analysis.
This means that the run with the highest fitness of the 25
repeats was observed.

In the remainder of the section, the EA for constructing
the metro maps is analyzed in detail. The analysis was
conducted on the Wine dataset that is complex enough
to reveal the characteristics of the algorithm. Obviously, a
similar analysis could be performed on the other datasets as
well.

1Number of source nodes found in attribute graph.
2APL of the corresponding attribute length.
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TABLE 3: Parameter setting of EA for metro map construc-
tion.

Parameter Abbreviation Value
Population size Np 100
Probability of crossover pc 0.5
Probability of mutation pm 0.01
Period of fitness stagnation Threshold 100
Number of metro lines K [2, |Source(G)|1]
Optimum metro line length τ [3,APLG

2]

4.3.1 Analysis of the algorithm
The results of the EA for constructing the metro maps
obtained on the Wine dataset by varying the metro line
lengths τ ∈ [3, 11] are illustrated in Table 4, where the metro
maps are presented with metro lines of path lengths 3, 5, 8,
and 11. A legend, transforming the object numbers within
the association rules to<feature,attribute> pairs, is attached
to the table. Interestingly, the metro map with metro line
length of τ = 5 revealed the best result according to the
fitness function.

As can be seen from the table, each metro lines obeys
the maximum number of metro stops strictly. For instance,
all metro lines in the corresponding metro map in column
’Path=3’ consist of three metro stops (i.e., a start, one intern,
and a destination metro stop). This is also valid for the all
the other path lengths.

In summary, the number of metro lines decreases with
increasing the metro stops. Moreover, some sequences of
metro stops in metro lines of lower path lengths form sub-
sequences that can be detected in metro lines of higher path
lengths. For instance, the sub-sequence ’34⇒ 8’ is detected
in ML-8 of τ = 3, in the ’34 ⇒ 8 ⇒ 4 ⇒ 30’ of ML-3
by τ = 4, and in the ’34 ⇒ 8 ⇒ 4 ⇒ 39 ⇒ 0 ⇒ 21’ of
ML-4 by τ = 4. Interestingly, this sub-sequence proliferates
into two sub-sequences in ML-3 of τ = 11, i.e., ’34 ⇒ 8’
and ’4 ⇒ 39 ⇒ 0 ⇒ 21’ connected by the metro stop 3.
These sub-sequences present building blocks that connect
themselves into more promising metro lines of higher path
length. On the other hand, some more expressed destina-
tion metro stops may disappear from the metro maps. For
instance, there exist metro maps with metro lines of higher
path lengths (e.g., τ = 8 and τ = 11) with no destination
metro stop of ’class 1’.

In order to identify the characteristics of the proposed
EA for constructing the metro maps, two experiments were
conducted further, in which we analyze:
• the influence of the adaptive population size on the

results,
• the influence of the metro line length.

The purpose of the first test was to determine how big
was the error caused by using the adaptive termination
condition, while the second one how the metro line length
τ affected the quality of the constructed metro maps. Let
us also mention that the analysis of Wine dataset was
employed in this test.

4.3.1.1 Influence of the adaptive population size:
In this test, the population size was varied in the interval
Np ∈ {50, 100, 200, 500, 1000}. Thus, the five instances of
the results were obtained, to which the results produced by

the EA using the adaptive termination condition were also
added. In the last case, the number of generations needed is
unknown in advance. However, the results represent fitness
function values obtained by the corresponding instance.
The values were collected according to different metro line
length, where this parameter was varied in the interval
τ ∈ [3, 11] in a step of one.

The results of the test are illustrated analytically in Ta-
ble 5, in which the best fitness function values are presented
in bold. It can be seen from the table that the highest fitness
function values are obtained by the metro line lengths τ = 5
and τ = 6. Mainly, the values below and above these metro
line lengths are lower.

The same results according to different number of metro
stops τ ∈ [3, 11] are depicted graphically in Fig. 4a, where
the dependence of the fitness values are presented according
to the generations. Additionally, the observed generations at
G = {50, 100, 200, 500, 1000} are denoted by reference lines
in the graph.

As can be seen from the graph, the EA converges to
the optimal values very fast, i.e., only 200 generations was
enough for the convergence for all path lengths. There is
less improvement detected by increasing the number of
generations from 500 to 1000.

The last finding is considered in detail by analysis of the
error in fitness function caused by introducing the adaptive
population size. In line with this, the results of the EA using
adaptive population size were compared with the results
obtained by the EA with the fixed population size of higher
value (e.g., G = 1000). The results of this test are presented
in Table 6, which consists of columns denoting fitness values
obtained by both algorithms, the number of generation
necessary for obtaining the results, and the difference in
fitness values between both algorithms. As can be seen from
the table, the EA with adaptive population size needed for
even 54 % less generations for achieving the results that are
0.5 % worse than those obtained by the EA using the fixed
population size G = 1, 000.

In graphical form, the last results can be seen in Fig. 4b.
This figure shows that the EA needs more than 500 gener-
ation by constructing the metro maps with metro lines of
length τ = 4, τ = 5, and τ = 6 only. All the other instances
needed a lower number of generations. On the other hand,
these instances also contributed the highest values to the
total error, and demanded an increase in the threshold value
to Threshold = 100.

4.3.1.2 Influence of the metro path length.: The
aim of this test was to discover how the metro line length
affected the results of the EA for constructing the metro
maps. In line with this, the path length of the metro lines
are varied in the interval [3, 11] in steps of one.

Fig. 7a illustrates the influence of the metro line lengths
on the fitness values obtained by the proposed EA. The
results obtained by the EA using the generation numbers
changing in interval G ∈ {50, 100, 200, 500, 1000} are com-
pared with the results obtained by its counterpart using the
adaptive population size.

As can be seen from the figure, the results of the EA
using the adaptive generation size is comparable with the
results of the same using the fixed generation size of G =
1000. Interestingly, the best results according to the fitness
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TABLE 4: The results of EA for metro map construction obtained by the Wine dataset.

ML τ = 3 τ = 5 (Best) τ = 8 τ = 11
1 31⇒30⇒7 26⇒1⇒4⇒30⇒7 31⇒30⇒0⇒15⇒23⇒24⇒21⇒14 32⇒9⇒0⇒6⇒23⇒22⇒24⇒19⇒10⇒12⇒14
2 32⇒9⇒7 17⇒2⇒4⇒3⇒7 32⇒9⇒27⇒23⇒24⇒19⇒21⇒14 31⇒30⇒0⇒21⇒6⇒23⇒24⇒1⇒27⇒11⇒25
3 17⇒3⇒7 34⇒8⇒4⇒30⇒7 35⇒22⇒23⇒1⇒24⇒19⇒21⇒14 34⇒8⇒3⇒4⇒30⇒0⇒21⇒23⇒24⇒19⇒25
4 33⇒22⇒14 35⇒22⇒24⇒21⇒14 34⇒8⇒4⇒30⇒0⇒21⇒6⇒25
5 29⇒24⇒14 31⇒30⇒0⇒21⇒25 28⇒8⇒10⇒5⇒2⇒3⇒23⇒25
6 26⇒22⇒14 28⇒4⇒30⇒0⇒25
7 35⇒22⇒14 32⇒9⇒27⇒23⇒25
8 34⇒8⇒25 33⇒22⇒24⇒21⇒25
9 20⇒11⇒25

Nr. Attribute Nr. Attribute Nr. Attribute
0 alcalinity (15.45-20.3] 12 color intensity (-inf-4.21] 26 color intensity (7.14-10.07]
1 ash (2.295-2.7625] 14 class 2 27 nonflavanoid phenols (0.395-0.5275]
2 malic acid (-inf-2.005] 17 hue (1.095-1.4025] 28 nonflavanoid phenols (-inf-0.2625]
3 alcohol (12.93-13.88] 19 magnesium (93-116] 29 malic acid (2.005-3.27]
4 flavanoids (2.71-3.895] 20 total phenols (1.705-2.43] 30 proanthocyanins(1.995-2.7875]
6 proanthocyanins(1.2025-1.995] 21 total phenols (-inf-1.705] 31 alcohol (13.88-inf)
7 class 1 22 flavanoids (-inf-1.525] 32 alcohol (-inf-11.98]
8 color intensity (4.21-7.14] 23 hue (-inf-0.7875] 33 malic acid (3.27-4.535]
9 flavanoids (1.525-2.71] 24 proanthocyanins(-inf-1.2025] 34 magnesium (116-139]
10 hue (0.7875-1.095] 25 class 3 35 nonflavanoid phenols (0.5275-inf)
11 magnesium (-inf-93]

Fig. 2: subfigure
Influence of the generation number graphically.

Fig. 3: subfigure
Influence of the adaptive termination condition.

Fig. 4: The results as affected by the number of generations.

TABLE 5: Influence of the generation number analytically.

τ 50 100 200 500 1,000 Adapt.
3 27.31 27.34 27.70 28.31 28.31 28.31
4 32.21 32.70 33.08 33.19 33.19 33.19
5 34.10 34.43 35.13 35.76 35.76 35.76
6 31.95 33.39 35.44 35.53 35.56 35.53
7 31.90 33.63 33.63 34.41 34.91 34.41
8 31.28 32.08 32.69 33.94 34.02 33.94
9 28.15 28.84 29.89 30.40 30.41 30.34
10 29.64 30.04 30.04 30.43 30.45 30.04
11 29.36 29.89 29.94 29.94 30.19 29.94

value were obtained by the metro lines of length τ = 4,
while the instances below and above this values were worse.
Obviously, this behavior was caused due to a connectivity

TABLE 6: Error by introducing the adaptive population size.

Path f1000 fada G1000 Gada ∆f

3 28.31 28.31 1,000 451 0.00
4 33.19 33.19 1,000 707 0.00
5 35.76 35.76 1,000 713 0.00
6 35.56 35.53 1,000 440 0.02
7 34.91 34.41 1,000 509 0.50
8 34.02 33.94 1,000 455 0.08
9 30.41 30.34 1,000 363 0.07
10 30.45 30.04 1,000 265 0.41
11 30.19 29.94 1,000 237 0.26∑

292.82 291.46 9,000 4,140 1.35

factor, expressed as a ratio of the total number of edges per
metro line.
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Fig. 5: subfigure
Influence of the metro line length.

Fig. 6: subfigure
Influence of the number of metro lines.

Fig. 7: Searching for the characteristics of the optimal metro lines.

The last test was devoted to discovering how the number
of metro lines evolves during the typical evolutionary cycle.
In line with this, the number of metro lines in the best
solution according to the fitness value was measured at the
beginning (i.e., at G = 0) and at the end (i.e., G = 1, 000) of
the evolutionary run.

The results of the EA for constructing the metro maps
are depicted in Fig. 7b, from which it can be seen that the
number of metro lines decreases when the path length of the
metro lines was lower, and increased in the opposite case.

4.4 Metro map visualization

In this subsection, the best results generated by the EA for
ARM information are visualized and then the salient pieces
of information (i.e. <feature,attribute> pairs) are integrated
into metro lines and subsequently into the whole story.
From the story point of view, the <feature,attribute> pairs
of metro lines that are connected between each other with
implication relations, represent the plot of the story. The
sequence of relations also indicates the direction of the story
plot. However, conflicts caused by the interrelation of metro
stops of different metro lines are designated by vertical arcs.

This study is focused on the visualization of the best
result obtained by constructing the metro map of ARM in-
formation based on the five previously mentioned datasets.
The best results after optimizing more instances obtained
by constructing the metro lines by varying the metro path
length τ ∈ [3,APLG] and the number of metro lines
K ∈ [2, |Source(G)|] (Table 7) are analyzed.

Thus, the best metro maps with the longer metro paths
are compared several times with their counterparts with the
best fitness, in order to highlight the interesting knowledge
hidden in data. The results of the visualization of metro
maps are illustrated in the remainder of the paper. Let us
notice that all metro maps in the paper were visualized
using the graphical tool embedded into the R programming
environment.

TABLE 7: Experimental setup by constructing the metro
maps.

Dataset Path length Number of ML Instances
Mushroom τ ∈ [3, 11] K ∈ [2, 11] 9
Iris τ ∈ [3, 23] K ∈ [2, 4] 21
Abalone τ ∈ [3, 5] K ∈ [2, 10] 3
Wine τ ∈ [3, 8] K ∈ [2, 8] 6
Sport τ ∈ [3, 6] K ∈ [2, 5] 4

4.4.1 Mushroom dataset
Visualization of the best run obtained by the construction of
a metro map based on ARM information of the Mushroom
dataset is presented in Fig. 10 that is divided into two
diagrams: The upper depicts the metro map with metro
lines (designated with ML-1 to ML-4) of path length τ = 6
(Fig. 10a), and the lower the metro map with metro lines
(designated with ML-1 and ML-2) of τ = 11 (Fig. 10b). As a
result, the first metro map consists of four, while the second
one from two metro lines. Indeed, each metro map con-
sists of metro stops designating the physical measurements
identifying an edibility or poisonous of the observed mush-
rooms, where the searched characteristic is represented as
a destination metro stop. Also, a legend is appended to the
diagrams that transforms the tags denoting metro stops into
<feature,attribute> pairs.

Interestingly, all the metro lines in Fig. 10a lead to
the same destination (i.e., ’class edible’<feature/attribute>
pair), denoting the characteristics of the edible mushrooms.
On the other hand, both the metro lines in Fig. 10b
arose already in the first metro map, but drove to the
different destination designating the poisonous mush-
rooms. From this evolution from the edible to poisonous
mushrooms, we can infer which ingredients cause that
the edible mushroom becomes poisonous. In line with
this, each metro stop (i.e., measurement) in this metro
map is designated with the mark ’Edi’, when the metro
stop is already present in the corresponding metro line



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 12

Fig. 8: subfigure
Path length τ = 6.

Fig. 9: subfigure
Path length τ = 11.

Tag Attribute
at1 e class edible
at1 p class poisonous
at5 f bruises? no
at5 t bruises? bruises
at6 n odor none
at7 f gill-attachment free
at8 c gill-spacing close
at9 b gill-size broad
at11 t stalk-shape tapering
at13 s stalk-surface-above-ring smooth
at14 s stalk-surface-below-ring smooth
at17 p veil-type partial
at18 w veil-color white
at19 o ring-number one
at20 p ring-type pendant
at22 v population several

Fig. 10: Visualization of the Mushroom dataset.

of the first metro map (e.g., ’gill-spacing close’, ’ring-
type pendant’, ’gill-attachment free’, ’stalk-surface-above-
ring smooth’, and ’bruises? bruises’) and with mark ’Pois’,
when these are inherited from the other metro lines
of the first metro map (i.e., ’veil-color white’, ’stalk-
shape tapering’, and ’veil-type partial’).

In summary, although all metro stops arisen in the
first metro lines led to the edible mushrooms, their mu-
tual combination in the second metro map can determine
whether they are edible or not. This means, there is no
simple rule for determining the edibility of the mushroom.
The mutual combination of metro stops can be inher-
ited either from the same metro lines of the first metro
map (like ’gill-attachment free’ and ’stalk-surface-above-
ring smooth’) or the other metro lines (like ’gill-size broad’,
’stalk-shape tapering’, and ’veil-color white’). In the last
case, the first two measures emerge as independent metro
stops in the second metro map, while the third connects
mutually to both the corresponding metro lines.

4.4.2 Iris dataset
A visualization of the best results obtained by the construc-
tion of a metro map based on ARM information within the
Iris dataset is presented in Fig. 11, from which it can be
seen that the corresponding metro map consists of seven
metro lines of moderate path length (τ = 5). In this case,
metro stops identify physical measurements of the observed

iris plants, like sepal length/width and petal length/width,
while the destination metro stop specifies their proper type.

Indeed, the first two metro lines (i.e., ML-1 and ML-2)
started with sepal width less than 2.6 cm and petal length
between 2.475 and 3.95 cm classifying the Iris versicolor
class if the iris plant owns petal width between 0.7 and
1.3 cm. The next two metro lines (i.e., ML-3 and ML-4)
describe how to recognize the setoza iris plant, starting with
the floor of sepal width between 3.2 and 3.8 cm and the sepal
length between 5.2 and 6.1 cm. These metro lines are inter-
related, even with three metro stops (i.e., ’petalwidth (-inf-
0.7]’, ’petallength (-inf-2.475]’, and ’sepallength (-inf-5.2]’).
The last three metro lines (i.e., ML-5 to ML-7) indicate that
the iris virginica has arisen from a plant with sepal width
between 2.6 and 3.2 cm, or petal width more than 1.9 cm, or
sepal length more than 7 cm. However, the petal length of
these plants must be more than 5.425 cm.

Actually, the Iris dataset contains two clusters: (1) one
containing ’Iris setosa’, and (2) the other containing ’Iris
virginica’ and ’Iris versicolor’. Based on this assumption, the
first two metro lines classifying the second cluster should
be interrelated, but, surprisingly, this fact is not reflected
in the mined metro map. Moreover, it turns out that when
the species information is used as proposed by Fisher [43],
all three classes are linearly separable [44]. Indeed, the
advantage of the proposed algorithm for generating metro
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Nr. Attribute
1 sepalwidth (2.6-3.2]
2 petalwidth (0.7-1.3]
3 sepallength (5.2-6.1]
4 class Iris-versicolor
5 sepallength (-inf-5.2]
6 sepalwidth (3.2-3.8]
7 petallength (-inf-2.47]
8 petalwidth (-inf-0.7]
9 class Iris-setosa
10 sepalwidth (-inf-2.6]
11 petalwidth (1.9-inf)
13 class Iris-virginica
14 sepallength (7-inf)
15 petallength (5.42-inf)
16 petallength (2.47-3.95]

Fig. 11: Visualization of the Iris dataset (path length τ = 5).

maps based on ARM information is that it already considers
these clusters as linearly independent.

4.4.3 Abalone dataset
A visualization of the best metro map obtained with the
proposed EA by analysis of ARM information within the
Abalone dataset are illustrated in Fig. 14. The figure is
divided into two diagrams, where the former depicts a
metro map with four metro lines (denoted as ML-1 to ML-
4) and the latter with two metro maps (denoted as ML-1
and ML-2). As a result, the first metro map is constructed
with path length τ = 4, and the second with path length
τ = 9. The metro stops denote the physical measurements
of the observed abalone (like sex, length, diameter etc.), and
connect them into a path that leads towards the destination
metro stop determining the number of rings. However, the
age of the corresponding mushroom is determined on basis
of this number.

Actually, the metro lines ML-3 and ML-4 in the first
metro map are depicted as ML-1 and ML-2 in the second
one, respectively. These measurements are denoted using
mark ’Path-4’ in the second metro map. Indeed, the metro
line ML-4 in the first metro map determining the metro
stops leads to the number of rings between 8 and 15 (i.e.,
age of 9.5 to 16.5) change direction in the second metro line
of the second metro map from the same starting metro stop
to the number of rings less than 8 (i.e., age of less than 9.5
years).

From comparison of both the metro maps, it can be
concluded that there are two main reasons for changing
the age of the abalone from between 9.5 and 16.5 years
in ML-4 of the first metro map to the age of less than 9.5
years in the ML-2 of the second metro map: (1) adding
two new <feature,attribute> pairs into the ML-2 (i.e., the
length of abalone higher than 0.63 mm, and the shucked
weight between 0.37 and 0.74 grams), and (2) inheriting
the <feature,attribute> pairs from the ML-1 (i.e., height less
than 0.28 mm and diameter less than 0.20 mm).

4.4.4 Wine dataset

Visualizing the metro map that emerged on the basis of
ARM information within the Wine dataset is depicted in
Fig. 17, that is divided into two diagrams, representing the
metro maps constructed by path lengths τ = 5 and τ = 11.
Thereby, metro stops designate the quantities of chemical
constituents found by analyzing, where each destination
metro stop determines one of the three types of wines.

Indeed, the first metro map consists of seven metro
lines, while the second of only three. The metro lines of
the same colors emerging in both metro maps, in some way,
reproduce the development of the three different wine types
which originated from the same source during the time. The
older the wine, the less complex is its chemical structure.
This means that once simple chemical structure found in
the analysis of the older wine types became more and more
complex over time. Interestingly, this trend can be observed
in the constructed metro maps.

For instance, the ML-7, ML-3, and ML-1 in the first metro
map emerged as ML-1, ML-2, and ML-3 in the second metro
map, respectively. Thus, the first four metro lines classify
quantities of constituents needed for producing the ’class-3’,
ML-5 for the ’class-2’ and the remaining three metro lines for
’class-1’ type of wine. The second metro map incorporates
only constituents found in the ’class-3’ and ’class-2’ types of
wine.

Comparison between both metro maps revealed, in
which direction the three different cultivars proceeded.
Thus, the ML-1 in the second metro map originally describes
the chemical analysis needed by producing the ’class-1’ type
of wine. Although all original chemical constituents, char-
acteristic for ’class 1’ can also be found in the new metro
map (i.e., color intensity (4.21-7.14], alcohol (12.93-13.88],
flavanoids (2.71-3.89], proanthocyanins(1.99-2.79]), the con-
stituents determining the ’class 3’ wine type were inherited
from the first three metro lines of the first metro map
(i.e., alcalinity (15.45-20.3], malic acid (-inf-2.00], hue (-inf-
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Fig. 12: subfigure
Path length τ = 4.

Fig. 13: subfigure
Path length τ = 9.

Nr. Attribute
0 shell (-inf-0.25]
1 whole (-inf-0.71]
2 height (-inf-0.28]
3 diameter (-inf-0.20]
4 length (-inf-0.26]
5 viscera (-inf-0.19]
6 shucked (-inf-0.37]
7 sex I
8 rings (-inf-8]
10 shucked (0.74-1.12]
12 rings (8-15]
14 viscera (0.38-0.57]
15 whole (1.41-2.12]
16 length (0.63-inf)
17 diameter (0.50-inf)
20 shucked (0.37-0.74]

Fig. 14: Visualization of the Abalone dataset.

0.79], proanthocyanins(-inf-1.20]), as well as new ones have
emerged (as 19). The ML-2 in the second metro map re-
mains unchanged regarding the destination metro stop and
also inherits all three constituents from the ML-3 of the
original metro map. Besides the interrelation metro stops
with the ML-1, there also emerged two new constituents
determining the same class (i.e., proanthocyanins(-inf-1.20],
magnesium (-inf-93]). The ML-3 suffers much of the mod-
ifications regarding ML-1 in the original metro map. At
first, the destination of the metro map changes from the
original ’class 2’ to the ’class 2’. Then, two constituents are
inherited from the original ’class 2’ (i.e., flavanoids (1.52-
2.71], flavanoids (-inf-1.52]), while the next four shared
with the new ’class 3’ (i.e., alcalinity (15.45-20.3], hue (-
inf-0.79], proanthocyanins(-inf-1.20], magnesium (93-116]).
Finally, hue (0.79-1.09] and color intensity (-inf-4.21] are
emerged anew.

In summary, the ’class 1’ disappears from the second
metro map, but some constituents were inherited from it
and emerged in the new ’class 3’. On the other hand, the
’class 2’ type of wine stemmed from the ’class 3’ appearing
in this metro map. However, some new constituents were
added to this.

4.4.5 Sport dataset
Visualization of the best metro map obtained on the basis
of ARM information hidden within the Sport dataset is
presented in Fig. 18, from which it can be seen that this map
consists of four metro lines of length τ = 5. Each metro line

describes paths from the source to one of five destination
metro stops, where the particular metro stop denotes the
particular psycho-physical measurement obtained by the
observed athlete during a training session.

The metro map is strongly interrelated, due to several
connected metro stops. For instance, the first three metro
lines ML-1 to ML-3 describe paths from different starting
metro stops toward the same destination ’FOOD FRUITS’,
reached by even the same interrelated intermediate metro
stops. The fourth metro line, on the other hand, leads
to the destination metro stop ’BEV WATER’ from the
’WEAT CLOUD’ starting metro stop. Thus, all four metro
lines are interrelated by the ’DUR SHORT’ metro stop.

The knowledge hidden in the presented metro map com-
plies with the theory of sport, and is typical for an amateur
athlete overcoming the easier stress during training. Actu-
ally, the metro map describes the food and beverage needs
of an athlete during the realization of sport training sessions
of low intensity. In line with this, it holds that the lower
calorie food is necessary for easier training of short duration.
Additionally, the fitter athlete with no injuries does not need
any isotonic beverage by realizing the training sessions of
short duration in cloudy weather.

4.5 Discussion
A metro map of information is a new visualization method
that has taken inspiration from real metro maps. Metaphor-
ically, like real metro maps help people understand their
surroundings, the metro maps help them understand their
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Fig. 15: subfigure
Path length τ = 5.

Fig. 16: subfigure
Path length τ = 11.

Nr. Attribute
0 alcalinity (15.45-20.3]
1 ash (2.29-2.76]
2 malic acid (-inf-2.00]
3 alcohol (12.93-13.88]
4 flavanoids (2.71-3.89]
6 C
7 class 1
8 color intensity (4.21-7.14]
9 flavanoids (1.52-2.71]
10 hue (0.79-1.09]
11 magnesium (-inf-93]
12 color intensity (-inf-4.21]
14 class 2
17 hue (1.09-1.40]
19 magnesium (93-116]
20 total phenols (1.70-2.43]
21 total phenols (-inf-1.70]
22 flavanoids (-inf-1.52]
23 hue (-inf-0.79]
24 proanthocyanins(-inf-1.20]
25 class 3
26 color intensity (7.14-10.07]
27 nonflavanoid phenols (0.39-0.53]
28 nonflavanoid phenols (-inf-0.26]
29 malic acid (2.00-3.27]
30 proanthocyanins(1.99-2.79]
31 alcohol (13.88-inf)
32 alcohol (-inf-11.98]
33 malic acid (3.27-4.53]
34 magnesium (116-139]
35 nonflavanoid phenols (0.53-inf)

Fig. 17: Visualization of the Wine dataset.

Fig. 18: Visualization of the Sport dataset (path length τ = 5).
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information landscape. Moreover, the structure of metro
maps is designed so that these can even tell stories to
users. Indeed, metro maps consist of metro lines that present
different aspects of the same story. The metro lines contain
metro stops that represent salient pieces of information.
When these pieces interrelate between different metro lines,
conflicts arise. These conflicts lead the plot of the story
towards its resolution (the final metro stop). On the other
hand, each story must have its own introduction (the desti-
nation metro stop).

Let us emphasize that the metro map of ARM in-
formation presents a generalization of all the association
rules in the transaction database and, therefore, ignores the
special cases. Consequently, the extracted association rule
sequences in metro lines only highlight the most general
truths. As a result, it can happen that some conclusion does
not hold true for each cases using this method. Despite ev-
erything, the method offers a new aspect in the visualization
of ARM rules, and can help users direct their attention to the
more salient pieces of information.

The core of information cartography in ARM presents
the construction of a metro map, which is defined as an
optimization problem that has been solved by an EA. The
task of the EA is to find the best paths (representing metro
lines) within the attribute graph according to predefined
objectives that define a structure of the designed metro
map. The characteristics of the constructed metro maps are
as follows: The shorter metro lines pass the basic truths
representing building blocks, when the path lengths become
longer. Actually, the building blocks connect together in
longer metro lines and represent a complex knowledge
hidden inside metro maps. On the other hand, the history
of emerging some constituents, quantities of chemical sub-
strates, or psycho-physical measurements can be predicted
by evolution from shorter metro lines to the longer. Obvi-
ously, this evolution represents a potential idea to form the
story with its introduction, plot of the play and conflicts that
lead to the final resolution. Indeed, the story tells users even
more than many other standard visualizations which can be
revealed by our wide experimental work.

Let us see what some of observed metro maps nar-
rate. For instance, the mushroom metro map could help
the screenwriter to select the mushrooms with those con-
stituents that are faithful for a character that must die ac-
cording the screenplay due to poisoning. Abalone is known
in cooking as a reach nutritional food resource that is full
of high proteins, and low in fat and cholesterol. It repre-
sents a source of omega-3 fatty acids having a low risk of
heart disease. The economic value of abalone is correlated
positively with age [45]. Especially interesting for economy
are so-called ’cocktail’ abalones whose shell weights gener-
ally measure 7-11 cm. In the sense of a restaurant owner
serving the healthy dishes, among which are abalones in
the first place, it is very important to determine the age of
the abalones being sold on the local fish market without
expensive experiments by counting the number of rings
under the microscope. In line with this, the abalone metro
map informs us that physical measurements characteristic
for older abalones (like a diameter of more than 0.5 mm and
whole weight between 1.41 and 2.12 grams) does not mean
that the observed abalone is not the ’cocktail’ one.

However, as the stories describe specific situations, our
metro maps of ARM information also stem from generalized
extracted information that, in specific situations, sometimes
does not hold up entirely. Despite this weakness, the tech-
nology of information cartography in ARM shows that there
are new aspects in extracting the structured knowledge hid-
den in data and, especially, in transferring this knowledge
to the user. The Wine story can undoubtedly be considered
in this class.

The Wine story is one of the most fascinating, while
the point of the story confirms the power of the selected
visualization. Without any knowledge about the real situa-
tion that happened in the specific region in Italy, our story,
inferred from the corresponding metro map, speculates that
there was an original wine type, let’s say ’class 1’, which
passes its good characteristics to its offspring plants in the
same cultivar, let’s say ’class 3’. This type of wine has
been evolved, and by adding the new chemical constituents
caused an emerging of the new type of wine, let’s say
’class-2’. Finally, we got three types of plants steam from
the same ancestor that have been evolved in three different
directions, although they grow in the same area under the
same conditions.

In summary, the goal of the visualization process using
metro maps is not only to present information to the user
in an understandable way, but to assemble the constituent
salient information pieces of the metro map into the whole.
Moreover, this technology is capable of directing the user’s
decision-making process and simulating exactly what con-
sequences false decisions can have.

5 CONCLUSION

Nowadays, we are confronted with the large-scale creation
of unstructured data that are hard to analyze manually.
In line with this, a lot of ML methods have arisen, with
the purpose of discovering new information hidden within
data. One of these methods is also ARM, devoted to discov-
ering the interesting relations between attributes in huge
transaction databases. Normally, the algorithms for ARM
generate a huge number of association rules collected in
datasets in an unstructured form. From these datasets it
is not so easy to extract structured knowledge and present
this in a form that is automatically appropriate for ordinary
users.

This paper proposes a new method for creating metro
maps of ARM information automatically (also information
cartography) that consist of five steps: creating an ARM
dataset, association rule simplification, attribute graph def-
inition, metro map construction, and metro map visualiza-
tion. Actually, the contribution belongs to the XAI domain
that has recently been achieving a notable momentum with
the progress of deep learning. As a result, the study re-
vealed that the ARM information cartography is suitable
for explaining knowledge hidden in ARM databases on
the one hand, and the concept spreads the applicability
of the information cartography to the other ML methods
on the other. Moreover, the EA for constructing the metro
maps was applied primarily to the information cartography,
where no, or a less domain specific knowledge, exists. The
results on five ARM databases showed that the constructed
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metro maps are robust enough for using for explanation
purposes in practice.

In the future, information cartography could also be
applied to the other UCI Machine Learning datasets. Par-
ticularly, its application to the sports domain could be very
interesting, where this technology could be used for Interac-
tive Machine Learning (iML) and, thus, help sport athletes
optimize their learning behavior during a sport training
session through interaction with the proposed information
cartography.
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