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Abstract Decisions made nowadays by Artificial Intelligence powered systems are
usually hard for users to understand. One of the more important issues faced by
developers is exposed as how to create more explainable Machine Learning models.
In line with this, more explainable techniques need to be developed, where visual
explanation also plays a more important role. This technique could also be applied
successfully for explaining the results of Association Rule Mining.This Chapter
focuses on two issues: (1) How to discover the relevant association rules, and (2)
How to express relations between more attributes visually. For the solution of the first
issue, the proposed method uses Differential Evolution, while Sankey diagrams are
adopted to solve the second one. This method was applied to a transaction database
containing data generated by an amateur cyclist in past seasons, using a mobile
device worn during the realization of training sessions that is divided into four time
periods. The results of visualization showed that a trend in improving performance
of an athlete can be indicated by changing the attributes appearing in the selected
association rules in different time periods.
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1 Introduction

Nowadays, Artificial Intelligence (AI) powered systems are sophisticated to such
an extent that they actually do not need human intervention for their design and
deployment. On the other hand, their decisions ultimately start to affect human lives
concerning medicine, law, economy, and defense [3]. As a result, these sophisticated
decisions demand some understanding, on which basis these are furnished by AI
methods [10].

The problem is not crucial considering older AI-powered systems, because these
are easy to interpret. Actually, they act as black-boxes, and, as such, are easily under-
standable by the users. Obviously, the user wants to understand the mechanisms, by
which the Machine Learning (ML) models work [22]. When the AI-powered system
is transparent, this means that decisions made by such ML models are justifiable,
legitimate, and allow obtaining detailed explanations of their behavior [11].

Explainable AI (EAI) [11] has emerged in order to avoid the limitations of the
current AI systems. Primarily, two issues were placed before the new domain as
follows [3]: (1) To create more explainable ML models by maintaining a high level
of learning performance, and (2) To enable humans to understand, trust, and manage
the emerging platform of AI partners effectively. In the sense of the first issue,
more post-hoc explainable techniques have been developed, where visualization
explanation plays an important role. Post-hoc means that the explainable techniques
are applied after obtaining the results of specific ML methods, in order to discover
any additional knowledge hidden in data, and, thus, help the user to understand the
results properly.

Association Rule Mining (ARM) is a well known ML method that normally
generates a huge amount of association rules, from which it is hard to make the
proper decisions easily. An additional problem is presented by the complex form of
the results, which are represented as an implication 𝑋 ⇒ 𝑌 , meaning ”if antecedent
𝑋 is true then its consequent𝑌 is also true”. As a result, there we are confronted with
two problems: (1) How to discover the relevant association rules in a huge archive,
and (2) How to express the relations between attributes in those implication rules
visually in a form that is understandable and interpretable by users.

Interestingly, the visualization of association rules has rarely been treated in lit-
erature. Indeed, the papers which referred to these topics can be summarized in
the following review: The authors in [27] presented a design that is able to handle
hundreds of multiple antecedent association rules in a three-dimensional display
with minimum human interaction, low occlusion percentage, and no screen swap-
ping. The authors in [16] show that the use of Mosaic plots and their variant, called
Double Decker plots, can be applied for visualizing association rules. Ong et al. [23]
prototyped the two visualizations, called grid view and tree view, for visualizing
the association rules in their application called CrystalClear. Appice and Buono [2]
presented a graph-based visualization that supports data miners in the analysis of
multi-level spatial association rules, while Herawan et al. [15] proposed an approach
for visualizing soft maximal association rules. A very interesting interactive visu-
alization technique, which lets the user navigate through a hierarchy of association
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rule groups is presented in paper [14]. The authors in paper [18] explored the Hasse
diagrams for the visualization of Boolean association rules. Fister et al. [7] proposed
a method for identifying dependencies among mined association rules based on
population-based metaheuristics [8, 13, 12] and complex networks, while the paper
of Fister Jr. et al. [19] looked for a visualization method capable of telling stories
based on mined association rules. However, there are also generic tools, like the
CloseViz [4] and the SPMF open-source data mining library Version 2 [9], special-
ized primarily in pattern mining, offering visual implementation of discovered data
mined by ML algorithms that could also be used for visualization of ARM.

This Chapter proposes monitoring the performance of an athlete involved in
sport training sessions during the past seasons (i.e., years). Thus, these seasons are
divided into four time periods, where each of the periods captures a quarter of the
data. The performances of the athlete are measured using real data obtained by
mobile devices worn by the athlete during the training sessions. The performance
data (e.g., duration, average heart rate, etc.) are stored as attributes into a transaction
database, from which the knowledge hidden in these is discovered using the ARM
methods. These methods normally produce a huge amount of data stored in the so-
called ARM archives. Data stored in these archives are also distinguished according
to specific time periods. These periods, indeed, present the flow of performance of
the athlete, while transitions from one period to another highlight how the form of
the particular athlete progressed.

In order to illustrate information from ARM archives in an understandable and
interpretable way to users, Sankey diagrams are selected, that enable multivariate
environment and historical data [21]. The method was applied to a transaction
database created by an amateur athlete in the past seasons over the duration of four
and a half years. The results of visualization allow a sport trainer to analyze how the
performance of the athlete in sport training improved during the seasons, on the one
hand, and which attributes in which of the time periods affected these the most, on
the other.

The structure of the remainder of the chapter is as follows: Section 2 deals with the
basic information needed for understanding the sections that follow. A description
of a method for creating the Sankey diagrams from the ARM archive is the subject
of Section 3. The experiments and the results are illustrated in Section 4. Chapter
concludes with Section 5, that summarizes the performed and outlines the future
work.

2 Basic information

This section is devoted to explaining the concepts necessary for a reader to understand
the subjects that follow. In line with this, the following concepts are highlighted:

• ARM,
• DE,
• Sankey diagram,
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• formal definition of objectives.

In the remainder of the section, the mentioned subjects are discussed in detail.

2.1 Association Rule Mining

ARM can be defined formally as follows: Let us assume a set of objects 𝑂 =

{𝑜1, . . . , 𝑜𝑀 } and transaction dataset 𝑇𝐷 = {𝑇} are given, where each transaction 𝑇
is a subset of objects 𝑇 ⊆ 𝑂. Then, an association rule is defined as an implication:

𝑋 ⇒ 𝑌, (1)

where 𝑋 ⊂ 𝑂, 𝑌 ⊂ 𝑂, and 𝑋 ∩ 𝑌 = ∅. In order to estimate the quality of the mined
association rule, two measures are defined: support and confidence. The support is
defined as:

supp(𝑋 ⇒ 𝑌 ) = #(𝑋 ∪ 𝑌 )
𝑁

, (2)

whereas confidence as:

conf (𝑋 ⇒ 𝑌 ) = #(𝑋 ∪ 𝑌 )
#(𝑋) , (3)

where the function #(.) calculates the number of repetitions of a particular rule
within𝑇𝐷 , and 𝑁 is the total number of transactions in𝑇𝐷 . Let us emphasize that two
additional variables are defined, i.e. minimum support 𝑆𝑚𝑖𝑛 and minimum confidence
𝐶𝑚𝑖𝑛. These variables denote a threshold value limiting the particular association
rule with lower confidence and support from being taken into consideration.

2.2 Differential Evolution

DE is appropriate for solving continuous, as well as, discrete optimization problems.
Many DE variants have been proposed since the algorithm’s birth in 1995. The
original DE algorithm manages a population of real-valued vectors in the form:

x(𝑡) = (𝑥 (𝑡)
𝑖,1 , . . . , 𝑥

(𝑡)
𝑖,𝑑

), (4)

where 𝑑 denotes the dimension of the problem and 𝑡 is a generation counter. These
vectors undergo operations of operators, such as mutation, crossover, and selection.
In the basic mutation, two solutions are selected randomly and their scaled difference
is added to the third solution, as follows:

u(𝑡)
𝑖

= x(𝑡)
𝑟0 + 𝐹· (x(𝑡)

𝑟1 − x(𝑡)
𝑟2 ), for 𝑖 = 1, . . . ,NP, (5)
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where 𝐹 ∈ [0.1, 1.0] denotes the scaling factor that scales the rate of modification,
NP represents the population size and 𝑟0, 𝑟1, 𝑟2 are randomly selected values in the
interval 1, . . . ,NP. Note that the proposed interval of values for parameter 𝐹 was
enforced in the DE community.

DE employs a binomial (denoted as ’bin’) or exponential (denoted as ’exp’)
crossover. The trial vector is built from parameter values copied from either the
mutant vector generated by Eq. (5) or parent at the same index position laid 𝑖-th
vector. Mathematically, this crossover can be expressed as follows:

𝑤
(𝑡)
𝑖, 𝑗

=

{
𝑢
(𝑡)
𝑖, 𝑗
, rand 𝑗 (0, 1) ≤ CR ∨ 𝑗 = 𝑗𝑟𝑎𝑛𝑑 ,

𝑥
(𝑡)
𝑖, 𝑗
, otherwise,

(6)

where CR ∈ [0.0, 1.0] controls the fraction of parameters that are copied to the
trial solution. The condition 𝑗 = 𝑗𝑟𝑎𝑛𝑑 ensures that the trial vector differs from the
original solution x(𝑡)

𝑖
in at least one element.

Mutation and crossover can be performed in several ways in DE. Consequently, in
general, a specific notation was introduced to describe the varieties of these methods
(also mutation strategies). For example, ’rand/1/bin’ denotes that the base vector is
selected randomly, 1 vector difference is added to it, and the number of modified
parameters in the trial/offspring vector follows a binomial distribution.

Mathematically, the selection can be expressed as follows:

x(𝑡+1)
𝑖

=

{
w(𝑡)
𝑖
, if 𝑓 (w(𝑡)

𝑖
) ≤ 𝑓 (x(𝑡)

𝑖
),

x(𝑡)
𝑖
, otherwise .

(7)

The selection is usually called ’one-to-one’, because the trial and the corresponding
vector laid on the 𝑖-th position in the population compete for surviving in the next
generation, where the better will survive according to the fitness function.

2.3 Sankey diagrams

Typically, Sankey diagrams are used for illustrating the quality and connectivity of
flows between entities across time. Indeed, these diagrams present directed weighted
graphs, where entities are represented as nodes connected by edges of different
widths. The weights of the edges are referred to the quality of the flow.

The pioneer work of this kind of visualization was made by Charles Minard, who
presented Napoleon’s Russian Campaign of 1812 using a flow diagram, denoting the
amount of French soldiers, overlaid onto a geographical map (Fig. 1). These kind
of diagrams were named after Captain Matthew Sankey, who used this method for
visualizing energy transfer in steam engines [24].

The main problem in creating Sankey diagrams is the placement of nodes within
layers such that crossings are avoided between edges (flows). Compared to the clas-
sical layered graph drawing problems, the Sankey creation is harder, due to the fact
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Fig. 1: Minard’s classic diagram of Napoleon’s invasion of Russia, a predecessor of
the Sankey diagram from [26].

that each edge has a width connected to the value it encodes, and, therefore, crossings
are of different importance. In general, this problem is defined as combinatorial and
solved using various deterministic optimization algorithms, like the heuristic method
proposed by Sugiyama et al. [25], Integer Programming by Zarate et al. [28], and
even a visual approach to understand and analyze the flow of information in a ML
system by Chaudhuri et al. [5].

2.4 Formal definition of the objectives

The aim of visualization using Sankey diagrams for ARM is to search for those
association rules that are distinguished by their similarities (quality aspect), and
expose the good fitness (quantity aspect) regarding more time periods (temporal
aspect). The spatial aspect of the map is reflected in the topology of nodes (attributes)
connected with edges (attribute flows). Indeed, there are two issues that need to be
considered for construction of the Sankey diagrams for ARM:

• the map size,
• the similarity of the visualized association rules.

In summary, the Sankey diagram for ARM can be defined as a pair F = 〈𝑀, 𝑅〉,
where 𝑀 limits the map size as:

|𝑅 | ≤ 𝑀, (8)

and the 𝑅 denotes the set of the most similar rules, determined according to the
following method: Let us suppose that the results of the algorithm for ARM is a
huge archive of association rules in the form of 𝑋 ⇒ 𝑌 , which can, in general, be
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expressed as:
𝑋1 ∧ 𝑋2 ∧ . . . ∧ 𝑋𝑛 ⇒ 𝑌1 ∧ 𝑌2 ∧ . . . ∧ 𝑌𝑚, (9)

where 𝑋𝑖 for 𝑖 = 1, . . . , 𝑛 denotes the attributes of antecedent, and𝑌 𝑗 for 𝑗 = 1, . . . , 𝑚
the attributes of consequent sets, respectively.

In order to divide both parts of the particular association rule, the following
functions are introduced:

Ante(𝑋 ⇒ 𝑌 ) = {𝑋1, 𝑋2, . . . , 𝑋𝑛},
Cons(𝑋 ⇒ 𝑌 ) = {𝑌1, 𝑌2, . . . , 𝑌𝑚},

(10)

where the Ante(𝑋 ⇒ 𝑌 ) function denotes the antecedent and the Cons(𝑋 ⇒ 𝑌 ) the
consequent set of attributes contributed in the particular association rule 𝑋 ⇒ 𝑌 .

Then, the similarity between two rules 𝑅1 and 𝑅2 can be calculated as follows:

Sim(𝑅1, 𝑅2) =
|Ante(𝑅1) ∩ Ante(𝑅2) | + |Cons(𝑅1) ∩ Cons(𝑅2) |
|Ante(𝑅1) ∪ Ante(𝑅2) | + |Cons(𝑅1) ∪ Cons(𝑅2) |

. (11)

Let us mention that the value of Sim(𝑅1, 𝑅2) ∈ [0, 1], where 1 means the full
similarity, and 0 the full dissimilarity. Interestingly, the similarity values of the rules
within the ARM archive can be combined into an adjacency matrix Adj, as follows:

Adj =

𝑎1,1 . . . 𝑎1, �̃�

. . .

𝑎 �̃� ,1 . . . 𝑎 �̃� , �̃�

 , (12)

where 𝑎𝑖, 𝑗 = sim(𝑅𝑖 , 𝑅 𝑗 ) for 𝑖 = 1, . . . , �̃� and 𝑗 = 1, . . . , �̃� presents a similarity
value between rules 𝑅𝑖 and 𝑅 𝑗 , and �̃� ≤ 𝑁 denotes the number of the observed best
association rules in the archive.

Based on the introduced formalism, the problem of searching for the most similar
set of association rules 𝑅 can be defined as a Knapsack 0/1 [20] problem in the
following sense: Let us suppose �̃� objects and a knapsack of capacity 𝑀 are given.
The problem is how to put into a knapsack the maximum number of objects of
different weights 𝑊 = (𝑤1, . . . , 𝑤 �̃� ) such that the obtained profit Adj = {𝑝𝑖, 𝑗 } is
maximum. If a binary vector 𝐵 = (𝑏1, . . . , 𝑏 �̃� ) is adopted for denoting the inclusion
of the object into the knapsack, the problem can be defined formally as follows:

max
�̃�−1∑︁
𝑖=1

𝑎𝑖, 𝑗 · 𝑏𝑖 , for 𝑗 = 𝑖 + 1, . . . , �̃�, (13)

subject to:

max
�̃�∑︁
𝑖=1

𝑤𝑖 · 𝑏𝑖 , ≤ 𝑀. (14)

Indeed, Eq. (13) determines a lot of association rules with equal maximum values
of similarity.
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3 Method for creating the Sankey diagrams from the ARM
archive

A method for visualizing an archive of mined association rules using Sankey dia-
grams is divided into three steps (Fig. 2):

• preprocessing,
• optimization,
• visualization.

In the remainder of the section, the mentioned steps are illustrated in detail.

Fig. 2: Architecture of the method for visualization of ARM using Sankey diagrams.

3.1 Preprocessing

In the preprocessing step, a uniform transaction database is generally divided into
𝐾 auxiliary databases, where each of these captures transactions of the 𝐾-th time
period. Normally, the performance improves from period to period. The motivation
behind this selection in sport, for instance, lies in the fact that the best condition
of the athlete must be turned on in the last time period, where the most important
competitions are expected. The fact demands that the athlete needs to be prepared
optimally at this time. On the other hand, the first time periods are dedicated to rest
or performing sport training sessions of less intensity.
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However, the same method can also be applied for the other domains that are
confronted with the association rules changing over time.

3.2 Optimization

Mining the association rules is performed in the proposed method using the DE
algorithm for ARM, which demands modifying the following algorithm’s compo-
nents [6]:

• representation of individuals,
• genotype-phenotype mapping,
• fitness function evaluation.

Each solution in the proposed DE represents a mined association rule that is encoded
of 𝑑-discrete attributes, to which the value for determining the ordering of the
particular feature in the definite association rule is assigned. In addition, the last
element of the vector denotes the so-called cut point, separating the antecedent from
the consequent part of the association rule. As a result, the individual is represented
as follows:

x(𝑡)
𝑖

= (〈𝑥 (𝑡)
𝑖,0 , 𝑥

(𝑡)
𝑖,1 〉︸      ︷︷      ︸

Feat1

, . . . , 〈𝑥 (𝑡)
𝑖,2(𝑑−1) , 𝑥

(𝑡)
𝑖,2𝑑−1〉︸                 ︷︷                 ︸

Feat𝑑

, 𝑥
(𝑡)
𝑖,2𝑑︸︷︷︸
Cp

), (15)

where each pair Feat 𝑗 = 〈𝑥 (𝑡)
𝑖,2 𝑗 , 𝑥

(𝑡)
𝑖,2 𝑗+1〉 for 𝑗 = 0, . . . , 𝑑 − 1 denotes the corre-

sponding 𝑗-th feature with the first element designated decoded attribute, the second
determining the ordering of this in a permutation Π = (𝜋1, . . . , 𝜋𝑑), and the Cp is a
cut point. Obviously, the variable 𝑑 indicates the maximum number of features, and
the length of the individual is 2𝑑 + 1.

Genotype-phenotype mapping is used to map a representation of individuals in
a genotype space to the variables in the problem space [6]. In our case, the first
variables in a pair 𝑥 (𝑡)

𝑖,2 𝑗 , for 𝑗 = 0, . . . , 𝑑−1, are decoded to the categorical attributes
Attr 𝑗 according to the equation:

Attr𝜋 𝑗
=


𝑥
(𝑡)
2 𝑗

|Feat𝜋 𝑗
| + 1

 , for 𝑗 = 1, . . . , 𝑑. (16)

Let us mention that Attr𝜋 𝑗
= 0 has a special meaning, because it determines that the

corresponding feature is not presented in the association rule.
A permutation of attributes in the association rule is calculated as follows:

Each value 𝑥
(𝑡)
2 𝑗+1 for 𝑗 = 0, . . . , 𝑑 − 1 are assembled into an auxiliary vector

𝑋 ′ = (𝑥 (𝑡)2 , . . . , 𝑥
(𝑡)
2𝑑−1). After ordering the descending vector, the permutation

Π = (𝜋1, . . . , 𝜋𝑑) is constructed, such that the following relation is valid:

𝑥
(𝑡)
𝑖, 𝜋1

≤ 𝑥 (𝑡)
𝑖, 𝜋3

≤ . . . ≤ 𝑥 (𝑡)
𝑖, 𝜋2𝑑−1

. (17)
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The cut point is calculated according to the following equation:

Cp𝑖 = b𝑥 (𝑡)2𝑑 · (𝑑 − 2)c + 1, for 𝑖 = 1, . . . ,Np, (18)

and delimits the antecedent from the consequent part of the particular association
rule.

Fitness function is expressed as follows:

𝑓 (x(𝑡)
𝑖
) =

𝛼 · conf (x(𝑡)
𝑖
) + 𝛽 · supp(x(𝑡)

𝑖
)

𝛼 + 𝛽 , (19)

where 𝛼 and 𝛽 denote weights, while conf (x(𝑡)
𝑖
) and supp(x(𝑡)

𝑖
) are the confidence

and the support of the mined association rule, respectively.

3.3 Visualization

As can be seen from Eq. (9), mined association rules in the form 𝑋 ⇒ 𝑌express
explicitly the flow of a conjunction of antecedent attributes to a conjunction of
consequent rules. Therefore, it is natural to represent them in a weighted graph,
where the antecedent attributes denote the source and the consequent ones the sink
nodes in the graph. Thus, the source nodes are joined with edges into a chain flowing
to the specific sink nodes. The quality aspect of the graph is reflected by representing
in the graph only the best 𝑛-association rules according to the similarity measure.

When a weight is assigned to each edge, connecting source and drain nodes,
that assesses the strength of the selected association rule in the sense of its fitness
value, and the best mined association rules (i.e., flows) are compared in different
time periods, also the temporary aspect of realizing the sport training sessions is
obtained during the season. Thus, all preconditions for creating the Sankey diagram
are satisfied.

Finally, a dynamic Knapsack 0/1 algorithm [17] is applied for searching the 𝑀
the most similar association rules appropriate for creating the Sankey diagrams. In
order to prefer the more important ones, these rules are additionally distinguished
according to their fitness function values.

4 Experiments and results

The goal of the experimental work was to show that the proposed method for
association rules over time can be explained successfully by visualizing with Sankey
diagrams. In line with this, improving the performance by an amateur cyclist during
past seasons was analysed based on data obtained by realizing sport sessions using
a wearable device.
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The proposed method employs two algorithms: (1) The DE for ARM, and (2)
The Dynamic KNAPsack 0/1 (DKNAP 0/1). The former is responsible for mining
association rules, while the latter for explaining the content of huge ARM archives
to the user by constructing the Sankey diagrams. The parameters of the mentioned
algorithms used during the experimental work are illustrated in Table 1.

Table 1: Parameter settings of the algorithms in tests.

Algorithm Parameter Abbreviation Value

DE
Scale factor 𝐹 0.5
Crossover rate CR 0.9
Population size Np 100

DKNAP 0/1 Map size 𝑀 4
Number of observed rules 𝑁 100

Let us mention that the best results of the DE algorithm, obtained after 25
independent runs, were considered for visualization. Obviously, these results were
assessed according to the fitness function value expressed by Eq. (19). On the other
hand, the result of the DKNAP 0/1 was obtained after one run.

4.1 Transaction database

The mobile data obtained by wearable devices were saved into a transaction database
that was divided into 𝐾 = 4 auxiliary databases according to the different time
periods. In our case, the first time period captures transactions realized from March
2013 to May 2014, the second time period from May 2014 to July 2015, the third
time period from July 2015 to May 2016, and the last time period from October 2016
to October 2017 (Table 2). Interestingly, the sizes of the auxiliary databases can also
be seen from the Table.

Table 2: Characteristics of auxiliary databases.

Part Time period Number of transactions
1 March 2013 to May 2014 126
2 May 2014 to July 2015 134
3 July 2015 to May 2016 139
4 October 2016 to October 2017 136

Total The whole dataset 535

As can be seen from Table 3, each transaction is described by seven discrete
features indicating the performance of the athlete during realization of a particular
training session. To each feature in the table, the corresponding domain of values is
attached that is represented as a discrete set of feasible attributes.
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Table 3: Observed discrete features with their corresponding attributes.

Nr. Feature Abbreviation Attributes
1 Duration DURATION {SHORT,MEDIUM,LONG}
2 Distance DISTANCE {SHORT,MEDIUM,LONG}
4 Calories CALORIES {SMALL,MEDIUM,HIGH}
3 Average Heart Rate HR {MEDIUM,HIGH}
5 Altitude ALTITUDE {LOW,MEDIUM,HIGH}
6 Ascent ASCENT {LOW,MEDIUM,HIGH}
7 Descent DESCENT {LOW,MEDIUM,HIGH}

Let us mention that attributes in the mined association rules are represented as a
concatenation of a feature name by an attribute name using character ’_’ for joining
both. Obviously, the DE for ARM is applied on each of the auxiliary databases
independently. As a result, four independent archives of mined association rules are
obtained that further enters into the visualization process.

4.2 The results

The results of the proposed method for ARM changing over time need to be ana-
lyzed after two steps: The first step highlights the results of an optimization, while
the second a visualization of the obtained data using Sankey diagrams. The results of
the optimization are illustrated in Table 4 that presents the four best association rules
according to the fitness function value. As can be seen from the Table, relatively sim-

Table 4: The best association rules selected for visualization.

Part Rule nr. Association rule Fitness

1

1 CALORIES_SMALL ⇒ ASCENT_LOW 0.7262
2 DURATION_SHORT ⇒ ASCENT_LOW 0.6661
3 CALORIES_SMALL ∧ DURATION_SHORT ⇒ ASCENT_LOW 0.6439
4 CALORIES_SMALL ∧ DISTANCE_SHORT ⇒ ASCENT_LOW 0.6293

2

1 CALORIES_SMALL ⇒ ASCENT_LOW 0.7612
2 DURATION_SHORT ⇒ ASCENT_LOW 0.7015
3 CALORIES_SMALL ∧ DURATION_SHORT ⇒ ASCENT_LOW 0.6977
4 DISTANCE_SHORT ⇒ ASCENT_LOW 0.6903

3

1 CALORIES_SMALL ⇒ ASCENT_LOW 0.7446
2 DISTANCE_SHORT ⇒ ASCENT_LOW 0.7122
3 DURATION_SHORT ⇒ ASCENT_LOW 0.7086
4 CALORIES_SMALL ∧ DURATION_SHORT ⇒ ASCENT_LOW 0.7014

4

1 DURATION_SHORT ⇒ ASCENT_LOW 0.7500
2 DISTANCE_SHORT ⇒ ASCENT_LOW 0.6875
3 HR_HIGH ⇒ ASCENT_LOW 0.6744
4 DURATION_SHORT ∧ DISTANCE_SHORT ⇒ ASCENT_LOW 0.6691
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ple association rules are preferred by the DE for ARM, i.e., one consequent follows
from one antecedent. On the other hand, all consequents in the Table converge to
the same attribute, ASCENT_LOW. As antecedents in compound association rules,
typically, a permutation of two attributes are taken from a set {CALORIES_SMALL,
DURATION_SHORT,DISTANCE_SHORT}.

Visualization of the results presented in Table 4 are depicted in Fig. 3 that is
divided into four diagrams reflecting the performance of an athlete in four differ-
ent time periods. Diagrams were visualized using the network3D package [1]. As

(a) Time period 1 (b) Time period 2

(c) Time period 3 (d) Time period 4

Fig. 3: Visualization of the most similar four association rules using Sankey diagrams.

can be seen from the Figure, the CALORIES_SMALL attribute is the most im-
portant antecedent in the first time period, due to producing the widest flow in the
corresponding Sankey diagrams. Indeed, this flow diminished till the end of the
observed data, where it disappeared. In place of this attribute, an antecedent DU-
RATION_SHORT and DISTANCE_SHORT prevailed. Interestingly, the antecedent
HR_HIGH emerged in the last time period, denoting that the feature HR is a more
important factor for determining the performance of an athlete than the CALORIES.
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4.3 Discussion

Visualization of association rules changing over time with Sankey diagrams showed
many advantages that can be summarized as follows: These diagrams are appropriate
for representing the flow (topology) of a set of antecedents to different consequents.
Actually, the antecedents are a sequence of source nodes, while the consequents
represent sink nodes in the Sankey diagrams.

A temporary aspect of the presentation is accomplished by maintaining four aux-
iliary databases, within which searching for performances of the athlete is conducted
temporally, and the results are depicted in Sankey diagrams. From the sequence of
these diagrams, a sport trainer can conclude, which relations of attributes are more
important for an athlete in a specific time period.

5 Conclusion

Sophisticated AI powered systems operate nowadays without any human intervention
for design and deployment on the one hand, but they have become hard to understand
for the users on the other. Therefore, the new domain of EAI has emerged that tries
to avoid these limitations of the current AI systems. The EAI searches for answers
to the following two issues: (1) How to create more explainable ML models, and
(2) How to enable users to understand, trust, and manage the emerging AI platforms
effectively. More post-hoc techniques have emerged for dealing with the first issue,
where a visual explanation is one of the more prominent ones.

The aim of the chapter is to propose the new explainable method for visualization
mined association rules over time. The method consists of three steps: preprocessing,
optimization, and visualization. The first step is devoted to dividing the uniform
transaction database into more auxiliary databases corresponding to definite time
periods. In the second step, the archives of association rules mined by DE are
discovered from each auxiliary database. These are then visualized using Sankey
diagrams, which are capable of representing multivariate data from different aspects,
i.e., quality, quantity, topological, and temporal. In these diagrams, each attribute
in association rules denotes a node in the corresponding direct graph, while edges
indicate the relations between these. In addition, the edges are of different widths
that are proportional to the fitness of the association rule.

The proposed method was applied to the transaction database created by an am-
ateur cyclist during the past seasons. Each training session was monitored by a
mobile device worn by an athlete during the realization, and saved as a transaction
into a transaction database. The transaction is characterized by discrete attributes.
The transaction database was divided into four auxiliary databases each denoting
one fourth of the past seasons. DE for ARM was employed to each of the auxiliary
databases, producing four archives of the association rules. Four of the best asso-
ciation rules according to similarity and fitness are entered into the visualization
using Sankey diagrams. The result of visualization showed that a trend in improving



Association rules over time 15

performance of an athlete can be indicated by changing the attributes appearing in
the selected association rules in different time periods.

The preliminary study offers many directions for the future development: At first,
the method could be applied to other transaction databases (e.g., UCI Machine Learn-
ing Repository). Then, DE could be replaced by another stochastic nature-inspired
population based algorithms. Finally, another kind of calculating the similarity be-
tween association rules could be developed.
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