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1 Introduction

As has been known for a long time, some basic research areas (e.g., medicine,
biology) cannot solve some specific problems in their highly specialized laborato-
ries without modern scientific computational methods and algorithms. Bioinfor-
matics stands for a very vibrant interdisciplinary research area that, nowadays,
has been solving problems where the aid of digital computers is unavoidable.
Therefore, it is no wonder that the scientific discipline encompasses specialists
from different research areas, such as, for example, computer scientists, mathe-
maticians, biologists, geneticists, and statisticians.

Indeed, the advent of digital computers has changed the principles of experi-
mental work as well. In past, most of the experiments in science were performed
either in vitro or in vivo. The former case refers to controlled experiments that
are conducted outside of an organism (e.g., in cellular biology), while the lat-
ter to experimentation running on a living organism (e.g., animals). Recently,
most experiments have been performed in silico, where they are performed on
computers or as computer simulations (e.g., DNA analysis).

For instance, let us imagine the whole human genotype that consists of
approximately 25,000 different genes. In line with this, several questions have
arisen in bioinformatics, as follows: How can we analyze all complex interactions
between them, or even gene expression profiles, without specialized computa-
tional algorithms? How to process big data that are produced by the next-
generation sequencing (NGS) technology [29] and can easily be measured in
gigabytes or even terabytes? How to acquire new information or laws from bio-
data? Very topical problems have arisen as a consequence of all these questions,
and the answers are searched for through the world sponsors of many scientific
related projects by many research agencies around the world. For example, in
recent years, the famous European Union Project Horizon 2020 supported many
projects from these areas. By the same token, many hospitals opened their doors
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and hired bioinformaticians. Bioinformaticians support clinicians or laboratory
researchers with new information that can be obtained from data [19]. Most of
the above posted questions coincide with the same as are faced by data science as
well [5]. Data science is a multi-disciplinary domain that uses scientific methods,
processes, algorithms, and systems for extracting knowledge, and, thus, enabling
new insights from structured and unstructured data. Often, data scientists also
need to use methods from machine learning (ML) by data analysis. ML is a
part of an artificial intelligence (AI) that is capable of building a mathematical
model of sample data in order to make predictions or decisions without being
programmed explicitly to perform this task [2]. Thus, they were confronted with
a question, how to employ these methods as effectively as possible?

As a key solution, automated machine learning (AutoML) became a topic of
considerable interest [25]. The purpose of AutoML is to automate some phases
of ML tasks, especially those demanding from data scientists to select the proper
ML method, or to set the more appropriate hyperparameters. Obviously, these
tasks are far from easy for non-experts. Therefore, the AutoML searches for
customized ML pipelines which are actually optimized sequences of ML meth-
ods, processes, algorithms, and appropriate hyperparameters for controlling their
behavior.

AutoML can be modeled as an optimization problem. There is a big pool of
different AutoML methods that are based on evolutionary algorithms (EAs) [12].
TPOT [26] is a tree-based pipeline optimization tool for AutoML. It is based on
GP. Some improvements of TPOT are offered in the thesis [15]. RECIPE [8] is
another excellent example that is based on grammar-based GP that builds cus-
tomized classification pipelines. Interestingly, paper [34] reports a new EA for
the AutoML task of selecting the best ensemble of classifiers and their hyperpa-
rameter settings automatically for an input dataset. An example of the swarm
intelligence (SI) algorithm ant colony optimization (ACO) was used in the work
by Costa and Rodrigues [7].

Classification problems are very common within the bioinformatics area. The
classification task of a sample data means to classify each item from the sample,
represented by features, into one of a predefined set of classes. Although the
task seems trivial from the expert’s point of view, a data scientist, for example,
needs to perform at least three tasks to accomplish this: The proper feature
selection algorithm must be selected first, followed by selection of the appropriate
ML classification methods. Finally, the optimal hyperparameter setting must
be found for each of the selected algorithms and ML methods. As a result, a
classification pipeline is modeled manually that represents a customized sequence
of classification methods and algorithms from the data scientist’s point of view.

As we can see from the aforementioned example, modeling of a classification
pipeline is a really complex task. Additionally, it is worth mentioning that the
bioinformatics community also consists of data scientists who are not computer
experts. Potentially, they have trouble in conducting classification tasks using
their own sample datasets. For that reason, they rely mostly on some existing,
usually commercial, software. However, this has many bottlenecks, especially
due to a lack of robustness of software solutions on the market.
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In this paper, the stochastic nature-inspired population-based algorithms are
proposed for evolving classification pipelines automatically in bioinformatics. In
line with this, a novel AutoML method, named NiaAML, is presented, which
has the following advantages:

• the problem of AutoML is modeled as a continuous optimization problem,
where each stochastic nature-inspired population-based algorithm can be used
for solving this problem,

• the proposed method is presented in layer style architecture. Hence, adding
new components (e.g., classifiers) can be done in a very easy way,

• it is also intended to be used by non-programmers.

The structure of this paper is as follows: Sect. 2 deals with AutoML and
its characteristics. Section 3 outlines the proposed NiaAML solution, and Sect. 4
shows performed experiments and results. Section 5 concludes the paper and
outlines directions for the future work.

2 AutoML

The advent of big data has brought an explosion of ML researches and applica-
tions [20]. Consequently, scientists from various areas have been confronted with
issues of how to analyze data as efficiently as possible. Typically, a lot of ML
methods are employed in this analysis. Unfortunately, the performance of the
analysis depends on the selected ML methods, on the one hand, while all those
methods are sensitive to a plethora of parameters controlling their behavior, on
the other.

Therefore, finding the optimal sequence of ML methods for application on
sample data (also ML pipeline), together with their optimal parameter settings,
represents big trouble even for experts, let alone other domain specialists. Obvi-
ously, the optimal ML pipeline cannot be found in one step, but demands a “trial-
and-error” approach that was confirmed in evolutionary computation (EC) [12].
Unfortunately, this approach cannot be applied here, due to the huge amount of
sample data. As a result, searching for the novel approximation methods needs
to be performed achieving the results good enough for using in practice.

In order to simplify complex ML tasks, the AutoML has been evolved, with
the aim to automate creation of the optimal ML pipelines and to enable other
domain specialists to use the complex set of ML methods and their optimal
hyperparameter settings easily. This means that the AutoML is a way of democ-
ratization of ML, wherein ML experts wish to draw the state-of-the-art ML
methods nearer to the other domain specialists. Although we are witnesses of an
early stage of AutoML development, the AutoML can even outperform human
ML experts and show its potential for the future.

This fast-moving area of ML is focused on three main issues:

• Hyperparameter optimization (HPO),
• Meta-learning,
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• Neural architecture search (NAS).

Various settings of hyperparameter values are crucial for good performance
of ML methods. Typically, these methods have a lot of hyperparameters, with
ranges usually unknown in advance. Therefore, it is not easy to determine their
optimal values manually. This issue has led researchers in AutoML to HPO,
where two optimization types are proposed in summary:

• blackbox optimization,
• multi-fidelity optimization.

The former captures algorithms such as: model-free blackbox HPO and Bayesian
optimization. The model-free blackbox HPO is referred to traditional search
algorithms starting from a grid search, going through random search, and end-
ing with stochastic nature-inspired population-based algorithms [13,16]. On the
other hand, the Bayesian optimization is applied successfully for tuning deep
neural networks. Commonly, both mentioned types of blackbox optimization
algorithms are too time-consuming to be used in deep learning (DL). The lat-
ter type speeds up the manual tuning by probing hyperparameter setting on
small subsets of data, casting this into a formal multi-fidelity algorithm, and
applying it on sample data. This HPO type presents the best trade-off between
optimization performance and runtime.

Meta-learning is the science of observing systematically how different ML
methods perform on a wide range of learning tasks, and then learning from
this experience [20]. Actually, the challenge in meta-learning is to learn from
prior experience in a systematic, data-driven way, with the goal of searching
for optimal models for new tasks. This means, the learning does not start from
scratch, but bases on the collected meta-data.

Meta-learning consists of two steps [20]:

• Collecting a meta-data, which describes prior learning tools and previously
learned models. The meta-data consists of algorithm configurations, including
hyperparameter settings, pipeline composition and/or network architecture,
and model evaluation expressed as accuracy and training time.

• Exploring the meta-data to learn, extract, and transfer knowledge for guiding
the search for the optimal models for new tasks.

Unfortunately, learning from prior experience is effective only until a new task
represents completely unrelated phenomena or random noise. However, the real-
world tasks are usually not sensitive to the mentioned disturbances.

Deep learning brought a need for using complex network architectures. The
more efficient architectures cannot be searched manually. Therefore, growing
interest in an automated NAS has been increasing recently. Although NAS has
a significant overlap with hyperparameter optimization and meta-learning, it can
be seen as a subfield of AutoML. According to Hutter et al. [20], NAS methods
are classified with regard to:

• search space,
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• search strategy,
• performance estimation strategy.

Incorporating prior knowledge about the search space can reduce its dimen-
sionality, and, thus, simplify the search. A search strategy determines how to
explore the search space. A performance estimation strategy searches for those
performance measures that allow reduction of the cost of their estimations, on
the one hand, and achieve highly predictive performance on unseen data on the
other [20].

3 Proposed NiaAML Method

Although classification pipelines have already been composed using various
stochastic nature-inspired population-based algorithms (e.g., TPOT, RECIPE.
etc.), their origins were usually found in genetic programming (GP) [22], where
individuals are represented as trees. This study is focused on the real-valued
stochastic nature-inspired population-based algorithms for evolving classifica-
tion pipelines. A NiaAML method was developed according to the directions of
AutoML development, as proposed in [20]. In this sense, the NiaAML is referred
to the collecting meta-data step. As already seen, the collecting meta-data is a
meta-learning step devoted for pipeline composition including hyperparameter
optimization and model evaluation.

An evolving classification pipeline is illustrated in Fig. 1, from which it can
be seen that the classification pipeline composition consists of three tools:

• feature selection,
• classifier selection,
• hyperparameter optimization.

Fig. 1. A classification pipeline evolving
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The task of the feature selection tool is to determine the suitable algorithm
for feature selection, while the classifier selection tool is to select the proper ML
method. However, the algorithms, as well as classification methods, are incorpo-
rated into a framework of tools. The hyperparameter optimization serves as a
searching mechanism for specifying the proper values of the parameters arisen
in the feature selection algorithms and classification methods.

The result of the pipeline composing is a customized classification pipeline
that needs to be evaluated in the model evaluation step. The task of evaluation
is to assess the quality of the composed model on a sample data. The evolving
process, consisting of pipeline composing and model evaluation, is launched until
the termination condition is satisfied.

An architecture of the NiaAML method is depicted in Fig. 2. The architecture
is represented schematically as a feature diagram (FD) [21] and describes tasks
needed for composing customized classification pipelines. Actually, the FD is
a tree consisting of vertices and arcs. Vertices represent task models, and arcs
determine relationships between these. The vertices are either mandatory or
optional, where the former are denoted by closed dots, and the latter by open
dots.

As can be seen from Fig. 2, the task of composing the customized classification
pipelines (‘NiaAML’ vertex) has three conceptual levels, as follows:

• pipeline composing models (features in FD),
• model families (sub-features in FD),
• tools and hyperparameter settings (attributes in FD).

Interestingly, each feature/sub-feature is determined by its own set of sub-
features/attributes that are connected between each other with various rela-
tionships. There are three different relationships in the FD: ‘and’, ‘one of’, and
‘more of’. The ‘one of’ relationship is denoted by an opened semicircle joining

Fig. 2. Feature diagram of NiaAML method
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the arcs from a feature to its sub-features, the ‘more of’ by a closed semicircle,
while the ‘and’ relationship is without any semicircle. The meaning of these rela-
tionships is explained simultaneously with a detailed description of the FD that
follows.

Composing the customized classification pipeline with NiaAML consists of
three mandatory tasks that include modeling the feature selection, the classifier
selection, and the hyperparameter optimization. These tasks are connected with
relation ‘and’, which means that all three tasks must be included in the process of
composing the pipeline. Modeling the feature selection is composed of modeling
the feature selection algorithm and feature scaling. Both sub-features in FD are
connected with the relation ‘more of’. Because modeling the feature scaling is
optional, the relation means that modeling feature selection can be performed
with or without the feature scaling. However, the feature selection algorithm
must be modeled anyway. A classification method can even be modeled from four
classification families as follows: linear, SVM, boosting, and decision tree. These
sub-features in FD are mutually connected with the relation ‘one of’, meaning
that one of the classification families cooperates in composing the classification
pipelines. The hyperparameter optimization is specific, because it has only one
task, i.e., modeling the hyperparameter setting that is dependent on the selected
feature selection algorithm, as well as the selected classification method.

The lowest level in an FD tree represents a framework of tools and hyperpa-
rameter settings. This consists of feature selection/scaling algorithms, classifica-
tion methods, and optimized hyperparameter settings. All framework elements
are selected with regard to the corresponding model families. For instance, a
feature selection algorithm can be modeled using four different feature selection
algorithms. Moreover, the rescaling and normalization procedures are available
for the feature scaling. At the moment, one classifier method is modeled for each
classification family, except a decision tree supporting even three classification
methods. Obviously, in the future, we plan to increase the number of classifi-
cation methods. As already explained, the hyperparameters’ setting is model
dependent.

In the remainder of the paper, the algorithm for composing the classification
pipeline is presented in detail. The section is concluded with illustrating the
model evaluation.

3.1 Composing the Classification Pipeline

The problem can be defined informally as follows: The task is to compose
the classification pipeline from tools incorporated into a framework, where the
pipeline consists of feature selection and feature scaling algorithms, classification
methods, and optimal setting of hyperparameters, controlling the algorithms
and/or methods, such that the maximum classification accuracy is achieved.
The problem is defined as an optimization and solved by the particle swarm
optimization (PSO) [11]. Although it can be solved with the other stochastic
population-based nature-inspired algorithms as well, the PSO was preferred due
to its simplicity.
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3.1.1 Particle Swarm Optimization PSO is a member of the SI-based
algorithm family that was developed by Eberhart and Kennedy in 1995 [11].
It is inspired by the social behavior of bird flocking and fish schooling [9,17].
This algorithm works with a swarm (i.e., population) of particles representing
candidate solutions x(t)

i of the problem to be solved. The particles fly virtually
through the problem space and are attracted by more promising regions. When
the particles are located in the vicinity of these regions, they are rewarded with
the better values of fitness function by the algorithm.

The PSO algorithm exploits usage of additional memory, where the particle’s
personal best p(t)

i , as well as the swarm’s global best g(t) locations in the search
space are saved. In each time step t (i.e., generation), all particles change their
velocities v(t)

i toward its personal and global best locations according to the
following mathematical formula:

v
(t+1)
i = v

(t)
i + C1 · rand(0, 1) ·

(
g(t) − x

(t)
i

)
+ C2 · rand(0, 1) ·

(
p
(t)
i − x

(t)
i

)
,

x
(t+1)
i = x

(t)
i + v

(t)
i ,

(1)

where C1 and C2 present learning rates typically initialized to 2, and rand(0, 1)
is a random value drawn from uniform distribution in the interval [0, 1].

The pseudo-code of the original PSO is illustrated in Algorithm 1, from
which it can be seen that the PSO is distinguished from the classical EAs by
four specialties:

• does not have survivor selection,
• does not have parent selection,
• does not have crossover operator, and

Algorithm 1 The original PSO algorithm
1: procedure ParticleSwarmOptimization
2: t ← 0;
3: P (t) ←Initialize; � initialization of population
4: while not TerminationConditionMeet do
5: for all x

(t)
i ∈ P (t) do

6: f
(t)
i = Evaluate(x

(t)
i ); � evaluation of candidate solution

7: if f
(t)
i ≤ f

(t)
besti

then

8: p
(t)
i = x

(t)
i ; f

(t)
besti

= f
(t)
i ;

9: end if � preserve the local best solution
10: if f

(t)
i ≤ f

(t)
best then

11: g(t) = x
(t)
i ; f

(t)
best = f

(t)
i ;

12: end if � preserve the global best solution
13: x

(t)
i = Move(x

(t)
i ); � move the candidate w.r.t. Eq. (1)

14: end for
15: t = t + 1;
16: end while
17: end procedure
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• the mutation operator is replaced by the move operator changing each element
of particle x(t)

i with probability of mutation pm = 1.0.

Let us mention that the selection is implemented in the PSO implicitly, i.e., by
improving the personal best solution permanently. However, when this improving
is not possible anymore, the algorithm gets stuck in the local optima.

In what follows, the necessary modifications to the PSO algorithm are
described in order to prepare it for composing the classification pipelines. The
section is concluded with a discussion about the classification pipeline evaluation.

3.1.2 Representation of Individuals In the modified PSO algorithm, indi-
viduals are represented by floating-point vectors as follows:

x(t)
i = { x

(t)
i,1

︸︷︷︸

FeatureSelection

, x
(t)
i,2

︸︷︷︸

FeatureScaling

, x
(t)
i,3

︸︷︷︸

Classification

, x
(t)
i,4, . . . , x

(t)
i,k, x

(t)
i,k+1, . . . , x

(t)
i,D

︸ ︷︷ ︸

HyperParameters

},

(2)
where each element of the individual x

(t)
i,j is mapped to the attribute from the

corresponding feature sets according to genotype–phenotype mapping illustrated
in Table 1. The table illustrates a mapping of the elements of a vector to the
features, and then into the attributes of the corresponding feature sets. Indeed,
the first three elements of the floating-point vector are mapped to attributes, as
follows:

Table 1. Genotype–phenotype mapping

Vector elements Feature name Feature set

x
(t)
i,1 FeatureSelection {DE ,PSO,GWO,BA}

x
(t)
i,2 FeatureScaling {No,Rescaling,Normalization}

x
(t)
i,3 Classification {MLP,LS-SVM,ADA,RF ,ERT ,BAG}

x
(t)
i,4, . . . , x

(t)
i,k, x

(t)
i,k+1, . . . , x

(t)
i,D HyperParameters Model dependent

attr (t)
feat =

⌊

x
(t)
i,j

|attr feat |

⌋

, for j = 1, . . . , 3, (3)

where attr (t)
feat denotes the specific attribute of the feature and the |attr feat | is

the size of feature set feat ∈ {FeatureSelection,FeatureScaling ,Classification}.
Thus, the result of the division is truncated. The remaining elements of the
vector represent the absolute values of the corresponding hyperparameter laying
in the corresponding hyperparameter domain. Although the maximum number
of elements is fixed according to the algorithm and method with the maximum
number of control hyperparameters, the number of effective elements is variable
and depends on the selected tools. However, the hyperparameter domain depends
on the particular hyperparameter and must be determined experimentally.
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3.1.3 Hyperparameter Domains This subsection focuses on defining the
hyperparameter domains. Actually, searching for the optimal setting of hyperpa-
rameters is a part of the NiaAML optimization process, and not by the separate
process as proposed by the AutoML community. Consequently, the NiaAML
performs HPO simultaneously with composing the classification pipelines, and,
therefore, can be faster than the traditional AutoML.

In our study, we dealt with feature rescaling or normalization, four fea-
ture selection algorithms, and six classification methods. The feature scaling
can either be selected (i.e., rescaling or normalization) or not selected. In both
cases, however, there are no special parameters for controlling these algorithms.
Among the feature selection algorithms, the following stochastic nature-inspired
population-based algorithms were proposed: Differential evolution (DE) [32],
PSO, gray wolf optimization (GWO) [23], and bat algorithm (BA) [35]. Obvi-
ously, even six methods, like multilayer perceptron (MLP) [27], least squares
support vector machine (LS-SVM) [33], AdaBoost (ADA) [28], random forest
(RF) [4], extremely andomized trees (ERT) [14], and BAGging (BAG) [3], can
be selected for classification.

The hyperparameters of the proposed algorithms and methods, that were the
subject of HPO, are illustrated in Table 2.

Table 2. Hyperparameter domains

Alg. Hyperparameter Domain of values

DE F,CR F ∈ [0.5, 0.9], CR ∈ [0.0, 1.0]

PSO C1, C2 C1 ∈ [1.5, 2.5], C2 ∈ [1.5, 2.5]

GWO a a ∈ [0.0, 2.0]

BA A, r,Qmin, Qmax A ∈ [0.5, 1.0], r ∈ [0.0, 0.5], Qmin ∈ [0.0, 1.0], Qmax ∈ [1.0, 2.0],

MLP act, sol, lr act ∈ {identity, logistic, tanh, relu}, sol ∈ {lbfgs, sgd, adam}
lr ∈ {constant, invscaling, adaptive}

LS-SVM gamma, c gamma ∈ [0.1, 100], c ∈ [0.1, 100]

ADA n estim, alg n estim = [10, 110], alg ∈ {samme, samme.r}
RF n estim n estim ∈ [10, 110]

ERT n estim n estim ∈ [10, 110]

BAG n estim n estim ∈ [10, 110]

Let us mention that the maximum number of hyperparameters occurring in
the selected algorithms and classification methods is seven. As a result, the size
of the real-valued vector for composing the classification pipeline is 10.

3.1.4 Fitness Function Evaluation In order to calculate the value of fitness
function, tenfold cross-validation is used [1]. Thus, data are split into k = 10
equal parts using stratified sampling, and each of the k parts are classified by the
classification pipeline. The main advantage of this approach is that all these so-
called training sets have 80% of data in common when k = 10. Consequently, the
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trade-off between the bias and variance parts of the prediction error is minimized
due to reducing both as much as possible.

The performance of the classification is estimated by accuracy (Accuracy), a
statistical measure that estimates the proportion of true predictions (i.e., true
positives and true negatives) among the total number of samples. Mathemati-
cally, this proportion can be expressed as:

Accuracy(M(xi)) =
TP + TN

TP + TN + FP + FN
, (4)

where M(xi) denotes a model built on the basis of the customized classification
pipeline xi, TP = True Positive, TN = True Negative, FP = False Positive,
and FN = False Negative.

The fitness function is then defined as follows:

f(xi) = 1 − 1
k

k
∑

i=1

Accuracy(M(xi)), (5)

where Accuracy(M(xi)) is calculated according to Eq. (4). Let us emphasize
that the fitness function evaluates the average performance of the classification
methods obtained in 10-folds of training data. The task of the optimization is
to minimize the value of the fitness function.

3.2 Model Evaluation

In this step, the quality of the composed classification pipeline is evaluated, found
in the last step that consists of selected features, classifier, and hyperparameters.
Typically, performance of the classification method in data science is evaluated
by applying the evolving model to unseen test data. A standard 80–20% holdout
validation is used, where 80% of the data is used for training and the other
20% for testing. The classification performance is then assessed according to the
accuracy as expressed in Eq. (4).

4 Experiments and Results

The purpose of our experimental work was to show that the algorithm for com-
posing the classification pipeline finds comparable, if not better, results than
those tuned by the real data science experts. In line with this, three experiments
were performed using well-known datasets from the UCI machine learning repos-
itory [10]. Actually, three datasets from the life sciences domain were taken into
account. The characteristics of these datasets are depicted in Table 3.
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Table 3. Datasets used

Dataset name Characteristics Attribute characteristics #instances #features Missing data

Yeast Multivariate Real 1,484 8 No

Ecoli Multivariate Real 336 8 No

Abalone Multivariate Categorical, integer, real 4,177 8 No

As can be seen from the table, all datasets are multivariate with 8 features.
As the number of features (denoted as #features in the table) is low, we can
expect that the feature selection algorithm cannot reduce this number a lot. On
the other hand, the number of instances (denoted as #instances in the table)
increases from 336 toward 4,177.

Although the NiaAML is prepared to tune the algorithm’s parameters as
well, the parameter values were fixed in this preliminary study due to simplicity.
The parameter settings of the used algorithms are illustrated in Table 4.

Let us mention that the population size NP = 20 and the number of fitness
function evaluations nFES = 400 are fixed for all algorithms due to fairness by
mutual comparison. However, the parameter settings of the NiaAML algorithm
are the same as presented in Table 4 for the PSO, except the population size
of Np = 15 and the number of fitness function evaluations nFES = 500. Inter-
estingly, the GWO algorithm is parameterless, and, therefore, does not demand
any parameter setting. The optimal setting of hyperparameters is the subject of
the HPO as presented in Table 2.

Table 4. Parameter setting

Algorithm Acronym Parameter 1 Parameter 2 Parameter 3 Parameter 4

Differential evolution DE F = 0.5 CR = 0.9

Gray wolf optimizer GWO

Particle swarm algorithm PSO C1 = 2.0 C2 = 2.0 w = 0.7 v ∈ [−4, 4]

Bat algorithm BA A = 0.5 r = 0.5 Q ∈ [0.0, 2.0]

The results of the optimization were measured according to three statistical
measures: precision, Cohen’s kappa κ, and F1-score. The precision is defined as
follows [1]:

precision(M(xi)) =
TP

TP + FP
, (6)

where TP = True Positives, and FP = False Positives.
Metric for handling multivariate class problems is Cohen’s kappa defined

as [6]:

κ(M(xi)) =
n

∑k
i=1 CM ii − ∑k

i=1 CM i.CM .i

n2 − ∑k
i=1 CM i.CM .i

, (7)

where CM i. is the sum of the elements in the ith row of confusion matrix CM
and CM .i the sum of the elements in the ith columns of the CM [31]. The



Continuous Optimizers for Automatic Design and Evaluation 293

metric measures a level of agreement between two annotators on a multivariate
classification problem and can occupy values in the interval [−1, 1]. Values below
0.8 mean that there is no agreement between annotators.

Finally, the F1-score based on precision and recall is expressed as follows:

F1(M(x)) = 2 · precision · recall
precision + recall

, (8)

where recall = TP
TP+FN , FN= False Negatives, and TP= True Positives.

It is worth mentioning that precision, recall , and F1 can be determined for the
binary classification only, i.e., two prediction classes. However, using the sklearn’s
metrics library, one can compute a weighted average among many binary classi-
fication tasks and thus can use those measures for multiclass classification.

Let us emphasize that we focus on the results of the composing of the clas-
sification pipeline in the preliminary study. This means that the results of the
model evaluation phase were left for the future. In the remainder of the paper,
the aforementioned experiments are described in detail.

4.1 The Results on the Yeast Dataset

The three top results of composing the classification pipeline according to mea-
sure Accuracy on the Yeast dataset are illustrated in Table 7, from which it can
be seen that these were all obtained by applying the RF classification method.

Fig. 3. Top three configurations found on the Yeast dataset

The numerical results of data, depicted in Fig. 3, are presented in Table 5,
where each of the best results is denoted by places from 1 to 3. In the table,
the values in square brackets denote the number of reduced features according
to the total set in the column ‘Feature selection’ and the optimized number of
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estimators used by the corresponding classification method in the column ‘Clas-
sification method’. The sign ‘n/a’ (i.e., not applicable) in the column ‘Feature
scaling’ indicates that no feature scaling was applied. The column ‘Accuracy ’
denotes the accuracy calculated according to the Eq. (4).

Table 5. Numerical results obtained on the Yeast dataset

Place Feature selection Feature scaling Classification method Accuracy

1 [8/8] n/a Random forest [93] 0.6337

2 [8/8] n/a Random forest [98] 0.6329

3 [8/8] n/a Random forest [110] 0.6321

Interestingly, the best results were obtained using the PSO FS algorithm, no
feature scaling, and the RF classification method. Although the FS procedure
was performed, it was found out on the basis of the top three configurations that
the best results are obtained by incorporating all the features. This indicates
that each feature plays a relevant role for interpretation of results and that
low redundancy is present among the features. RF, with 93 estimators, is the
best among all built models. We can see that accuracy performance lowers by
increasing model complexity.

The results according to the statistical measures, i.e., Accuracy , Precision,
Cohen’s kappa, and F1-score, are depicted in Table 6.

Table 6. Statistical measures obtained on the Yeast dataset

Statistical measure Statistical score

Accuracy 0.6465

Precision 0.6382

Cohen’s kappa, κ 0.5356

F1-score 0.6387

As can be seen from the Cohen’s kappa measure κ = 0.5356 in the table, the
value is higher than 0.5. This indicates moderate agreement between true and
prediction labels. Obtained Accuracy = 0.6465 is higher than in cross-validation
Accuracy = 0.6337.

4.2 The Results on the Ecoli Dataset

Three of the best results of the NiaAML algorithm for composing the classi-
fier pipeline according to measure Accuracy obtained on the Ecoli dataset are
illustrated in Table 7. The meaning of the variables in the table is the same as
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discussed in the last experiment. Also, in this case, the RF classification method
was the most preferable by the NiaAML, and the FS procedure has not shown to
be beneficial. The feature scaling was not applied in any case, while the number
of estimators by classification method was more than >100 for each instance.
Although the number of estimators are somehow similar to the Yeast dataset,
classification accuracy is much higher for the Ecoli dataset.

Table 7. Numerical results obtained on the Ecoli dataset

Place Feature selection Feature scaling Classification method Accuracy

1 [7/7] n/a Random forest [104] 0.8899

2 [7/7] n/a Random forest [101] 0.8882

3 [7/7] n/a Random forest [109] 0.8880

The graphical representation of the same results are presented in Fig. 4, from
which it can be seen that the second configuration with the least number of
estimators provides the shortest standard deviation, and the third configuration
with the highest number of estimators, the largest standard deviation. All three
configurations seize an approximately equal highest classification accuracy score,
which is set at 0.9697. We can conclude that using an arbitrary number of esti-
mators (unless too low), high classification accuracy can be scored, but standard
deviation increases, due to a possible over-fitting problem. It is desired to lower
the classification method complexity maximally to avoid such problems.

Fig. 4. Top three configurations found on the Ecoli dataset

The results according to the four statistical measures are illustrated in
Table 8, from which it can be seen that Cohen’s kappa κ increases significantly
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Table 8. Statistical measures obtained on the Ecoli dataset

Statistical measure Statistical score

Accuracy 0.9412

Precision 0.9373

Cohen’s kappa, κ 0.9017

F1-score 0.9318

compared to the Yeast dataset. This indicates very high agreement between
true and predictive classes, and might highlight the more predictive (correlative)
nature of the Ecoli dataset. Using the optimal classification method configura-
tion, Accuracy = 0.9412 is improved drastically compared to the cross-validation
Accuracy = 0.8899.

4.3 The Results on the Abalone Dataset

The last experiment was conducted on the Abalone dataset. In line with this,
the results of the NiaAML for composing the classification pipeline obtained
on this dataset are presented in Table 9, from which it can be seen that ERT
and bagging classification methods proved to be the most beneficial results.
Overall Accuracy is the lowest among the three datasets, reaching barely over
0.55, which might indicate the increased complexity (i.e., number of instances)
of the Abalone dataset. In our opinion, this is also the main reason why the RF
performed worse.

Table 9. Numerical results obtained on the Abalone dataset

Place Feature selection Feature scaling Classification method Accuracy

1 [8/8] n/a Extremely randomized trees [110] 0.5650

2 [8/8] n/a Bagging [81] 0.5545

3 [8/8] n/a Bagging [83] 0.5542

The same results are presented graphically in Fig. 5. As can be seen from
the figure, the first configuration reaches the highest overall Accuracy. ERTs are
comprehensive classification methods which perform well for complex datasets.
Second configuration, i.e., Bagging [81], scores the lowest standard deviation
among them but produces two outliers, i.e., black spots significantly higher and
lower than the boxplot.
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Fig. 5. Top three configurations found on the Abalone dataset

Finally, the results according to four statistical measures are depicted in
Table 10, from which it can be seen that Cohen’s kappa κ indicates fair agree-
ment only. Although the Accuracy = 0.5754 is improved, compared to cross-
validation Accuracy = 0.5650, one should consider the obtained predictive per-
formance. The Precision also scores the lowest value among all three datasets,
which indicates an increase of FP predictions.

Table 10. Statistical measures obtained on the Abalone dataset

Statistical measure Statistical score

Accuracy 0.5754

Precision 0.5701

Cohen’s kappa, κ 0.3589

F1-score 0.5725
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4.4 Summary

In order to compare the quality of classification pipelines, the best results
obtained on the various datasets are presented in Fig. 6. The following
conclusions can be summarized after analyzing the results: The Yeast and Ecoli
datasets are shorter (i.e., 1,484 and 336 instances), compared to the Abalone
dataset consisting of 4,177 instances. Therefore, the RF overcomes the results
of the other classification methods by classifying the shorter datasets. However,
by increasing the number of instances, e.g., the Abalone dataset, more compre-
hensive methods such as ERT and Bagging emerge.

Fig. 6. The best classification pipelines obtained on the three datasets

The results obtained by NiaAML are comparable or better than the other
domain experts, e.g., for the Yeast dataset authors [36] report Accuracy = 0.5792
on a so-called infinite latent SVM classifier. This is significantly less than in our
case, where we reached Accuracy = 0.6465. For the Ecoli dataset, the following
accuracies were reported by [24]: Accuracy = 0.8214 for the J48 decision tree clas-
sifier, Accuracy = 0.8095 for the Ridor classifier and Accuracy = 0.8125 for the
JRip classifier. The authors in [30] for the best case report the mean Accuracy =
0.8880 by cross-validation. Using the NiaAML, we scored Accuracy = 0.9412
for evaluation, and Accuracy = 0.8899 by cross-validation. While the evalu-
ation is significantly improved, cross-validation is comparable. Review of [18]
revealed following results for the Abalone dataset: Accuracy = 0.5422 for deci-
sion trees, Accuracy = 0.5478 for Näıve Bayes, Accuracy = 0.5393 for k-nearest
neighbors, and Accuracy = 0.5456 for SVM. The proposed approach gives
Accuracy = 0.5754, which is at least comparable to the domain experts.
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5 Conclusions and Future Work

Recently, ML methods like classification became useful tools in various sciences.
Unfortunately, using these methods is far from being easy. Typically, these meth-
ods are controlled by many hyperparameters, where the optimal setting depends
on the problem to be solved. Fortunately, the different methods solving a par-
ticular step in the ML phase, like feature selection/scaling, classification, and
HPO, can be composed into pipelines and can be executed one after another.
Therefore, a new discipline of the ML has emerged, i.e., AutoML, with the goal
to help the ordinary users by applying the ML methods. The AutoML is capable
of selecting the most appropriate ML methods, as well as finding their optimal
parameters. Normally, the algorithms for composing the ML methods into ML
pipelines are of deterministic nature.

In our study, we go a step further, and propose the stochastic NiaAML for
composing the classification pipelines. Actually, the stochastic NiaAML is capa-
ble of: (1) performing automated feature selection and feature scaling to reduce
the complexity of a dataset, (2) classifier selection, and (3) HPO to find the
optimal configuration of the classifier. Classifier configurations are tested using
cross-validation.

The proposed NiaAML was tested on three different ML datasets: Yeast,
Ecoli, and Abalone. Although feature selection was applied to each dataset, it
was not found to be beneficial due to the too low number of features. The solu-
tion thus might help non-technical users obtain good classification performance.
It was found that NiaAML searches successfully for the optimal classification
method and its configuration. As a result, we can conclude that the obtained
results are comparable to those proposed by domain experts.

In future, we would like to implement the NiaAML framework for detec-
tion and accounting the imbalanced datasets. Furthermore, constrained feature
selection might be proposed, where a user could specify the maximal number
of features to be incorporated into the classifier. Nevertheless, a Web graphical
user interface and automated visualization framework might be desired as well.
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