
Tracking the exploration and exploitation in
stochastic population-based nature-inspired

algorithms using recurrence plots

Daniel Angus1 and Iztok Fister Jr.2?

1 Digital Media Research Centre, Queensland University of Technology, Brisbane,
Queensland 4059, Australia

2 University of Maribor, Faculty of Electrical Engineering and Computer Science,
Koroška cesta 46, Slovenia

Abstract. The success of every stochastic population-based nature-inspired
algorithms is characterized through the dichotomy of exploration and
exploitation. In general, exploration refers to the evaluation of points in
previously untested areas of a search space, while exploitation refers to
evaluation of points in close vicinity to previously visited points. How
to balance both components properly during the evolutionary process
is still considered as a topical problem in the evolutionary computation
community. In this paper, we propose a recurrence plot visualization
method for evaluating this process. Our analysis shows that recurrence
plots are highly appropriate for revealing how particular algorithms bal-
ance exploration and exploitation.

Keywords: exploration, exploitation, nature-inspired algorithms, recur-
rence plot, optimization

1 Introduction

Stochastic population-based nature-inspired algorithms are a kind of search algo-
rithms that are considered as a powerful tool for coping with optimization prob-
lems in continuous, as well as discrete, domains. Most of them are inspired by the
biological principles of behavior of various animals living in nature, while some of
them are even inspired by physical phenomena. Each stochastic population-based
nature-inspired algorithm consists of a population of individuals that undergo
variation operators during the evolution process and generate a new subsequent
population. Despite the popularity of this subject, a lot of different algorithms
have been developed in the past decades. Nevertheless, characteristic examples
that fit under this umbrella are: Artificial Bee Colony (ABC) algorithm [7],
Bat Algorithm (BA) [16], Differential Evolution (DE) [12], Firefly Algorithm
(FA) [15], Genetic Algorithm (GA) [5], Particle Swarm Optimization (PSO) [8].
Each algorithm starts with a randomly generated initial population that updates
over multiple generations/cycles using specific variation operators. For example,

? Corresponding Author: iztok.fister1@um.si

2 Angus and Fister

a GA uses three variation operators: selection, crossover and mutation; while
the BA variation operator is guided by the physical phenomenon of echoloca-
tion observed in micro-bats. All of these operators influence the diversity of a
population, and balance the exploration and exploitation components [1] and,
most importantly, determine the overall quality of returned solutions. For this
reason, it is important to have deep knowledge of the manner in which parame-
ters of a particular algorithm impact on its search performance, which can help
us understand what its weaknesses and advantages are during the evolution-
ary process. Additionally, such insights can help us to decide which algorithm
is good for particular problems, as well as how to approach solving particular
problems. We propose the use of recurrence plots to visualize graphically the
evolutionary path of various nature-inspired algorithms, and reveal performance
over time in a more informative manner than by simply tracking unitary mea-
sures such as the single best solution found. To the authors‘ knowledge, there
is only one study [13] that used recurrence plots for study phase transitions in
swarm optimization algorithms.

The main contributions of this paper are summarized as follows:

– to verify that there is a possibility to track the whole path of a stochastic
population-based nature-inspired algorithm during the evolutionary process
using recurrence plots,

– to investigate whether there is a possibility to observe changes between the
exploration phase as well as the exploitation phase on recurrence plots,

– to study if there is a possibility to decide which algorithm is good for a
particular problem based on the visualization of recurrence plots.

The structure of this paper is as follows: In Sec. 2 the stochastic population-
based nature-inspired algorithms that are used in our study are outlined, while
Sec. 3 and 4 present the methodology. The results of experiments are presented
in Sec. 5. Sec. 6 concludes the paper, with remarks for future work.

2 Stochastic population-based nature-inspired algorithms

The purpose of this section is to acquaint the reader with the population-based
nature-inspired algorithms 3 that are being used in our experiments.

The Bat Algorithm is an example of Swarm Intelligence (SI) based algo-
rithms [4]. BA is inspired by a physical phenomenon of micro-bats called echolo-
cation. Differential Evolution is an evolutionary algorithm used widely in solv-
ing many combinatorial, continuous, as well as real-world problems. DE was
proposed by Storn and Price in 1997 [12]. The Firefly Algorithm that was devel-
oped by Yang in 2008 is an SI-based algorithm inspired by the mating behavior
of fireflies. The phenomenon of fireflies is regarding the flashing lights that at-
tract mating partners on the one hand, while, on the other, it serves as protection
mechanism. Particle Swarm Optimization is also a member of SI-algorithms that
was first presented in 1995 [8]. The inspirations of PSO lie in the social foraging
behavior of some animals, such as the flocking behavior of birds.

3 sorted alphabetically

Tracking the exploration and exploitation 3

3 Recurrence quantification analysis and recurrence plots

The recurrence plotting plot technique was initially invented as a technique to
display and identify patterns from time series data, specifically data from high-
dimensional dynamical systems [3]. The recurrence plot is a 2D plot where the
horizontal and vertical axes represent time series data, and individual elements
of the plot indicate times where the phase space trajectory of the system visits
the same region of phase space.

While visual inspection of recurrence plots is useful for revealing the structure
and dynamics of dynamical systems, Recurrence Quantification Analysis (RQA)
extends this technique by specifying a set of metrics designed to capture specific
features of recurrence plots [10, 14]. In the 25 years following the original work
of Eckmann et al. (1987), recurrence analysis has been applied across diverse
areas including financial analysis, neural recordings, engineering, earth science
and chemistry [9].

4 Methodology

In order to analyze recurrence plots for tracking the exploration and exploitation
of population-based nature-inspired algorithms, we conducted a series of experi-
ments. All experiments are based on the optimization of continuous benchmark
functions [6] that are presented in Table 1.

f Function name Definition

f1 Sphere f(x) =
∑D

i=1 x
2
i

f2 Ackley f(x) = −a exp

(
−b
√

1
D

∑D
i=1 x

2
i

)
− exp

(
1
D

∑D
i=1 cos(c xi)

)
+ a+ exp(1)

f3 Griewank f(x) =
∑D

i=1

x2
i

4000
−
∏D

i=1 cos(xi√
i
) + 1

f4 Rastrigin f(x) = 10D +
∑D

i=1

(
x2i − 10 cos(2πxi)

)
Table 1: Benchmark functions used in our experiments.

To generate a recurrence plot, a similarity measurement is required to com-
pare any two points of the time series being plotted on the recurrence plot. In the
case here, a single time point is the state of the population of the EC algorithm
for a single generation, and, therefore, the similarity measurement is designed
to measure the difference between two populations of solutions. The similarity
measurement is based on the Euclidean distance between points in the popu-
lation. The Euclidean distance metric is a relatively straightforward metric to
calculate; given two solutions, p and q, and problem dimensionality of d, the
Euclidean distance is calculated as:

Euclidean distance(p, q) =

√√√√ d∑
i=1

(pi − qi)
2

(1)

4 Angus and Fister

To obtain a population similarity score, Alg. 1 is applied. According to the
Alg. 1, the algorithm returns a pairwise similarity score between any two so-
lutions. Algorithm 1 sums the similarity of every solution between two pop-
ulations. This sum is then divided by the population size. In line with this,
Algorithm 2 presents how final time series are being generated. The algorithm
iterates through all iterations, and calculates a similarity score for every two
generations, i.e. the current generation and one next generation are taken into
account. Finally, all points in the time series are normalized in order to get a
similarity value between [0,1].

Algorithm 1 Population similarity score for populations P1 and P2

1: Score = 0
2: for i = 1 to NPP1 do
3: for j = 1 to NPP2 do
4: Score+ = Score (P1i, P2j)
5: end for
6: end for
7: Score/ = NP

Algorithm 2 Building time series

1: TimeSeries = ∅;
2: for i = 1 to MAX ITER do
3: Point = Calculate population similarity()
4: TimeSeries.append(Point)
5: end for
6: TimeSeries = normalize(T imeSeries(0, 1))

4.1 RQA analysis and generating a recurrence plot

Each population-based nature-inspired algorithm was run for 500 iterations, gen-
erating 20 new solutions per iteration. During the evolutionary cycle, we stored
all solutions of each iteration. All included algorithms were run on 25 indepen-
dent runs. Let us mention that the dimension of the problem was set to 30 for all
algorithms on every benchmark function. Tables 2, 3, 4, 5 present mean and std.
values for each algorithm over the 25 runs. RQA was calculated using PyRQA
software [11], while laminarity, divergence, trapping time and determinism mea-
sures were taken into account. For generating a recurrence plot, we chose 1 single
run randomly from the pool of 25 runs. Recurrence plots were generated using
the pyunicorn package [2].

Tracking the exploration and exploitation 5

RQA measures attempt to capture moments where a dynamical system un-
der analysis is persisting in a single point in state space, drifting from or between
different states, or randomly moving about a state space. RQA analysis is there-
fore of strong interest here due to its ability to capture aspects of convergent and
non-convergent algorithmic behaviour. Laminarity is a measure of intermittent
behaviour which will form vertical lines on a recurrence plot. Divergence is the
inverse of the maximal diagonal line length which if low would indicate that an
algorithm has converged or is moving along a cyclic trajectory through state
space. Trapping time is the average length of vertical lines, which indicates the
amount of time a system spends in a particular state, for an optimisation algo-
rithm a high trapping time would indicate exploitation behaviour. Determinism
is a percentage measure of how many recurrence points form diagonal lines. For
determinism to be low a plot will contain mostly random noise (single recur-
rence dots), rather than longer diagonal lines which would indicate convergent
behaviour, therefore low determinism indicates more exploration.

5 Discussion

For the algorithms tested we observe both qualitative and quantitatively differ-
ent results from the recurrence analysis 4. The BA algorithm produced some of
the most interesting results, given that the algorithm seemed to converge within
only a handful (10-30 iterations) leading to very large values for the RQA mea-
sures and almost complete visual recurrence. At least in the configuration of the
algorithm we used this would suggest that the BA algorithm is incredibly quick
to converge and that care should be taken in ensuring that population diversity
is maintained when in use.

Table 2: RQA of BA.
Function Measure Laminarity Divergence Trappingtime Determinism

f1
Mean 0.9999 0.0026 366.1704 1.0000

Std. 0.0001 0.0009 143.7695 0.0000

f2
Mean 0.9999 0.0021 474.5477 1.0000

Std. 0.0000 0.0000 20.2955 0.0000

f3
Mean 0.9999 0.0023 450.7964 1.0000

Std. 0.0001 0.0007 92.2660 0.0001

f4
Mean 0.9999 0.0021 468.0336 0.9998

Std. 0.0004 0.0000 24.5921 0.0009

The Firefly algorithm had the second highest values for Determinism, indi-
cating that it too behaved in a highly exploitative fashion. The visual plots for
this algorithm does reveal that this exploitation behaviour occurs mostly towards
the end of the algorithm run, and that the algorithm seems to move its popu-
lation slowly through state space, highlighted also by the low divergence scores

4 only selected figures are presented in this paper

6 Angus and Fister

(a) Ackley (b) Griewank

Fig. 1: Recurrence plots of BA on selected benchmark functions

combined with high laminarity. Of all of the algorithms tested, FA tends to be
the one algorithm that tends to transition the smoothest between exploratory
and exploitative behaviours.

(a) Ackley (b) Sphere

Fig. 2: Recurrence plots of FA on selected benchmark functions

For the DE algorithm there was a notable difference in behaviour on F3
(Griewank), which can be seen both visually and quantitatively. On F3, DE
seemed somewhat non-convergent, seen through the lower scores for laminarity,
trapping time and determinism, and higher scores for divergence. the Griewank

Tracking the exploration and exploitation 7

Table 3: RQA of FA.
Function Measure Laminarity Divergence Trappingtime Determinism

f1
Mean 0.9927 0.0030 52.3893 0.9984

Std. 0.0003 0.0001 1.4192 0.0004

f2
Mean 0.9566 0.0042 20.1938 0.9943

Std. 0.0012 0.0002 0.6655 0.0021

f3
Mean 0.8857 0.0057 11.3448 0.9865

Std. 0.0053 0.0004 0.6663 0.0059

f4
Mean 0.9926 0.0029 51.6059 0.9982

Std. 0.0003 0.0001 1.0994 0.0003

function quite notably contains a vast number of closely placed local minima,
which could explain the algorithms lack of convergence.

(a) Ackley (b) Griewank

Fig. 3: Recurrence plots of DE 1/2

Table 4: RQA of DE.
Function Measure Laminarity Divergence Trappingtime Determinism

f1
Mean 0.9927 0.0028 39.8657 0.9916

Std. 0.0048 0.0004 20.5044 0.0078

f2
Mean 0.9859 0.0052 72.6573 0.9947

Std. 0.0140 0.0024 25.9202 0.0079

f3
Mean 0.6567 0.0453 4.6795 0.7223

Std. 0.1937 0.0461 2.4264 0.1807

f4
Mean 0.8422 0.0349 20.4438 0.8379

Std. 0.1005 0.0311 34.5553 0.1179

8 Angus and Fister

(a) Rastrigin (b) Sphere

Fig. 4: Recurrence plots of DE 2/2

PSO had some of the most exploratory behaviour of all of the algorithms,
with the highest divergence values, and lowest trapping time, determinism and
laminarity. The recurrence plots for PSO reveal more information though, as one
can quite clearly see how this algorithm seems to persist in distinct areas of the
state space for tens of iterations. In the case of Rastrigin’s function, it is clear
that from iteration 200 the algorithm moves back and forth between areas of the
state space creating what almost looks like a chess board pattern. Contrasted
to FA, the results of PSO look more random and chaotic, rather than smoothly
transitioning from one state to the next. In the case of the Sphere function,
the PSO algorithm exhibits what could be considered a punctuated equilibrium
effect moving from one point of state space, persisting for a time, then moving
to another completely different section of state space.

Table 5: RQA of PSO.
Function Measure Laminarity Divergence Trappingtime Determinism

f1
Mean 0.6419 0.0471 4.9304 0.6690

Std. 0.1690 0.0446 1.9686 0.1788

f2
Mean 0.3901 0.1654 3.1237 0.4177

Std. 0.2301 0.2094 1.0968 0.2347

f3
Mean 0.3309 0.1769 2.8711 0.3639

Std. 0.1698 0.1992 0.8154 0.2046

f4
Mean 0.0377 0.8033 nan 0.0346

Std. 0.0409 0.3003 nan 0.0647

Tracking the exploration and exploitation 9

(a) Rastrigin (b) Sphere

Fig. 5: Recurrence plots of PSO on selected benchmark functions

6 Conclusion

In this paper, we applied a well-known visualization technique, recurrence plot-
ting, for tracking the exploration and exploitation of stochastic population-based
nature-inspired algorithms. In addition, we also included the companion mea-
sures, Recurrence Quantification Analysis, which quantify distinct visual features
of recurrence plots.

The resulting plots and RQA measures reveal much detail of the exploratory
and exploitative behaviour of the algorithms under study. In the case of PSO,
we could see much randomness, contained to a specific areas of search space,
before moments where the algorithm jumped to a new area of search space to
continue this behaviour anew. For FA, we noted a gradual shift from exploratory
to exploitation as the algorithm progressed through its subsequent iterations. In
DE disparity was seen in performance on different functions, indicating that
recurrence plotting could help reveal disparity in performance within a single
algorithmic class on different problems. And, in the case of BA we noted an
almost instantaneous convergence behaviour, indicating an issue perhaps with
the algorithms ability to trade off between exploration and exploitation over a
single optimisation run.

These measures will benefit from more examination across more problem and
algorithm classes, however through this modest study we have shown that these
plots and measures can reveal much about the population dynamics of optimisa-
tion algorithms. The key difference between this and other unitary measures of
algorithm performance, is that by taking full account of the population makeup,
and change of this makeup over time, we can better ascertain an algorithms
trajectory through state space. Future work could also examine the impact of
different population similarity measurements on the resulting recurrence plots.

10 Angus and Fister

Acknowledgment

Iztok Fister Jr. acknowledge the financial support from the Slovenian Research
Agency (Research Core Funding No. P2-0057).

References

1. Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation
in evolutionary algorithms: A survey. ACM Computing Surveys (CSUR), 45(3):35,
2013.

2. Jonathan F Donges, Jobst Heitzig, Boyan Beronov, Marc Wiedermann, Jakob
Runge, Qing Yi Feng, Liubov Tupikina, Veronika Stolbova, Reik V Donner, Nor-
bert Marwan, et al. Unified functional network and nonlinear time series analysis
for complex systems science: The pyunicorn package. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 25(11):113101, 2015.

3. J-P Eckmann, S Oliffson Kamphorst, and David Ruelle. Recurrence plots of dy-
namical systems. EPL (Europhysics Letters), 4(9):973, 1987.

4. Andries P Engelbrecht. Computational intelligence: an introduction. John Wiley
& Sons, 2007.

5. David E Goldberg. Genetic algorithms in search, optimization, and machine learn-
ing. 1989.

6. Momin Jamil and Xin-She Yang. A literature survey of benchmark functions for
global optimisation problems. International Journal of Mathematical Modelling
and Numerical Optimisation, 4(2):150–194, 2013.

7. Dervis Karaboga and Bahriye Basturk. A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (abc) algorithm. Journal of
global optimization, 39(3):459–471, 2007.

8. J Kennedy and R Eberhart. Particle swarm optimization. In Neural Networks,
1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–1948.
IEEE, 1995.

9. Norbert Marwan, M Carmen Romano, Marco Thiel, and Jürgen Kurths. Recur-
rence plots for the analysis of complex systems. Physics reports, 438(5-6):237–329,
2007.

10. Norbert Marwan, Niels Wessel, Udo Meyerfeldt, Alexander Schirdewan, and Jürgen
Kurths. Recurrence-plot-based measures of complexity and their application to
heart-rate-variability data. Physical review E, 66(2):026702, 2002.

11. Tobias Rawald, Mike Sips, and Norbert Marwan. Pyrqaconducting recurrence
quantification analysis on very long time series efficiently. Computers & Geo-
sciences, 104:101–108, 2017.

12. Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. Journal of global opti-
mization, 11(4):341–359, 1997.

13. Tomáš Vantuch, Ivan Zelinka, Andrew Adamatzky, and Norbert Marwan. Phase
transitions in swarm optimization algorithms. In International Conference on
Unconventional Computation and Natural Computation, pages 204–216. Springer,
2018.

14. Charles L Webber Jr and Joseph P Zbilut. Dynamical assessment of physiological
systems and states using recurrence plot strategies. Journal of applied physiology,
76(2):965–973, 1994.

Tracking the exploration and exploitation 11

15. Xin-She Yang. Firefly algorithm, stochastic test functions and design optimisation.
International Journal of Bio-Inspired Computation, 2(2):78–84, 2010.

16. Xin-She Yang. A new metaheuristic bat-inspired algorithm. In Nature inspired
cooperative strategies for optimization (NICSO 2010), pages 65–74. Springer, 2010.

