

1Abstract—Bat algorithm belongs to a class of swarm

intelligence algorithms. Comparing to the other stochastic

nature-inspired population-based algorithms, this has always

been considered as computationally inexpensive. Due to its

simplicity and effectiveness, it is very popular in scientific

community by solving various optimization problems.

However, not enough devotion has been performed on the

behaviour of this algorithm running on embedded hardware.

In this paper, we look for an answer about the performance of

bat algorithm running on three different Raspberry Pi devices

of limited performances. In line with this, we conduct a series

of experiments by solving the benchmark suite consisting of 10

functions. Because of achieving the similar quality of solutions

on all observed hardware, thus, the execution times have been

measured.

 Index Terms—Computational intelligence; Embedded

software; Evolutionary computation.

I. INTRODUCTION

Almost every day, the majority of human beings are faced

with solving of many optimization problems unconsciously

[1]. For instance, when we deal with money, resources or

when we travel around, we always search for those options

bringing us the highest benefit. In the real world, we can

easily make decision in order to find the best solution,

especially when we have a lot of information about the

particular problem. Simultaneously to this analogy,

scientists have been developing various algorithms for

solving optimization problems that are based on

mathematics, physics, chemistry, or biological principles.

Especially, stochastic population-based nature-inspired

algorithms are one of the more interesting algorithms that

solve optimization problems by mimicking natural

(biological) systems. Recently, there exists a lot of nature-

inspired algorithms that are brought together under the

umbrella of computational intelligence, CI [2]. For instance,

Firefly algorithm, Bat algorithm, Particle Swarm

Optimization, etc. are all the algorithms consisting of a set

of individuals (population) and governing by variation

operators (e.g. mutation, crossover, selection).

Time complexity of the nature-inspired optimization

algorithms is usually very high [3]. For that reason, we

Manuscript received 18 December, 2018; accepted 30 March, 2019.
The authors acknowledge the financial support from the Slovenian

Research Agency (Research Core Funding No. P2-0057).

usually have to run implementations of nature-inspired

algorithms on very special hardware. This special hardware

consists of many CPU cores that is equipped with big

amount of RAM. In line with this, some scientists use rather

other platforms for running their algorithms, e.g. grids or

clouds. Nowadays, it is very popular to run algorithms on

graphical processing units (GPUs) [4] or using FPGA [5],

[6]. On the other hand, some authors prefer also multi-

threaded techniques [7].

In contrary, some applications limit us from using

computationally powerful devices [8]. In current era, we

start to embed many Swarm Intelligence (SI) based

algorithms to the hardware (e.g., swarm robotics [9], [10]),

where very small single-board computers serve as agents in

a swarm [11]. The agents in robotic swarm communicate

and solve problems together. Here, many additional

challenges have been encountered, i.e.:

- How to implement CI algorithms for embedded

architectures?

- What are the main pitfalls in implementing CI

algorithms for such devices?

- Are there any specific programming languages intended

for these applications?

- Which CI algorithm is the most appropriate?

- How to communicate with other agents in environment?

The Raspberry Pi is considered as a very small single-

board computer developed by Raspberry Pi Foundation.

Initially, it was developed for the promotion of teaching the

computer science in the developing countries. However, this

community quickly found its efficiency and uses it for

various tasks, e.g. web servers, smart home applications, etc.

Inspired by our previous paper [12], where we tested the

implementation of bat algorithm on cheaper smartphones,

this paper goes a step further. Study in [12] revealed that

implementation of bat algorithm on smartphones achieves

almost near real-time performance when optimizing small-

scale problems. As a matter of fact, the modern even

cheaper smartphones are equipped with powerful processor

as well as abundance of RAM. This study showed that the

execution time of the program on smartphone is

approximately 10 times longer than on the PC. Due to their

weak robustness, we cannot apply some special swarm

robotics applications for running on smartphones [10]. For

that reason, we examine the Raspberry Pi devices and

Performance Study of Bat Algorithm Running
on Embedded Hardware

Iztok Jr. Fister 1, Grega Vrbancic1, Tomaz Hozjan2, Iztok Fister1, Vili Podgorelec1
1Faculty of Electrical Engineering and Computer Science, University of Maribor,

Koroska cesta 46, SI-2000 Maribor, Slovenia
2Faculty of Civil and Geodetic Engineering, University of Ljubljana,

Jamova 2, SI-1115 Ljubljana, Slovenia

iztok.fister1@um.si

978-1-7281-2209-0/19/$31.00 ©2019 IEEE

measure their performance when running bat algorithm

(BA) [13]. The results were then compared with the

implementations on smartphone and personal computer.

Indeed, the purpose of the paper was to obtain as much as

possible information about performances of the SI-based

algorithms on the Raspberry Pi hardware in order to

establish its adequacy for application in swarm robotics

[14].

Organization of this paper is as follows: Section II

describes basics of the BA. Implementation of the algorithm

is a subject of Section III. In Section IV, experiments and

results are discussed. The paper concludes with Section V,

where directions for the further work are also outlined.

II. BAT ALGORITHM

Bat algorithm (BA) is a stochastic population-based

nature-inspired algorithm. The roots of BA goes back to the

2010 when Yang initially presented this algorithm in [13].

As the majority of the nature-inspired algorithms, BA is also

inspired by biological/physical phenomenon, more precisely

by echolocation of micro-bats. In BA, each bat is

represented with a velocity
()t
iu and a location

()t
ix , in D-

dimensional search at iteration t. Based on the original paper

by Yang [13], the mathematical equations for updating the

locations
()t
ix and velocities

()t
iu can be written as:

 ()min max min ,if f f f b= + - (1)

 ()1 1 ,t t t
i i i ix x fu u - -

*= + - (2)

1 ,t t t

i i ix x u-= + (3)

where []0,1b Î is a random number drawn from a uniform

distribution. In addition, the loudness
()t
iA and pulse

emission rates
()t
ir can be varied during the iterations. For

the simplicity, we can use the following equations for

varying the loudness and pulse emission rates:

()1

,
t t

iiA Aa+
= (4)

 ()1 0 1 exp ,t
i ir r tg+ = - -é ùë û (5)

where 0 1a< < and 0g > are constants. Algorithm 1

depicts basic variant of BA, while Table I outlines the main

components of BA.

Algorithm 1: Canonical Bat Algorithm

Input: Bat population

Output: The best solution x_best and its

corresponding value.

01: initbat();

02: eval = evaluate_the_new_population;

03: fmin =

find_the_best_solution(xbest);{initialization}
04: while termination_condition_not_meet do

05: for I = 1 to Np do

06: y= generate_new_solution(xi);
07: if rand(0,1) > ri then

08: y= improve_the_best_solution(xbest)
09: end if {local search step}

10: fnew = evaluate_the_new_solution(y);

11: eval = eval + 1;

12: if fnew ≤ fi and N(0,1) < Ai then

13: xi = y; fi = fnew;
14: end if {save the best solution

conditionally}

15: fmin = find_the_best_solution(xbest);
16: end for

17: end while

III. IMPLEMENTATION ON RASPBERRY PI DEVICE

The Raspberry Pi is a fully featured credit-card sized

single-board computer, which is capable of performing

similar tasks like a standard desktop PC. Due to a great

success of the first revisions of the Raspberry Pi model A

and model B, some new models and new revisions of

existing models have been emerged recently (e.g., model

A+, model B+, etc.). Regardless of the improvements and

hardware upgrades of those models, the general design

remains the same across all models. In general, the

Raspberry Pi board contains a central and graphics

processing units, Random-Access Memory (RAM) chip, and

various interfaces and connectors for external devices. Some

of the interfaces and connectors are necessary for each

implementation, while the others are optional. Actually, all

of the Raspberry Pi models base on some version of

Broadcom system on a chip (SoC) and implement the ARM

architecture.

TABLE I. MAIN COMPONENTS OF THE BAT ALGORITHM.

Component Bat algorithm

initialization

Initialization of the parameters of the
algorithm and initial population is

conducted, while evaluation
determines the best solution xbest in

the population.

generate_new_solution

Virtual bats are moved in the search
space according to updating rules of

the Bat Algorithm.

local_search_step
The best solution is being improved

using random walk.

evaluate_the_new_solution
The evaluation of the new solution is

achieved.

save_the_best_solution_cond

itionaly

Conditional archiving of the best
solution takes place.

find_the_best_solution The current best solution is updated.

In our experiment, we used three different Raspberry Pi

models. The Raspberry Pi 3 Model B+ is the most powerful

one with Broadcom BCM2837B0 quad-core processor

running at 1.4 GHz, while the least powerful is the first

revision Raspberry Pi Model B with Broadcom BCM2835

single-core processor running at 700 Mhz. The Raspberry Pi

model A+ is sharing the same SoC as the model B+ while

the amount of RAM is halved to 512 MB. A more detailed

specification comparison is provided in Table II.

 (a) (b) (c)

Fig. 1. Presented as: a) is Raspberry Pi Model B revision 1; as b)
Raspberry Pi 3 Model B+; and as c) Raspberry Pi 3 Model A+.

TABLE II. DEVICES USED IN EXPERIMENT.

Device CPU Cores Freq RAM OS

Raspberry
Pi Model B

rev. 1

Broadcom
BCM2835

Single-
core

700
MHz

256
MB

Raspbian
OS

Raspberry
Pi 3 Model

B+

Broadcom
BCM2837

B0

Quad-
core

1.4
GHz

1 GB
Raspbian

OS

Raspberry
Pi 3 Model

A+

Broadcom
BCM2837

B0

Quad-
core

1.4
GHz

512
MB

Raspbian
OS

Smart-
phone

Qualcomm
MSM8212

Quad-
core

1.2
GHz

1 GB Android

Personal
computer

Intel(R)
Xeon(R)
E3-1240

Octa-
core

3.5
GHz

16.344
GB

Ubuntu
16.04.5

LTS

Fig. 2. Comparison of the total time between various platforms.

IV. EXPERIMENTS AND RESULTS

The purpose of our experimental work was to show that

the used Raspberry Pi platforms are appropriate not only for

running optimization algorithms, but also for embedding the

evolutionary and swarm intelligence algorithms into

hardware. In the experiments, we implemented the BA

algorithm in C++ programming language that was rewritten

from the main implementation of the BA in Matlab

programming language [13]. The same algorithm was run on

all five different platforms: Smartphone, PC, and three

different Raspberry Pi’s.

Parameter settings of the BA on all platforms were the

same, as follows: D = 10, NP = 10, MAX_RUNS = 25,

MAX_GEN = 1,000, A = 0.5, r = 0.5, Qmin = 0.0, Qmin = 1.0.

Let us mention that 10 well known benchmark functions

[15] are used in our study, i.e., Griewank, Rastrigin,

Rosenbrock, Ackley, Schwefel, De-Jong, Easom,

Michalewicz, Xin-She, and Zakharov. The quality of results

was measured according to the time needed for execution of

all the number of runs. The lower the time complexity, the

better the observed algorithm. Thus, the minimum,

maximum, mean, median, and standard deviation of time

values were taken into consideration.

As can be seen from the tables, the BA running on the PC

exposes the best results in the sense of the minimum time

complexity. The same algorithm is 10 times slower, when it

run on the smartphone. Interestingly, the time complexities

of the BA algorithm running the Raspberry Pi devices are

much higher comparing with the both already mentioned

implementations. Actually, the time complexity of the BA

algorithm running the Raspberry Pi Model A+ and B+ are

around 3.102 times higher than the time complexity on the

PC and around 103 times higher than the time complexity on

the Raspberry Pi Model B rev. 1. Interestingly, the time

complexity of this algorithm running on the Raspberry Pi

Model B+ is lower than by its counterpart the Raspberry Pi

Model A+.

The results of experiments are illustrated in Table III–

Table V, where five statistical measures obtained by the BA

running on various hardware devices are presented

according to the particular function. Additionally, the line

displaying the average values of each statistical measure are

included into the tables.

The same finding can be derived also from Fig. 2 that

represents the comparison of total times needed for one run

of the BA on the particular device.

As can be seen from the figure, the time complexity of the

BA running on the PC and smartphone is much lower than

those running on the Raspberry Pi devices. On the other

hand, the running the BA on these devices showed that they

are capable of running the stochastic nature-inspired

population-based algorithms as well.

V. CONCLUSIONS

Nowadays, stochastic nature-inspired population-based

algorithms running on disembodied computers (e.g., PCs)

reached their matured phase. The next challenge for these

algorithms is to embed them into the hardware, where these

act as agents devoted to solve particular problems.

In this study, we tried to solve the classical global

optimization problems on specific Raspberry Pi devices that

serve as hardware platforms for embedding the evolutionary

and SI-based algorithms. In line with this, a benchmark

consisting of 10 test functions were taken into consideration.

The experiments showed that the results of the same quality

as on the regular PC can be obtained also on these devices,

but in slightly longer time. However, this finding courage us

to speculate that the further development of these platforms

would ensure the stable infrastructure for using in

evolutionary and swarm robotics.

TABLE III. RESULTS OF BA IMPLEMENTATION ON SMARTPHONE AND PC.

Function
Smartphone Personal computer

tbest tworst tmean tmedian tstdev tbest tworst tmean tmedian tstdev

Griewank 0.4433 0.5028 0.4633 0.4611 0.0132 0.0472 0.0567 0.0478 0.0472 0.0017

Rastrigin 0.4288 0.4603 0.4393 0.4367 0.0072 0.0482 0.0614 0.0491 0.0485 0.0023

Rosenbrock 0.4670 0.5094 0.4796 0.4796 0.0094 0.0453 0.0578 0.0460 0.0456 0.0022

Ackley 0.4176 0.4593 0.4308 0.4283 0.0102 0.0479 0.0621 0.049 0.0488 0.0024

Schwefel 0.4336 0.4824 0.4461 0.4459 0.0094 0.0455 0.0601 0.0467 0.0463 0.0024

DeJong 0.4225 0.4616 0.432 0.4307 0.0074 0.0438 0.0571 0.0445 0.0439 0.0023

Easom 0.5153 0.5639 0.525 0.5238 0.0086 0.0487 0.0616 0.0499 0.0498 0.0023

Michalewicz 0.467 0.4998 0.4832 0.4851 0.0079 0.0412 0.0563 0.0424 0.042 0.0026

Xin-She 0.4229 0.4577 0.4366 0.436 0.0094 0.0462 0.0586 0.0467 0.0462 0.0022

Zakharov 0.4321 0.4684 0.4452 0.4438 0.0088 0.0452 0.0587 0.046 0.0457 0.0023

Average 0.0459 0.059 0.0468 0.0464 0.0023 0.445 0.4866 0.4581 0.4571 0.0092

TABLE IV. RESULTS OF BA IMPLEMENTATION ON RASPBERRY PI B AND B+.

Function
Raspberry Pi Model B rev. 1 Raspberry Pi Model B+ rev 3

tbest tworst tmean tmedian tstdev tbest tworst tmean tmedian tstdev

Griewank 52.7862 54.2845 53.3105 53.2109 0.2832 14.9474 17.0021 15.9906 16.0928 0.7456

Rastrigin 52.1841 53.8043 52.9292 52.8962 0.3061 14.6756 17.0661 16.381 16.6063 0.6498

Rosenbrock 51.7238 53.1704 52.2313 52.2185 0.2523 14.5413 17.1585 16.2178 16.5552 0.8656

Ackley 50.6798 52.0978 51.29 51.3175 0.2871 14.2913 16.8393 16.4064 16.6696 0.6057

Schwefel 51.291 52.9672 51.9528 51.9248 0.2993 16.4396 17.3308 17.1512 17.1645 0.1509

DeJong 48.5576 50.1524 49.2024 49.1363 0.2843 15.869 16.3194 16.1085 16.1053 0.0968

Easom 52.3973 53.5768 52.8189 52.7569 0.2813 14.9516 17.4873 17.0063 17.2707 0.6349

Michalewicz 60.0257 61.9097 60.7138 60.5764 0.4197 16.4578 19.2288 18.7262 18.99 0.6863

Xin-She 51.0384 52.1921 51.4968 51.5139 0.2668 14.8765 16.8788 16.6348 16.7006 0.3502

Zakharov 49.2344 49.9676 49.5778 49.5555 0.1873 14.2843 16.5936 16.2592 16.4686 0.5486

Average 51.9918 53.4123 52.5524 52.5107 0.2867 15.1334 17.1905 16.6882 16.8624 0.5334

TABLE V. RESULTS OF BA IMPLEMENTATION ON RASPBERRY PI
A+.

Function
Raspberry Pi Model A+ rev 3

tbest tworst tmean tmedian tstdev

Griewank 14.7891 15.2181 14.9349 14.9441 0.0837

Rastrigin 14.3215 14.6564 14.4855 14.4945 0.0801

Rosenbrock 14.4288 14.6636 14.5575 14.5474 0.0658

Ackley 14.1392 14.4392 14.28 14.2724 0.0713

Schwefel 14.5226 14.7979 14.6312 14.626 0.0632

DeJong 13.6351 13.9708 13.784 13.7693 0.0715

Easom 14.7127 14.9043 14.7818 14.7663 0.056

Michalewicz 16.1075 16.4426 16.2655 16.2599 0.0653

Xin-She 14.1612 14.4274 14.3157 14.3249 0.0703

Zakharov 13.8854 14.1794 14.0431 14.0354 0.059

Average 14.4703 14.77 14.6079 14.604 0.0686

REFERENCES

[1] C. R. Reeves, Modern heuristic techniques for combinatorial

problems. Advanced topics in computer science. Mc Graw-Hill, 1995.
[2] A. P. Engelbrecht, Fundamentals of computational swarm

intelligence. John Wiley & Sons, 2006.
[3] M. W. Krentel, “The complexity of optimization problems”, Journal

of computer and system sciences, vol. 36, no. 3, pp. 490–509, 1988.
DOI: 10.1016/0022-0000(88)90039-6.

[4] A. V. Husselmann, K. A. Hawick, “Parallel parametric optimization
with firefly algorithms on graphical processing units”, in Proc. Int.

Conf. on Genetic and Evolutionary Methods (GEM 2012), 2012,
pp. 77–83.

[5] M. El-Shafei, I. Ahmad, M. Gh Alfailakawi, “Implementation of
harmony search on embedded platform”, Microprocessors and

Microsystems, vol. 45, pp. 187–197, 2016. DOI:
10.1016/j.micpro.2016.05.003.

[6] M. El-Shafei, I. Ahmad, M. Gh Alfailakawi, “Hardware accelerator
for solving 0–1 knapsack problems using binaryharmony search”,

International Journal of Parallel, Emergent and Distributed Systems,
vol. 33, no. 1, pp. 87–102, 2018.
DOI: 10.1080/17445760.2017.1324025.

[7] D. Polap, K. Kesik, M. Wozniak, R. Damasevicius, “Parallel
technique for the metaheuristic algorithms usingdevoted local search
and manipulating the solutions space”, Applied Sciences, vol. 8, no. 2,
p. 25, 2018. DOI: 10.3390/app8020293.

[8] E. Mininno, F. Neri, F. Cupertino, D. Naso, “Compact differential
evolution”, IEEE Trans. Evolutionary Computation, vol. 15, no. 1,
pp. 32–54, 2011. DOI: 10.1109/TEVC.2010.2058120.

[9] N. Moustafa, A. Galvez, A. Iglesias, “A general-purpose hardware
robotic platform for swarm robotics”, In International Symposium on

Intelligent and Distributed Computing, pp. 259–271, 2018.
DOI: 10.1007/978-3-319-99626-4_23.

[10] P. Suarez et al., “Bat algorithm swarm robotics approach for dual

non-cooperative search with self-centered mode”, Intelligent Data

Engineering and Automated Learning (IDEAL 2018), 2018, pp. 201–

209. DOI: 10.1007/978-3-030-03496-2_23.
[11] P. Suarez, A. Iglesias, A. Galvez, “Make robots bebats: specializing

robotic swarms to the bat algorithm”, Swarm and Evolutionary

Computation, to be published. DOI: 10.1016/j.swevo.2018.01.005
[12] I. Jr. Fister, S. Deb, I. Fister, “Near real-time performance of

population-based nature-inspired algorithms on cheaper and older
smartphones”, Int. conf. soft computing and machine intelligence

(ISCMI 2018), Nairobi, Kenya, Kenya, pp. 12-16, 2018.
DOI: 10.1109/ISCMI.2018.8703236.

[13] X. S. Yang, “A new metaheuristic bat-inspired algorithm”, Nature

inspired cooperative strategies for optimization (NICSO 2010),
pp. 65–74, 2010. DOI: 10.1007/978-3-642-12538-6_6.

[14] A. E. Eiben, J. Smith, “From evolutionary computation to the
evolution of things”, Nature, vol. 521, pp. 476–482, 2015.
DOI: 10.1038/nature14544.

[15] M. Jamil, X.-S. Yang, “A literature survey of benchmark functions for

global optimization problems”, International Journal of Mathematical

Modelling and Numerical Optimisation (IJMMNO), vol. 4, no. 2,
2013. DOI: 10.1504/IJMMNO.2013.055204.

