
 
1Abstract—Bat algorithm belongs to a class of swarm 

intelligence algorithms. Comparing to the other stochastic 

nature-inspired population-based algorithms, this has always 

been considered as computationally inexpensive. Due to its 

simplicity and effectiveness, it is very popular in scientific 

community by solving various optimization problems. 

However, not enough devotion has been performed on the 

behaviour of this algorithm running on embedded hardware. 

In this paper, we look for an answer about the performance of 

bat algorithm running on three different Raspberry Pi devices 

of limited performances. In line with this, we conduct a series 

of experiments by solving the benchmark suite consisting of 10 

functions. Because of achieving the similar quality of solutions 

on all observed hardware, thus, the execution times have been 

measured. 

 
 Index Terms—Computational intelligence; Embedded 

software; Evolutionary computation. 

I. INTRODUCTION 

Almost every day, the majority of human beings are faced 

with solving of many optimization problems unconsciously 

[1]. For instance, when we deal with money, resources or 

when we travel around, we always search for those options 

bringing us the highest benefit. In the real world, we can 

easily make decision in order to find the best solution, 

especially when we have a lot of information about the 

particular problem. Simultaneously to this analogy, 

scientists have been developing various algorithms for 

solving optimization problems that are based on 

mathematics, physics, chemistry, or biological principles. 

Especially, stochastic population-based nature-inspired 

algorithms are one of the more interesting algorithms that 

solve optimization problems by mimicking natural 

(biological) systems. Recently, there exists a lot of nature-

inspired algorithms that are brought together under the 

umbrella of computational intelligence, CI [2]. For instance, 

Firefly algorithm, Bat algorithm, Particle Swarm 

Optimization, etc. are all the algorithms consisting of a set 

of individuals (population) and governing by variation 

operators (e.g. mutation, crossover, selection).  

Time complexity of the nature-inspired optimization 

algorithms is usually very high [3]. For that reason, we 
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usually have to run implementations of nature-inspired 

algorithms on very special hardware. This special hardware 

consists of many CPU cores that is equipped with big 

amount of RAM. In line with this, some scientists use rather 

other platforms for running their algorithms, e.g. grids or 

clouds. Nowadays, it is very popular to run algorithms on 

graphical processing units (GPUs) [4] or using FPGA [5], 

[6]. On the other hand, some authors prefer also multi-

threaded techniques [7]. 

In contrary, some applications limit us from using 

computationally powerful devices [8]. In current era, we 

start to embed many Swarm Intelligence (SI) based 

algorithms to the hardware (e.g., swarm robotics [9], [10]), 

where very small single-board computers serve as agents in 

a swarm [11]. The agents in robotic swarm communicate 

and solve problems together. Here, many additional 

challenges have been encountered, i.e.: 

- How to implement CI algorithms for embedded 

architectures? 

- What are the main pitfalls in implementing CI 

algorithms for such devices? 

- Are there any specific programming languages intended 

for these applications? 

- Which CI algorithm is the most appropriate? 

- How to communicate with other agents in environment? 

The Raspberry Pi is considered as a very small single-

board computer developed by Raspberry Pi Foundation. 

Initially, it was developed for the promotion of teaching the 

computer science in the developing countries. However, this 

community quickly found its efficiency and uses it for 

various tasks, e.g. web servers, smart home applications, etc. 

Inspired by our previous paper [12], where we tested the 

implementation of bat algorithm on cheaper smartphones, 

this paper goes a step further. Study in [12] revealed that 

implementation of bat algorithm on smartphones achieves 

almost near real-time performance when optimizing small-

scale problems. As a matter of fact, the modern even 

cheaper smartphones are equipped with powerful processor 

as well as abundance of RAM. This study showed that the 

execution time of the program on smartphone is 

approximately 10 times longer than on the PC. Due to their 

weak robustness, we cannot apply some special swarm 

robotics applications for running on smartphones [10]. For 

that reason, we examine the Raspberry Pi devices and 
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measure their performance when running bat algorithm 

(BA) [13]. The results were then compared with the 

implementations on smartphone and personal computer. 

Indeed, the purpose of the paper was to obtain as much as 

possible information about performances of the SI-based 

algorithms on the Raspberry Pi hardware in order to 

establish its adequacy for application in swarm robotics 

[14]. 

Organization of this paper is as follows: Section II 

describes basics of the BA. Implementation of the algorithm 

is a subject of Section III. In Section IV, experiments and 

results are discussed. The paper concludes with Section V, 

where directions for the further work are also outlined. 

II. BAT ALGORITHM 

Bat algorithm (BA) is a stochastic population-based 

nature-inspired algorithm. The roots of BA goes back to the 

2010 when Yang initially presented this algorithm in [13]. 

As the majority of the nature-inspired algorithms, BA is also 

inspired by biological/physical phenomenon, more precisely 

by echolocation of micro-bats. In BA, each bat is 

represented with a velocity 
( )t
iu  and a location 

( )t
ix , in D-

dimensional search at iteration t. Based on the original paper 

by Yang [13], the mathematical equations for updating the 

locations 
( )t
ix  and velocities 

( )t
iu  can be written as: 

 ( )min max min ,if f f f b= + -  (1) 

 ( )1 1 ,t t t
i i i ix x fu u - -

*= + -  (2) 

 
1 ,t t t

i i ix x u-= +  (3) 

where [ ]0,1b Î  is a random number drawn from a uniform 

distribution. In addition, the loudness 
( )t
iA  and pulse 

emission rates 
( )t
ir  can be varied during the iterations. For 

the simplicity, we can use the following equations for 

varying the loudness and pulse emission rates: 

 
( )1

,
t t

iiA Aa+
=  (4) 

 ( )1 0 1 exp ,t
i ir r tg+ = - -é ùë û  (5) 

where 0 1a< <  and 0g >  are constants. Algorithm 1 

depicts basic variant of BA, while Table I outlines the main 

components of BA. 

Algorithm 1: Canonical Bat Algorithm 

Input: Bat population  

Output: The best solution x_best and its 

corresponding value. 

01: initbat(); 

02: eval = evaluate_the_new_population; 

03: fmin = 

find_the_best_solution(xbest);{initialization} 
04: while termination_condition_not_meet do 

05: for I = 1 to Np do 

06:   y= generate_new_solution(xi); 
07:   if rand(0,1) > ri then 

08:   y= improve_the_best_solution(xbest) 
09:  end if {local search step} 

10:  fnew = evaluate_the_new_solution(y); 

11:  eval = eval + 1; 

12:  if fnew ≤ fi and N(0,1) < Ai then 

13:   xi = y; fi = fnew; 
14:  end if {save the best solution 

conditionally} 

15:  fmin = find_the_best_solution(xbest); 
16: end for 

17: end while 

III. IMPLEMENTATION ON RASPBERRY PI DEVICE 

The Raspberry Pi is a fully featured credit-card sized 

single-board computer, which is capable of performing 

similar tasks like a standard desktop PC. Due to a great 

success of the first revisions of the Raspberry Pi model A 

and model B, some new models and new revisions of 

existing models have been emerged recently (e.g., model 

A+, model B+, etc.). Regardless of the improvements and 

hardware upgrades of those models, the general design 

remains the same across all models. In general, the 

Raspberry Pi board contains a central and graphics 

processing units, Random-Access Memory (RAM) chip, and 

various interfaces and connectors for external devices. Some 

of the interfaces and connectors are necessary for each 

implementation, while the others are optional. Actually, all 

of the Raspberry Pi models base on some version of 

Broadcom system on a chip (SoC) and implement the ARM 

architecture. 

TABLE I. MAIN COMPONENTS OF THE BAT ALGORITHM. 

Component Bat algorithm 

initialization 

Initialization of the parameters of the 
algorithm and initial population is 

conducted, while evaluation 
determines the best solution xbest in 

the population. 

generate_new_solution 

Virtual bats are moved in the search 
space according to updating rules of 

the Bat Algorithm. 

local_search_step 
The best solution is being improved 

using random walk. 

evaluate_the_new_solution 
The evaluation of the new solution is 

achieved. 

save_the_best_solution_cond

itionaly 

Conditional archiving of the best 
solution takes place. 

find_the_best_solution The current best solution is updated. 

 

In our experiment, we used three different Raspberry Pi 

models. The Raspberry Pi 3 Model B+ is the most powerful 

one with Broadcom BCM2837B0 quad-core processor 

running at 1.4 GHz, while the least powerful is the first 

revision Raspberry Pi Model B with Broadcom BCM2835 

single-core processor running at 700 Mhz. The Raspberry Pi 

model A+ is sharing the same SoC as the model B+ while 

the amount of RAM is halved to 512 MB. A more detailed 

specification comparison is provided in Table II. 

 
                  (a)                              (b)                                           (c) 

Fig. 1.  Presented as: a) is Raspberry Pi Model B revision 1; as b) 
Raspberry Pi 3 Model B+; and as c) Raspberry Pi 3 Model A+. 



TABLE II. DEVICES USED IN EXPERIMENT. 

Device CPU Cores Freq RAM OS 

Raspberry 
Pi Model B 

rev. 1 

Broadcom 
BCM2835 

Single-
core 

700 
MHz 

256 
MB 

Raspbian 
OS 

Raspberry 
Pi 3 Model 

B+ 

Broadcom 
BCM2837

B0 

Quad-
core 

1.4 
GHz 

1 GB 
Raspbian 

OS 

Raspberry 
Pi 3 Model 

A+ 

Broadcom 
BCM2837

B0 

Quad-
core 

1.4 
GHz 

512 
MB 

Raspbian 
OS 

Smart-
phone 

Qualcomm 
MSM8212 

Quad-
core 

1.2 
GHz 

1 GB Android 

Personal 
computer 

Intel(R) 
Xeon(R) 
E3-1240 

Octa-
core 

3.5 
GHz 

16.344 
GB 

Ubuntu 
16.04.5 

LTS 

 
Fig. 2.  Comparison of the total time between various platforms. 

IV. EXPERIMENTS AND RESULTS 

The purpose of our experimental work was to show that 

the used Raspberry Pi platforms are appropriate not only for 

running optimization algorithms, but also for embedding the 

evolutionary and swarm intelligence algorithms into 

hardware. In the experiments, we implemented the BA 

algorithm in C++ programming language that was rewritten 

from the main implementation of the BA in Matlab 

programming language [13]. The same algorithm was run on 

all five different platforms: Smartphone, PC, and three 

different Raspberry Pi’s.  

Parameter settings of the BA on all platforms were the 

same, as follows: D = 10, NP = 10, MAX_RUNS = 25, 

MAX_GEN = 1,000, A = 0.5, r = 0.5, Qmin = 0.0, Qmin = 1.0. 

Let us mention that 10 well known benchmark functions 

[15] are used in our study, i.e., Griewank, Rastrigin, 

Rosenbrock, Ackley, Schwefel, De-Jong, Easom, 

Michalewicz, Xin-She, and Zakharov. The quality of results 

was measured according to the time needed for execution of 

all the number of runs. The lower the time complexity, the 

better the observed algorithm. Thus, the minimum, 

maximum, mean, median, and standard deviation of time 

values were taken into consideration. 

As can be seen from the tables, the BA running on the PC 

exposes the best results in the sense of the minimum time 

complexity. The same algorithm is 10 times slower, when it 

run on the smartphone. Interestingly, the time complexities 

of the BA algorithm running the Raspberry Pi devices are 

much higher comparing with the both already mentioned 

implementations. Actually, the time complexity of the BA 

algorithm running the Raspberry Pi Model A+ and B+ are 

around 3.102 times higher than the time complexity on the 

PC and around 103 times higher than the time complexity on 

the Raspberry Pi Model B rev. 1. Interestingly, the time 

complexity of this algorithm running on the Raspberry Pi 

Model B+ is lower than by its counterpart the Raspberry Pi 

Model A+. 

The results of experiments are illustrated in Table III–

Table V, where five statistical measures obtained by the BA 

running on various hardware devices are presented 

according to the particular function. Additionally, the line 

displaying the average values of each statistical measure are 

included into the tables. 

The same finding can be derived also from Fig. 2 that 

represents the comparison of total times needed for one run 

of the BA on the particular device. 

As can be seen from the figure, the time complexity of the 

BA running on the PC and smartphone is much lower than 

those running on the Raspberry Pi devices. On the other 

hand, the running the BA on these devices showed that they 

are capable of running the stochastic nature-inspired 

population-based algorithms as well. 

V. CONCLUSIONS 

Nowadays, stochastic nature-inspired population-based 

algorithms running on disembodied computers (e.g., PCs) 

reached their matured phase. The next challenge for these 

algorithms is to embed them into the hardware, where these 

act as agents devoted to solve particular problems. 

In this study, we tried to solve the classical global 

optimization problems on specific Raspberry Pi devices that 

serve as hardware platforms for embedding the evolutionary 

and SI-based algorithms. In line with this, a benchmark 

consisting of 10 test functions were taken into consideration. 

The experiments showed that the results of the same quality 

as on the regular PC can be obtained also on these devices, 

but in slightly longer time. However, this finding courage us 

to speculate that the further development of these platforms 

would ensure the stable infrastructure for using in 

evolutionary and swarm robotics. 

TABLE III. RESULTS OF BA IMPLEMENTATION ON SMARTPHONE AND PC. 

Function 
Smartphone  Personal computer 

tbest tworst tmean tmedian tstdev  tbest tworst tmean tmedian tstdev 

Griewank 0.4433 0.5028 0.4633 0.4611 0.0132  0.0472 0.0567 0.0478 0.0472 0.0017 

Rastrigin 0.4288 0.4603 0.4393 0.4367 0.0072  0.0482 0.0614 0.0491 0.0485 0.0023 

Rosenbrock 0.4670 0.5094 0.4796 0.4796 0.0094  0.0453 0.0578 0.0460 0.0456 0.0022 

Ackley 0.4176 0.4593 0.4308 0.4283 0.0102  0.0479 0.0621 0.049 0.0488 0.0024 

Schwefel 0.4336 0.4824 0.4461 0.4459 0.0094  0.0455 0.0601 0.0467 0.0463 0.0024 

DeJong 0.4225 0.4616 0.432 0.4307 0.0074  0.0438 0.0571 0.0445 0.0439 0.0023 

Easom 0.5153 0.5639 0.525 0.5238 0.0086  0.0487 0.0616 0.0499 0.0498 0.0023 

Michalewicz 0.467 0.4998 0.4832 0.4851 0.0079  0.0412 0.0563 0.0424 0.042 0.0026 

Xin-She 0.4229 0.4577 0.4366 0.436 0.0094  0.0462 0.0586 0.0467 0.0462 0.0022 

Zakharov 0.4321 0.4684 0.4452 0.4438 0.0088  0.0452 0.0587 0.046 0.0457 0.0023 

Average 0.0459 0.059 0.0468 0.0464 0.0023  0.445 0.4866 0.4581 0.4571 0.0092 



TABLE IV. RESULTS OF BA IMPLEMENTATION ON RASPBERRY PI B AND B+. 

Function 
Raspberry Pi Model B rev. 1  Raspberry Pi Model B+ rev 3 

tbest tworst tmean tmedian tstdev  tbest tworst tmean tmedian tstdev 

Griewank 52.7862 54.2845 53.3105 53.2109 0.2832  14.9474 17.0021 15.9906 16.0928 0.7456 

Rastrigin 52.1841 53.8043 52.9292 52.8962 0.3061  14.6756 17.0661 16.381 16.6063 0.6498 

Rosenbrock 51.7238 53.1704 52.2313 52.2185 0.2523  14.5413 17.1585 16.2178 16.5552 0.8656 

Ackley 50.6798 52.0978 51.29 51.3175 0.2871  14.2913 16.8393 16.4064 16.6696 0.6057 

Schwefel 51.291 52.9672 51.9528 51.9248 0.2993  16.4396 17.3308 17.1512 17.1645 0.1509 

DeJong 48.5576 50.1524 49.2024 49.1363 0.2843  15.869 16.3194 16.1085 16.1053 0.0968 

Easom 52.3973 53.5768 52.8189 52.7569 0.2813  14.9516 17.4873 17.0063 17.2707 0.6349 

Michalewicz 60.0257 61.9097 60.7138 60.5764 0.4197  16.4578 19.2288 18.7262 18.99 0.6863 

Xin-She 51.0384 52.1921 51.4968 51.5139 0.2668  14.8765 16.8788 16.6348 16.7006 0.3502 

Zakharov 49.2344 49.9676 49.5778 49.5555 0.1873  14.2843 16.5936 16.2592 16.4686 0.5486 

Average 51.9918 53.4123 52.5524 52.5107 0.2867  15.1334 17.1905 16.6882 16.8624 0.5334 

 

TABLE V. RESULTS OF BA IMPLEMENTATION ON RASPBERRY PI 
A+. 

Function 
Raspberry Pi Model A+ rev 3 

tbest tworst tmean tmedian tstdev 

Griewank 14.7891 15.2181 14.9349 14.9441 0.0837 

Rastrigin 14.3215 14.6564 14.4855 14.4945 0.0801 

Rosenbrock 14.4288 14.6636 14.5575 14.5474 0.0658 

Ackley 14.1392 14.4392 14.28 14.2724 0.0713 

Schwefel 14.5226 14.7979 14.6312 14.626 0.0632 

DeJong 13.6351 13.9708 13.784 13.7693 0.0715 

Easom 14.7127 14.9043 14.7818 14.7663 0.056 

Michalewicz 16.1075 16.4426 16.2655 16.2599 0.0653 

Xin-She 14.1612 14.4274 14.3157 14.3249 0.0703 

Zakharov 13.8854 14.1794 14.0431 14.0354 0.059 

Average 14.4703 14.77 14.6079 14.604 0.0686 
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