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a b s t r a c t 

Novelty search is a tool in evolutionary and swarm robotics for maintaining the diversity of 

population needed for continuous robotic operation. It enables nature-inspired algorithms 

to evaluate solutions on the basis of the distance to their k -nearest neighbors in the search 

space. Besides this, the fitness function represents an additional measure for evaluating 

the solution, with the purpose of preserving the so-named novelty solutions into the next 

generation. In this study, a differential evolution was hybridized with novelty search. The 

differential evolution is a well-known algorithm for global optimization, which is applied 

to improve the results obtained by the other solvers on the CEC-14 benchmark function 

suite. Furthermore, functions of different dimensions were taken into consideration, and 

the influence of the various novelty search parameters was analyzed. The results of exper- 

iments show a great potential for using novelty search in global optimization. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Successful applications of Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) based algorithms to almost every

domain of human activity have proven that the so-named family of nature-inspired algorithms has reached their matu-

rity phase, and, therefore, calls for new challenges. Several challenges have emerged with the development of Evolutionary

Robotics (ER) and Swarm Robotics (SR), where the nature-inspired algorithms are embedded into hardware [9] . Together

with the hardware, these algorithms act as autonomous artificial agents (robots) that are embodied into an environment

to solve a certain task, which can be mathematically formulated as an optimization problem. In this case, the quality of

the generated solutions cannot be evaluated in the phenotype space directly, but their estimation must be obtained after

observing how well the phenotype reacts in the conditions of the dynamic process governed by the environment. Therefore,

the traditional three-step fitness function evaluation chain, consisting of genotype-phenotype-fitness in Evolutionary Com-
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putation (EC), has been replaced by a four-step evaluation chain genotype-phenotype-behavior-fitness in nature-inspired 

robotics that comprise the ER and SR. 

However, the implementation of the nature-inspired algorithms into hardware, and the rapid development of nature-

inspired robotics has introduced new problems [9] . Selection pressure is one of the more serious issues, and directs the

search process towards the best solutions at the expense of losing the population diversity. Usually, the loss of population

diversity causes that the search process gets stuck into local optima. As a result, this phenomenon causes the evolution

process to terminate prematurely. Unfortunately, this is in contrast with the demands of an open-ended evolution [22] that

are a prerequisite for regular readiness of nature-inspired robots. In fact, these demands are subjects of Artificial Life (ALife)

that discover conditions under which the open-ended evolution can occur [25] . 

Multi-Objective Evolutionary Algorithms (MOEAs) [4] represent the biggest advantage of the nature-inspired algorithms, 

enabling the nature-inspired robotic community to tackle the selection pressure successfully [8] by evaluating each solution

according to more than one objective. This advantage is also exploited by Novelty Search (NS) that guides the evolutionary

search, using not only one fitness function, but also evaluates each solution according to its novelty. On the other hand, there

are two components of the evolutionary search process that have a huge effect on the population diversity, i.e., exploration

and exploitation. Črepinšek et al. in [30] expose three issues referring to these components: (1) Which components of EAs

contribute to the exploration/exploitation, (2) how to control, and (3) how to balance the exploration/exploitation in the

evolutionary search process. In the sense of this study, NS participates by overcoming the last two issues. 

NS was introduced by Lehman and Stanley [18] ; it was developed on the basis of acknowledging that the natural se-

lection does not always explain the increases in evolutionary complexity [27] . Usually, fitness function does not reward the

intermediate stepping stones leading the search process to the optimal solutions. Therefore, NS substitutes the fitness func-

tion with the novelty measure [7] , which gauges the distance of the novelty solutions to their k -th nearest neighbors in a

search space. Moreover, NS prevents a deception of objective functions and premature convergence [16] . In that case, it is

focused on direct search for novelty individuals, and does not wait for the search process to discover them on the fly. Since

2008, NS has been applied for solving a wide range of problems in different domains, like robot controllers [19] , multirobot

systems [15] , machine learning [24] , and games [21] . 

Interestingly, the open-ended paradigm is not the only one that does not completely agree with Darwinian evolution [3] .

For instance, the neutral theory of molecular evolution of Kimura [17] argues that the majority of mutations are neutral

at molecular level. Therefore, the evolutionary process is guided by genetic drift that can cause losing some genetic traits,

especially in smaller isolated populations. This theory represented an inspiration for the emergence of the so-called neutral

selection operator proposed in [12] , where the most distant solution from the mass center of a set of neutral solutions is

selected (i.e., solutions with the same fitness). 

This paper is actually an extension of the conference paper by Fister et al. [11] , which was applied for solving the CEC-

2014 function benchmark suite, where functions of dimension D = 10 were observed. On the other hand, the best parameter

setting for NS was searched using exhaustive search, where all combination of parameters were enumerated. The purpose of

the mentioned paper is to verify that NS can be applied successfully within nature-inspired algorithms. To the best of our

knowledge, few effort is invested into using it for solving the global optimization problems. Although NS could be applied

to any nature-inspired algorithm, we select a differential evolution (DE) [28] due to its global search abilities. In line with

this, two versions of the algorithm are hybridized with NS as follows: 

• The original DE [28] , denoted as nDE; 

• The self-adaptive jDE [1] , denoted as njDE. 

Although the NS was primarily applied in evolutionary robotics, both the proposed algorithms were not embodied into

hardware, but rather applied for solving the global optimization problems on a disembodied computer system. In this case,

performing a search for novelties is not possible in the behavior space, but in the phenotype space. Indeed, many points in

a phenotype space collapse to the same points in the behavior space. This means that the search for novelties can be per-

formed in a search space independently of environment conditions [18] . When we assume that the points in the phenotype

space are collapsed with points in the behavior space, running these algorithms on the disembodied computer system is

exactly the same as running on the embodied hardware. 

All algorithms used in our study were applied for solving the CEC-2014 benchmark suite. Thus, our motivation was to

show that the new DE algorithms, hybridized with NS, maintain higher population diversity, and, therefore, can improve

the results of their original counterparts. In order to justify this assertion, different dimensions of the testing function were

taken into consideration. Moreover, the NS is defined using various parameters very loosely, which demands that exten-

sive adjustment is needed before using it. This analysis highlights how the parameter settings influence the results of the

optimization. Furthermore, the results of the hybrid algorithms were compared with other state-of-the-art algorithms, like

L-Shade [29] (the winner of the CEC-2014 Competition on Real-Parameter Single Objective) and MVMO [10] , in order to

show that they could also be comparable with these. Finally, the obtained results are discussed in detail. 

The remainder of the paper is structured as follows. Section 2 refers to highlighting the background information. A

description of different DE variants hybridized with NS is presented in Section 3 . The results of experiments are illustrated

and discussed in Section 4 . Summarizing the performed work and outlining possible directions of the further work are the

subjects of the last section. 
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2. Background material 

This section is devoted to presenting the background information needed for understanding the subjects that follow. In

line with this, the following subjects are taken into consideration: 

• Differential evolution, 

• the self-adaptive Differential evolution, 

• Novelty search. 

The mentioned subjects are discussed in the remainder of the section. 

2.1. Differential evolution 

DE belongs to the class of stochastic nature-inspired population-based algorithms and is appropriate for solving contin-

uous, as well as discrete, optimization problems. DE was introduced by Storn and Price in 1997 [28] and, since then, many

DE variants have been proposed. The original DE algorithm is represented by real-valued vectors: 

x 

(t) 
i 

= (x (t) 
i, 1 

, x (t) 
i, 2 

, ..., x (t) 
i,D 

) , for i = 1 , . . . , NP , 

on which operators are applied, such as mutation, crossover, and selection. 

In the basic DE mutation, two solutions are selected randomly and their scaled difference is added to the third solution,

as follows: 

u 

(t) 
i 

= x 

(t) 
r0 

+ F . (x 

(t) 
r1 

− x 

(t) 
r2 

) , (1)

where F ∈ [0.1, 1.0] denotes the scaling factor that scales the magnitude of modification, while NP represents the population

size and r 0, r 1, r 2 are randomly selected values in the set { 1 , . . . , NP } . Note that the proposed interval of values for parameter

F was enforced in the DE community, although Price and Storn originally proposed the slightly different interval, i.e., F ∈ [0.0,

2.0]. 

The trial vector is built from parameter values copied from either i -th mutant vector generated by Eq. (1) or correspond-

ing i -th parent vector. Mathematically, the crossover can be expressed as follows: 

w 

(t) 
i, j 

= 

{
u 

(t) 
i, j 

, rand j (0 , 1) ≤ CR or j = j rand , 

x (t) 
i, j 

, otherwise , 
(2)

where rand j (0, 1) denotes the random value drawn from uniform distribution in interval [0,1], and CR ∈ [0.0, 1.0] controls the

fraction of parameters that are copied to the trial solution. The condition j = j rand , where the j rand is the randomly selected

position in the trial vector, ensures that this differs from the original solution x (t) 
i 

in at least one element. 

Mathematically, the selection can be expressed as follows: 

x 

(t+1) 
i 

= 

{
w 

(t) 
i 

, if f (w 

(t) 
i 

) ≤ f (x 

(t) 
i 

) , 

x 

(t) 
i 

, otherwise . 
(3)

The selection is usually called ‘one-to-one’, because trial and the corresponding i -th parent vector compete for surviving in

the next generation. However, the best among them according to the fitness function will survive. 

Crossover and mutation can be performed in several ways in DE. Therefore, a specific notation was introduced to describe

the varieties of these methods (also strategies), in general. For example, ‘rand/1/bin’ presented in Eq. (1) denotes that the

base vector is selected randomly, one vector difference is added to it, and the number of modified parameters in the trial

vector follows a binomial distribution. 

2.2. jDE algorithm 

In 2006, Brest et al. [1] proposed an efficient DE variant (jDE), where control parameters are self-adapted during the

search process. In this case, two parameters, namely scale factor F and crossover rate CR , are added to the representation

of every individual, and undergo operation of the variation operators. As a result, the individual in jDE is represented as

follows: 

x 

(t) 
i 

= (x (t) 
i, 1 

, x (t) 
i, 2 

, ..., x (t) 
i,D 

, F (t) 
i 

, CR 

(t) 
i 

) , for i = 1 , . . . , NP . 

The jDE modifies parameters F and CR according to the following equations: 

F (t+1) 
i 

= 

{
F l + rand 1 ∗ (F u − F l ) if rand 2 < τ1 , 

F (t) 
i 

otherwise , 
(4)

C R 

(t+1) 
i 

= 

{
rand 3 if rand 4 < τ2 , 

C R 

(t) 
i 

otherwise , 
(5)

where: rand i =1 , ... , 4 ∈ [0 , 1] are randomly generated values drawn from uniform distribution in the interval [0,1], τ 1 and τ 2

are learning steps, and F and F u are the lower and upper bounds for parameter F , respectively. 
l 
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Fig. 1. The new DE population model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Novelty search 

Originally, NS measures the mean distance between an individual x i from the population of solutions and k -th nearest

neighbors in a behavior space N (x i ) = { μ1 , . . . , μk } , in other words [18] : 

ρ(x i ) = 

1 

k 

k ∑ 

j=1 

dist (x i , μ j ) , and x i � = μ j , (6) 

where the k -th nearest neighbor is determined with respect to the behavior distance metric dist . The parameter k (neigh-

borhood size) is problem-dependent, and must be determined experimentally. The same is true also for the distance metric,

which must be selected according to the characteristics of the problem to be solved. 

In summary, NS is loosely defined and leaves to the developer’s imagination the decision how to tailor the search so that

the results will be as good as possible [7] . 

3. Proposed novelty differential evolution 

Indeed, introducing NS into DE/jDE requires the evaluation of solutions according to two conflicting objectives: (1) the

problem-dependent (i.e., fitness function), and (2) the population-diversity objective (NS). On the other hand, this modifica-

tion changes the way of problem handling. Instead of dealing with a problem as a single-objective, this is now treated as

multi-objective. However, NS needs to be adjusted, solving the problem of interest first. 

Then, the DE population model is modified as illustrated in Fig. 1 . The new DE population model acts as follows. Parallel

to the traditional DE ‘one-to-one’ selection, where a trial solution w i , obtained with the proper DE mutation strategy and DE

crossover, competes with corresponding original solution x i for surviving into the next generation, an archive of trial vectors

is created. Trial vectors are archived in two ways. Firstly, when the better trial solution is found, then the parent is normally

replaced in the DE population, while the trial is simultaneously stored on the first free position from top to bottom of the

archive. Secondly, when the trial solution is worse, this is not eliminated, but stored in the first free position from bottom to

top of the archive. Finally, the archive is divided into two parts, i.e., the higher, denoted as set A , contains solutions which

survived due to satisfying the first objective and the lower, denoted as set B, consists of eliminated solutions that do not

satisfy the first objective. 

Actually, the eliminated solutions in set B present the potential novelty solutions, from which the set of novelty solu-

tions C are selected according to the second objective. For each potential novelty solution x i ∈ B, its k -th nearest neighbors

N (x i ) = { μ1 , . . . , μk } are selected from the set of survivor solutions μ j ∈ A according to a behavior distance metric dist . The

behavior distance metric is calculated according to: 

dist (x i , μ j ) = 

{
d(x i , μ j ) 

σsh 
, d(x i , μ j ) > σsh , 

0 , otherwise , 
(7) 

where d ( x i , μj ) denotes the Euclidean distance between vectors x i and μj , and the novelty area width σ sh determines the

distance needed for recognizing the novelty solution. Actually, the best k solutions satisfying Eq. (7) are included into the
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k -th nearest neighborhood of vector x i , for which a NS metric ρ( x i ) is calculated according to Eq. (6) . All the solutions in

set B are then sorted in descending order according to the values of the NS metric. Finally, the first R solutions are included

into the C set of novelty solutions. 

The pseudo-code of the NS algorithm is illustrated in Algorithm 1 . 

Algorithm 1 NC within the original DE algorithm. 

1: procedure Novelty Search 

2: A = {∃ μi : f (w i ) ≤ f (x j ) ∧ i � = j} ; // set of survivor solutions 

3: B = {∃ x i : f (w i ) > f (x j ) ∧ i � = j} ; // set of eliminated solutions 

4: if |A| < k then // number of survivor solutions less than the neighborhood? 

5: A = A ∪ B; ~// increases the neighborhood set to the whole population 

6: end if 

7: ∀ x i ∈ B : ∃N (x i ) : μ j ∈ A ∧ x i � = μ j ∧ |N (x i ) | ≤ k ; // select k -nearest neighbors 

8: ∀ x i ∈ B : ρ(x i ) ; // calculate their novelty values 

9: C = {∀ (x i , x j ) ∈ B : max | ρ(x i ) − ρ(x j | ∧ i � = j ∧ |C| ≤ R } ; 
10: end procedure 

It is important to notice that NS is launched as the last operator in the traditional DE evolution cycle and, thus, affects

the complexity of the original DE substantially. As a matter of fact, the nDE/njDE introduces two new parameters: 

• Replacement size R ∈ [1, Np ] that limits the number of novelty solutions, 

• Learning rate parameter τ 3 ∈ [0, 1] that controls how often NS is launched within DE. 

In summary, nDE/njDE demand four new parameters: k , σ sh , τ 3 , and R . The complex dependencies between these pa-

rameters are analyzed in the next section. 

4. Experiments and results 

The original DE is known as a good global optimizer, insensitive to getting stuck into a local optima. Also, jDE has been

proven as an excellent tool for solving the global optimization problems [2] . Therefore, the primary challenge of this study

was to show that the behavior of these algorithms can even be improved by using the NS. The goals of our experimental

work were three-fold: 

• To find the optimal parameter settings for NC in nDE and njDE, 

• To show that both hybridized algorithms, nDE and njDE, improve the results of their original counterparts, 

• To show that these algorithms are also comparable with the other state-of-the-art algorithms, like L-Shade and MVMO. 

The DE parameters were configured as follows: the amplification factor of the difference vector F = 0 . 9 , and the crossover

control parameter CR = 0 . 5 . The mentioned values of parameters F and CR are used as starting values F (0) 
i 

and CR (0) 
i 

for

i = 1 , . . . , NP of the jDE algorithm. Let us notice that setting the parameter of the NS in both DE algorithms is a complex

task and, therefore, was the subject of extensive experiments explained in the remainder of the paper. The population

size was set to NP = 100 by all the DE algorithms in tests. It is a crucial size for population-based algorithms and has a

great influence on their performance. Therefore, the most appropriate value of this parameter was found after extensive

experiments that is valid for all the DE variants. 25 independent runs were launched per instance of each algorithm. 

Here, the results of the following DE variants were compared: DE, jDE, nDE, and njDE. In order to make the comparison

as fair as possible, the same number of fitness function evaluations (FEs) was considered as a termination condition in all

algorithms, although they originally use the number of generations for this purpose. 

The section is organized as follows. At first, the test suite of benchmark functions is described. Then, the measures

needed for estimating the quality of algorithms are discussed. Next, the PC configuration on which the experiments were

conducted is presented. Finally, the illustration of the results follows that is concluded with a discussion in which the

behavior of hybridized DE algorithms is analyzed in detail. 

4.1. Test suite 

The CEC 2014 test suite ( Table 1 ) consists of 30 benchmark functions that are divided into four classes: 

• Unimodal functions (1–3), 

• Simple multi-modal functions (4–16), 

• Hybrid functions (17–22), 

• Composition functions (23–30). 

Unimodal functions have a single global optimum and no local optima. Unimodal functions in this suite are non-separable

and rotated. Multi-modal functions are either separable or non-separable. In addition, they are also rotated and/or shifted.
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Table 1 

Summary of the CEC’14 test functions. 

No. Functions F ∗
i 

= F i (x ∗) 

Unimodal functions 1 Rotated High Conditioned Elliptic Function 100 

2 Rotated Bent Cigar Function 200 

3 Rotated Discus Function 300 

Simple Multimodal functions 4 Shifted and Rotated Rosenbrocks Function 400 

5 Shifted and Rotated Ackleys Function 500 

6 Shifted and Rotated Weierstrass Function 600 

7 Shifted and Rotated Griewanks Function 700 

8 Shifted Rastrigins Function 800 

9 Shifted and Rotated Rastrigins Function 900 

10 Shifted Schwefels Function 10 0 0 

11 Shifted and Rotated Schwefels Function 1100 

12 Shifted and Rotated Katsuura Function 1200 

13 Shifted and Rotated HappyCat Function 1300 

14 Shifted and Rotated HGBat Function 1400 

15 Shifted and Rotated Expanded Griewanks 1500 

plus Rosenbrocks Function 

16 Shifted and Rotated Expanded Scaffers F6 Function 1600 

Hybrid functions 17 Hybrid Function 1 ( N = 3 ) 1700 

18 Hybrid Function 2 ( N = 3 ) 1800 

19 Hybrid Function 3 ( N = 4 ) 1900 

20 Hybrid Function 4 ( N = 4 ) 20 0 0 

21 Hybrid Function 5 ( N = 5 ) 2100 

22 Hybrid Function 6 ( N = 5 ) 2200 

Composition functions 23 Composition Function 1 ( N = 5 ) 2300 

24 Composition Function 2 ( N = 3 ) 2400 

25 Composition Function 3 ( N = 3 ) 2500 

26 Composition Function 4 ( N = 5 ) 2600 

27 Composition Function 5 ( N = 5 ) 2700 

28 Composition Function 6 ( N = 5 ) 2800 

29 Composition Function 7 ( N = 3 ) 2900 

30 Composition Function 8 ( N = 3 ) 30 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To develop the hybrid functions, the variables are divided randomly into some subcomponents and then different basic

functions are used for different subcom ponents [20] . Com position functions consist of a sum of two or more basic functions.

In this suite, hybrid functions are used as the basic functions to construct composition functions. The characteristics of these

hybrid and composition functions depend on the characteristics of the basic functions. 

The functions of dimensions D = 10 , D = 20 , and D = 30 were used in our experiments. The search range of the problem

variables was limited to x i, j ∈ [ −100 , 100] . 

4.2. Measures for estimating the quality of algorithms 

The results from the algorithms were evaluated according to five standard statistical measures: Best , Worst , Mean , Median ,

and StDev values. Friedman tests [13] were conducted in order to estimate the quality of the results obtained by various

nature-inspired algorithms for global optimization statistically. The Friedman test is a two-way analysis of variances by

ranks, where the statistic test is calculated and converted to ranks in the first step. Thus, the null hypothesis is stated

assuming that medians between the ranks of all algorithms are equal. Here, a low value of rank means a better algorithm [6] .

The second step is performed only if a null hypothesis of a Friedman test is rejected. In this step, the post-hoc tests are

conducted using the calculated ranks. 

According to Demšar [5] , the Friedman test is a more safe and robust non-parametric test for comparisons of more

algorithms over multiple classifiers (also datasets) that, together with the corresponding Nemenyi post-hoc test, enables

a neat presentation of statistical results [26] . The main drawback of the Friedman test is that it makes whole multiple

comparisons over datasets and, therefore, it is unable to establish proper comparisons between some of the algorithms

considered [6] . Consequently, a Wilcoxon two paired non-parametric test is applied as a post-hoc test after determining the

control method (i.e., the algorithm with the lowest rank) by using the Friedman test. On the other hand, the Nemenyi test

is very conservative and it may not find any difference in most of the experimentations [14] . Therefore, the Nemenyi test is

used for graphical presentation of the results, while the Wilcoxon test shows which of the algorithms in the test are more

powerful. Both tests were conducted using a significance level of 0.05 in this study. 

4.3. PC configuration 

All runs were made on an IBM Lenovo using the following configurations: 
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Table 2 

The best results of the njDE obtained by optimization of CEC 2014 functions of dimension 

D = 20 . 

Func. Best Worst Mean Median StDev 

1 80.95E −12 16.33E −06 752.47E −09 13.99E −09 3.25E −06 

2 0 0 0 0 0 

3 0 56.84E −15 2.27E −15 0 11.37E −15 

4 161.47E −03 12.90E + 00 1.40E + 00 1.03E + 00 2.42E + 00 

5 19.23E + 00 20.07E + 00 20.02E + 00 20.05E + 00 164.16E −03 

6 0 1.96E + 00 600.11E −03 200.88E −03 545.07E −03 

7 0 7.40E −03 295.84E −06 0.0 0E + 0 0 1.48E −03 

8 0 0 0 0 0 

9 4.28E + 00 7.51E + 00 5.66E + 00 5.65E + 00 816.08E −03 

10 0 7.96E + 00 2.62E + 00 1.71E + 00 2.93E + 00 

11 84.81E + 00 439.20E + 00 274.89E + 00 280.39E + 00 78.37E + 00 

12 60.96E −03 112.87E −03 89.20E −03 92.03E −03 12.96E −03 

13 166.56E −03 283.28E −03 216.69E −03 205.85E −03 38.14E −03 

14 165.63E −03 396.04E −03 270.98E −03 275.17E −03 44.48E −03 

15 1.14E + 00 2.08E + 00 1.63E + 00 1.61E + 00 205.26E −03 

16 1.79E + 00 3.81E + 00 3.28E + 00 3.38E + 00 412.83E −03 

17 6.65E + 00 393.53E + 00 160.12E + 00 152.01E + 00 105.04E + 00 

18 2.46E + 00 11.45E + 00 5.44E + 00 4.59E + 00 2.42E + 00 

19 1.72E + 00 3.51E + 00 2.44E + 00 2.35E + 00 408.26E −03 

20 3.0 0E + 0 0 8.74E + 00 5.77E + 00 5.79E + 00 1.51E + 00 

21 1.38E + 00 267.19E + 00 92.54E + 00 87.30E + 00 75.19E + 00 

22 27.21E + 00 77.78E + 00 39.88E + 00 38.89E + 00 10.89E + 00 

23 330.06E + 00 330.06E + 00 330.06E + 00 330.06E + 00 58.02E −15 

24 209.28E + 00 213.65E + 00 209.97E + 00 209.67E + 00 947.52E −03 

25 203.44E + 00 205.31E + 00 203.87E + 00 203.75E + 00 432.05E −03 

26 10 0.16E + 0 0 10 0.31E + 0 0 10 0.24E + 0 0 10 0.23E + 0 0 34.62E −03 

27 30 0.0 0E + 0 0 40 0.76E + 0 0 385.61E + 00 40 0.34E + 0 0 29.01E + 00 

28 550.51E + 00 766.44E + 00 686.73E + 00 668.29E + 00 61.11E + 00 

29 240.26E + 00 356.60E + 00 275.59E + 00 249.38E + 00 43.18E + 00 

30 490.42E + 00 984.32E + 00 725.08E + 00 719.74E + 00 153.43E + 00 

 

 

 

 

 

 

 

 

1. Processor - Intel Core i5-7400 3.00 GHz × 4 

2. RAM - 8 GB 

3. Operating system - Linux Mint 19 Cinnamon 

All versions of the tested algorithms were implemented within the Eclipse Photon CDT Framework. 

4.4. Results 

The results of our experimental work are assembled into four subsections, as follows: 

• The results of the best njDE run by optimizing the function benchmark suite of dimension D = 20 , 

• Searching for the best parameter setup, 

• Comparing with the state-of-the-art algorithms, 

• Discussion. 

In the remainder of the paper, the results of the mentioned experiments are presented in detail. 

4.4.1. The results of the best run 

The results of the best run obtained by optimizing the CEC 2014 function benchmark suite of dimension D = 20 are

illustrated in Table 2 . 

Although the functions of three different dimensions were taken into consideration, there only this dimension is selected

due to the limitation of the paper length. Thus, the best results were obtained by the following parameter setting: σsh = 10 ,

k = 15 , R = 1 , and τ3 = 0 . 1 . However, this setting was found after extensive experimental work, as described in the next

subsections. 

As can be seen from Table 2 , the results are observed according to the five standard statistical measures and each of the

30 functions in the benchmark. 

4.4.2. Searching for the best parameter setup 

The purpose of this experiment was to find the complex relations between the parameters introduced by the NS. There

are four new parameters, as follows: the novelty area width σ sh , neighborhood size k , replacement size R , and the learning

rate τ . Two hybridized DE algorithms were included into this test, i.e., nDE, and njDE. In line with this, four experiments
3 
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Table 3 

The statistical analysis of the results obtained by nDE/njDE according to parameter σ sh . 

D σ sh nDE njDE 

Fri. Nemenyi Wilcoxon Fri. Nemenyi Wilcoxon 

CD S. p -value S. CD S. p -value S. 

10 5 3.52 [3.21,3.83] 0.00964 † 3.27 [2.96,3.58] ‡ ∞ ‡ 

10 3.63 [3.32,3.94] 0.00181 † 3.64 [3.33,3.95] 0.05592 

20 3.62 [3.31,3.93] 0.00122 † 3.5 [3.19,3.81] 0.01255 † 

30 3.86 [3.55,4.17] † 0.0 0 036 † 3.8 [3.49,4.11] 0.00107 † 

40 3.39 [3.08,3.70] 0.0197 † 3.58 [3.27,3.89] 0.0 0 056 † 

50 3.17 [2.86,3.48] ‡ ∞ ‡ 3.64 [3.33,3.95] 0.04363 † 

20 5 3.65 [3.34,3.96] 0.06301 3.45 [3.14,3.76] 0.00391 † 

10 3.8 [3.49,4.11] 0.00368 † 3.28 [2.97,3.59] ‡ ∞ ‡ 

20 3.23 [2.92,3.54] ‡ ∞ ‡ 3.77 [3.46,4.08] 0.01101 † 

30 3.39 [3.08,3.70] 0.02938 † 3.53 [3.22,3.84] 0.00570 † 

40 3.58 [3.27,3.89] 0.00604 † 3.54 [3.23,3.85] 0.00621 † 

50 3.54 [3.23,3.85] 0.03836 † 3.73 [3.42,4.04] 0.00427 † 

30 5 3.42 [3.11,3.73] 0.02872 † 3.6 [3.29,3.91] 0.01463 † 

10 3.37 [3.06,3.68] 0.20327 3.24 [2.93,3.55] ‡ ∞ ‡ 

20 3.38 [3.07,3.69] 0.20897 3.30 [2.99,3.61] 0.07215 

30 3.29 [2.98,3.60] ‡ ∞ ‡ 3.90 [3.59,4.21] 0 † 

40 3.68 [3.37,3.99] 0.017 † 3.90 [3.59,4.21] 0 † 

50 3.68 [3.37,3.99] 0.017 † 3.90 [3.59,4.21] 0 † 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

were performed for each of the algorithms, in which three parameters are fixed, while the remaining one is varied in a

predefined interval of feasible values. When the best value of each parameter is found and set as default for the next

experiment, it can be assumed that a good approximation of the best parameter setting has been found. In this case, new

knowledge about the behavior of the specific parameter was discovered in each experiment. 

In the remainder of the paper, the influence of the specific NS parameter is analyzed in detail. 

Influence of the novelty area width σsh . In the first test, the influence of the novelty area width σ sh on the results of

the optimization was discovered. Indeed, this parameter determines how far away the solution in set A must be from the

observed solution in set B that the former can be included into the neighborhood of the latter and, thus, declared as the

novelty. This parameter is very problem-specific and, therefore, finding its proper value is a subject of extensive tests. 

In our study, the parameter was varied in the interval σsh = { 5 , 10 , 20 , 30 , 40 , 50 } for each of the three observed dimen-

sions. For both proposed algorithms, the other three NS parameters were fixed as follows: k = 10 , R = 1 , and τ3 = 0 . 1 . In

summary, there was 6 × 25 × 3 × 2 = 900 total runs of hybridized DE algorithms necessary. 

The results of the experiment are illustrated in Table 3 that is divided into two parts corresponding to each of the

observed hybridized DE algorithms. Each part is divided according to different dimensions. The results in the table present

ranks obtained after the Friedman test and two corresponding post-hoc tests, i.e., Nemenyi, and Wilcoxon. Let us notice that

the control algorithms are denoted in the table with a double dagger sign (’ ‡ ’), while the statistical significance between the

control and the observed algorithms with one dagger (’ † ’). 

From the table, it can be seen that the best results (denoted in bold case) of the nDE were obtained by σsh = 50 , σsh =
20 , and σsh = 30 by solving the functions of dimensions D = 10 , D = 20 , and D = 30 , respectively. The situation is slightly

different for the njDE, where the lower values of σsh = 5 , σsh = 10 , and σsh = 10 are necessary for obtaining the best results

by solving the functions of the same dimensions. 

Influence of the neighborhood size k. In the second experiment, the influence of the neighborhood size k was expe-

rienced. Also this parameter has a crucial impact on the results of the optimization. Obviously, its proper value was deter-

mined after huge experimental work. In line with this, the parameter was varied in the interval k = { 5 , 10 , 15 , 20 , 30 , 50 } ,
two parameters were fixed as R = 1 , and τ3 = 0 . 1 , while the best values of parameter σ sh , found in the last experiment,

were applied to the observed hybrid DE algorithms. In summary, we also needed to conduct 6 × 25 × 3 × 2 = 900 the total

independent runs. 

The results of the experiments are aggregated in Table 4 , where they are presented as ranks obtained after the Friedman

statistical test as well as corresponding results of the Nemenyi and Wilcoxon post-hoc statistical tests obtained after solving

the benchmark functions of three observed dimensions. 

Interestingly, the results show that the best neighborhood sizes for nDE are k = 10 , k = 15 , and k = 5 , when solving the

benchmark functions of the dimensions D = 10 , D = 20 , and D = 30 , respectively, and for njDE k = 10 , k = 15 , and k = 15 ,

when solving the benchmark functions of the same dimensions. Let us mention that the best results are presented in bold

in the table. It seems that both the hybrid DE algorithms do not allow large neighborhoods. 

Influence of the replacement size R. The third experiment was dedicated for recognizing the influence of the param-

eter replacement size R on the results of the observed hybrid DE algorithms. This parameter determines the number of

novelty solutions by replacing the original solutions. In this test, the values of the parameter were varied in the interval
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Table 4 

The statistical analysis of the results obtained by nDE/njDE according to parameter k . 

D k nDE njDE 

Fri. Nemenyi Wilcoxon Fri. Nemenyi Wilcoxon 

CD S. p -value S. CD S. p -value S. 

10 5 3.28 [2.97,3.59] 0.18141 3.3 [2.99,3.61] 0.119 

10 3.27 [2.96,3.58] ‡ ∞ ‡ 3.15 [2.84,3.46] ‡ ∞ ‡ 

15 3.58 [3.27,3.89] 0.05938 3.56 [3.25,3.87] 0.01578 † 

20 3.48 [3.17,3.79] 0.08851 3.8 [3.49,4.11] † 4.00E −05 † 

30 3.32 [3.01,3.63] 0.30854 3.36 [3.05,3.67] 0.00272 † 

50 3.66 [3.35,3.97] 0.00139 † 3.53 [3.22,3.84] 0.00154 † 

20 5 3.61 [3.30,3.92] 0.03005 † 3.79 [3.48,4.10] † 0.00114 † 

10 3.48 [3.17,3.79] 0.0951 3.28 [2.97,3.59] 0.08851 

15 3.40 [3.09,3.71] ‡ ∞ ‡ 3.18 [2.87,3.49] ‡ ∞ ‡ 

20 3.54 [3.23,3.85] 0.15866 3.58 [3.27,3.89] 5.00E −05 † 

30 3.47 [3.16,3.78] 0.17619 3.46 [3.15,3.77] 0.01287 † 

50 3.56 [3.25,3.87] 0.03362 † 3.52 [3.21,3.83] 0.02559 † 

30 5 3.42 [3.11,3.73] ‡ ∞ ‡ 3.39 [3.08,3.70] † 0.03074 † 

10 3.51 [3.20,3.82] 0.16853 3.45 [3.14,3.76] 0.02222 † 

15 3.60 [3.29,3.91] 0.01463 † 3.38 [3.07,3.69] ‡ ∞ ‡ 

20 3.54 [3.23,3.85] 0.12924 3.47 [3.16,3.78] 6.95E −03 † 

30 3.55 [3.24,3.86] 0.04746 † 3.6 [3.29,3.91] 0.00159 † 

50 3.62 [3.31,3.93] 0.10383 3.59 [3.28,3.90] 0.00798 † 

Table 5 

The statistical analysis of the results obtained by nDE/njDE according to parameter R . 

D R nDE njDE 

Fri. Nemenyi Wilcoxon Fri. Nemenyi Wilcoxon 

CD S. p -value S. CD S. p -value S. 

10 1 3.42 [3.11,3.73] 0.03144 † 1.78 [1.47,2.09] 0.02619 † 

2 3.92 [3.61,4.23] † 4.70E-04 † 2.11 [1.80,2.42] 1.50E −04 † 

5 3.73 [3.42,4.04] † 0.00256 † 1.67 [1.36,1.98] ‡ ∞ ‡ 

10 3.55 [3.24,3.86] 0.00226 † 2.23 [1.92,2.54] 0.00187 † 

20 3.45 [3.14,3.76] 0.08076 2.89 [2.58,3.20] † 0 † 

50 3.11 [2.80,3.42] ‡ ∞ ‡ 4.33 [4.02,4.64] † 0 † 

20 1 2.98 [2.67,3.29] 0.01255 † 2.20 [1.89,2.51] ‡ ∞ ‡ 

2 3.22 [2.91,3.53] 2.81E-02 † 2.58 [2.27,2.89] 0.04006 † 

5 2.84 [2.53,3.15] ‡ ∞ ‡ 2.59 [2.28,2.90] 0.0028 † 

10 3.09 [2.78,3.40] 0.09012 2.54 [2.23,2.85] 0.0 0 062 † 

20 3.01 [2.70,3.32] 0.11123 3.05 [2.74,3.36] † 0 † 

50 3.82 [3.51,4.13] † 0 † 4.15 [3.84,4.46] † 0 † 

30 1 3.25 [2.94,3.56] ‡ ∞ ‡ 2.79 [2.48,3.10] 0.04846 † 

2 3.25 [2.94,3.56] n/a n/a 2.81 [2.50,3.12] 0.10749 

5 3.25 [2.94,3.56] n/a n/a 2.92 [2.61,3.23] 0.06944 

10 3.25 [2.94,3.56] n/a n/a 2.64 [2.33,2.95] ‡ ∞ ‡ 

20 3.25 [2.94,3.56] n/a n/a 3.08 [2.77,3.39] 0 † 

50 3.55 [3.24,3.86] † 0.05592 3.88 [3.57,4.19] † 0 † 

 

 

 

 

 

 

 

 

 

 

 

 

R = { 1 , 2 , 5 , 10 , 20 , 50 } , the best values of parameters σ sh and k found in the previous test serve as default while the learning

rate was fixed to τ3 = 0 . 1 . Thus, the number of independent runs was retained at the same level, i.e., 6 × 25 × 3 × 2 = 900 . 

The results of the statistical analysis are accumulated in Table 5 , where they are divided according to the corresponding

hybrid DE algorithms and dimensions of the benchmark functions. However, the Friedman statistical tests, together with

Nemenyi and Wilcoxon post-hoc statistical tests, are used for evaluation of the algorithm quality. For nDE, the values R = 50 ,

R = 5 , and R = 1 demonstrate the best replacement sizes by optimizing the benchmark functions of dimensions D = 10 ,

D = 20 , and D = 30 , respectively, while R = 5 , R = 1 , and R = 10 are the best values for the njDE by solving the functions

of the same dimensions. Interestingly, the results obtained by the nDE using the replacement size from R = 1 to R = 20 by

solving the functions of dimension D = 30 demonstrate the same results. This means that the values of the Wilcoxon post-

hoc statistical test are not applicable as designated with sign ‘n/a’ in the table. The reason for this phenomenon is dealt

with in the discussion later in the paper. 

Influence of the learning rate τ3 . The last experiment deals with the influence of the learning rate τ 3 on the results of

the hybrid DE algorithms. The parameter controls the number of applications of the NS within the nDE/njDE algorithms, and

also has a crucial impact on the results of the optimization. Its appropriate value was found after extensive experimental
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Table 6 

The statistical analysis of the results obtained by nDE/njDE according to parameter τ 3 . 

D τ 3 nDE njDE 

Fri. Nemenyi Wilcoxon Fri. Nemenyi Wilcoxon 

CD S. p -value S. CD S. p -value S. 

10 0.0 3.34 [3.03,3.65] 0.01743 † 3.72 [3.41,4.03] † 0 † 

0.1 3.09 [2.78,3.40] ‡ ∞ ‡ 2.59 [2.28,2.90] ‡ ∞ ‡ 

0.2 3.85 [3.54,4.16] † 0.0 0 030 † 3.04 [2.73,3.35] 5.00E −05 † 

0.3 3.56 [3.25,3.87] 0.01426 † 3.28 [2.97,3.59] 0 † 

0.4 3.64 [3.33,3.95] 0.00776 † 3.61 [3.30,3.92] † 0 † 

0.5 3.16 [2.85,3.47] 0.04551 † 4.34 [4.03,4.65] † 0 † 

20 0.0 3.56 [3.25,3.87] 0.03288 † 3.86 [3.55,4.17] † 5.00E −05 † 

0.1 3.42 [3.11,3.73] 0.02442 † 3.01 [2.70,3.32] ‡ ∞ ‡ 

0.2 3.73 [3.42,4.04] 0.0 0 064 † 3.48 [3.17,3.79] 0.02680 † 

0.3 3.45 [3.14,3.76] 0.10204 3.31 [3.00,3.62] 0.08226 

0.4 3.62 [3.31,3.93] 0.07493 3.2 [2.89,3.51] 0.00427 † 

0.5 3.28 [2.97,3.59] ‡ ∞ ‡ 3.35 [3.04,3.66] 0.02118 † 

30 0.0 3.26 [2.95,3.57] ‡ ∞ ‡ 3.42 [3.11,3.73] † 3.00E −05 † 

0.1 3.50 [3.19,3.81] 0.04363 † 2.63 [2.32,2.94] ‡ ∞ ‡ 

0.2 3.70 [3.39,4.01] 0.04947 † 2.91 [2.60,3.22] 0 † 

0.3 3.73 [3.42,4.04] 0.01539 † 3.22 [2.91,3.53] 0 † 

0.4 3.82 [3.51,4.13] 0.0 0 011 † 3.85 [3.54,4.16] 0 † 

0.5 3.89 [3.58,4.20] † 0.00866 † 4.25 [3.94,4.56] 0 † 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

work, where the best parameter settings, as found in the previous three experiments, were set as default for σ sh , k , and R .

In order to understand better the behavior of the algorithms based on the parameter, the learning rate was varied in the

interval τ3 = { 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 } . This means that there the total 5 × 25 × 3 × 2 = 750 independent runs of the hybrid DE

algorithms needed to be conducted. 

The results of the statistical analysis are presented in Table 6 , where, besides the five mentioned instances, also the

instance of algorithms by using τ3 = 0 . 0 is included. Actually, this instance presents the original DE/jDE, where the NS was

switched off. 

As can be seen in the table, the best values of the parameter are τ3 = 0 . 1 , τ3 = 0 . 5 , and τ3 = 0 . 0 for nDE by optimizing

the functions of dimensions D = 10 , D = 20 , and D = 30 , respectively. On the other hand, the value τ3 = 0 . 1 represents

the best parameter setting for optimizing functions of all dimensions by the njDE. Let us notice that the results of the

original DE improve the results obtained using the nDE by optimizing the functions of dimension D = 30 . However, this is a

consequence of the phenomenon discussed in the last paragraph. 

4.4.3. Comparative analysis 

In this subsection, two comparative analyses were conducted, as follows: 

• Comparing the nDE/njDE algorithms with their original counterparts DE/jDE, 

• Comparing the best results obtained by the nDE/njDE algorithms in the last study with the other state-of-the-art algo-

rithms, like L-SHADE and MVMO. 

Thus, the purpose of the first comparative study was to show that the hybridization with NS improves the results of the

original DE/jDE. In line with this, the results of different instances of the nDE and njDE are compared with their original

counterparts by solving the functions of the dimensions D = 10 , D = 20 , and D = 30 . The obtained results are evaluated by

ranks obtained after the Friedman non-parametric statistical tests and their corresponding Nemenyi post-hoc tests. 

The results of comparing the nDE and njDE algorithms obtained by varying neighborhood size N ∈ {5, 10, 15, 20, 30, 50}

with the results of the original DE and jDE by solving benchmark functions of dimension D = 30 are presented in Fig. 2 (a).

From Fig. 2 , it can be seen that nDE improves the result of its hybrid counterpart, but not also the results of the jDE and

njDE, while the results of njDE by all the other instances are substantially better than the results of the original DE and

njDE algorithms ( Fig. 2 (b)). 

Figs. 2 (c)–2 (d) illustrates the results of the nDE and njDE instances obtained by varying the replacement size R ∈ {1, 2,

5, 10, 20, 50} that are compared with the original DE algorithms by solving the functions of dimension D = 10 . As can be

seen from Fig. 2 (c), the nDE instances with replacement size R = 1 and R = 50 outperform the results of the original DE, but

these were worse than those obtained by the jDE. 

The other instances of the nDE algorithm are not comparable with the original DE. On the other hand, the njDE instance

with replacement size R = 5 outperforms significantly the results obtained by the original DE and jDE. In summary, the njDE

instances of the lower replacement sizes R ≤ 10 are all comparable with the results of the original DE and jDE, while the

results are worse, when the replacement sizes are increased (i.e., R ≥ 20). 

The results of the nDE and njDE instances obtained by varying the learning rate from the set τ 3 ∈ {0.0, 0.1, 0.2, 0.3, 0.4,

0.5} compared with the original DE (i.e., nDE instance with τ = 0 . 0 ) and jDE are also very interesting as can be seen
3 
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Fig. 2. The results of the Friedman non-parametric statistical tests. Top: nDE-variants by D = 30 . Middle: nDE-variants by D = 10 . Bottom: njDE-variants by 

D = 20 . 

 

 

 

 

in Figs. 2 (e)–2 (f). In Fig. 2 (e), the best nDE instance with τ3 = 0 . 5 is the only one, whose results are not significantly

worse when compare with the jDE. The situation is changed entirely, when the njDE algorithm is taken into considera-

tion ( Fig. 2 (f)). Thus, the results of the njDE are comparable with those obtained by jDE by two instances, i.e., τ3 = 0 . 1 and

τ3 = 0 . 4 . In contrast, the original DE exposes the results that are significantly worse than those obtained by the three best

algorithms in the comparative study. 
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Fig. 3. Comparison with the state-of-the-art algorithms. Top: D = 10 , Bottom: D = 30 . 

Table 7 

The best parameter setting by nDE/njDE. 

Dimension nDE njDE 

σ sh N R τ 3 σ sh N R τ 3 

10 50 10 50 0.1 5 10 5 0.1 

20 20 5 15 0.1 10 15 1 0.1 

30 30 5 10 0.1 10 15 10 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The purpose of the second comparative study was to show that the results of the best njDE instance are also comparable

with the results of the other state-of-the-art algorithms, like L-SHADE and MVMO. The results are also evaluated according

to the results obtained after the Nemenyi post-hoc statistical tests and depicted in Fig. 3 , where the former represents the

results obtained by solving the functions of dimension D = 10 , while the latter by solving the functions of dimension D = 30 .

As can be seen from Fig. 3 (a), the results of the L-SHADE are significantly better than those obtained by all the other

algorithms in this comparative study. Moreover, the results of the MVMO are also significantly better than those obtained by

the other algorithms except the njDE. The situation is slightly changed in Fig. 3 (b), where the reported results of L-SHADE

still remain the hard nut to crack for all the other algorithms in the test, while the difference between the results of the

MVMO and the other algorithms become smaller. 

4.4.4. Discussion 

The results of our experimental work can be summarized in three findings, as follows: 

• We tried to find the best parameter settings using the systematic search that are assembled in Table 7 with regard to

different dimensions and different hybrid DE algorithms. 

Although we established that varying the parameter R within the nDE by solving the functions of dimension D = 30 does

not have any influence on the results of the optimization, they definitely showed that this problem becomes too complex

for the observed instances of the nDE. 

• In general, the results of the original DE can always be improved by the results of the nDE. Additionally, the results

achieved by the original jDE can be outperformed with the results obtained by the njDE. The exception presents instances

of nDE when solving the benchmark functions of dimension D = 30 . 

• Comparison with the state-of-the-art algorithms showed that the results of the njDE are comparable with the results of

the MVMO when solving the benchmark functions of dimension D = 10 as well as D = 30 . Moreover, it is possible to find

such parameter setting using an exhaustive search, with which the former is even capable of overcoming the results of

the latter when solving the benchmark functions of dimension D = 10 , as shown by Fister et al. in [11] . 

After performing an analysis of the experimental results, we were confronted with the following two issues: 

• Why have the problems arisen with nDE instances when optimizing the benchmark functions of dimension D = 30 ? 

• How does the NS affect the population diversity within the nDE/njDE algorithms during the optimization process and

indirectly on the quality of the solutions? 

In line with this, two additional tests were conducted, as follows: 
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Fig. 4. The number of injected novelty solutions in one run. Top: nDE, Bottom: njDE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Counting the number of injected novelty solutions, 

• Evaluating the influence of the population diversity. 

The former answers the question of how the number of injected novelty solutions depends on the specific benchmark

functions, while the latter the question of how the population diversity is changed during the optimization process. In the

remainder of the paper, the mentioned tests are presented in detail. 

Counting the number of injected novelty solutions. Interestingly, not all of the potential novelty solutions in set B

satisfy the condition in Algorithm 1 (line 9) demanding that the NS metric must be higher than zero, in other words,

ρ( x i ) > 0 . Satisfying this condition is a prerequisite for including the potential novelty solution x i to the set of novelty

solutions C, and is strongly dependent on the novelty area width σ sh . The higher the area, the harder the novelty solution

to be declared. 

The goal of this test is to count the number of real novelty solutions from set C that can be injected into the current

population. In line with this, all the injected novelty solutions which emerged in one typical run of the nDE/njDE are accu-

mulated according to the specific benchmark functions, and illustrated in Fig. 4 . 

The figure is divided into two diagrams, which presented the results of the hybrid DE algorithms. Both diagrams depict

three curves representing the number of injected novelty solutions according to the specific benchmark functions and their

corresponding dimensions. 

As can be seen from Fig. 4 (a), there are a lot of injected novelty solutions only by those instances of nDE solving the

benchmark functions of dimension D = 20 . Rarely, the injections are emerged by solving the functions of the other dimen-

sions. The situation is slightly different, when Fig. 4 (b) is observed, where the behavior of the njDE algorithm is presented.

From this figure, it can be seen that the injected novelty solutions have arisen by solving the benchmark functions of all

dimensions. Interestingly, the majority of these solutions can be detected by solving functions of dimension D = 30 . Addi-

tionally, the peaks are emerged by the same benchmark functions regardless of the observed algorithm. 

Let us mention that the peaks actually denote the maximum number of injected solutions allowed in each NS call. For

example, this number is calculated as 200 × 15 = 3000 for the nDE, and as 300 × 10 = 3000 for njDE, where the first value

in the equation denotes the average call of the NS in one run, and the second is the parameter R . In contrast, there are no

injected solutions for nDE by solving the benchmark functions of dimension D = 30 and only a few for D = 10 . 

In summary, two facts can be concluded from the tests: On the one hand, the number of injected novelty solutions

depends on the observed function, while on the other, on the used algorithm. The first fact is connected directly with

the parameter σ sh , because each function describes its own fitness landscape This also means that distances on which a

calculation of neighborhood are made, are specific. Consequently, the novelty area width that is appropriate for the function

f i is not appropriate for the function f j and vice versa. Using the same value for parameter σ sh for all the functions in

the benchmark suite is, therefore, not optimal. However, when the figures are compared from the standpoint of different

algorithms, it can be seen that the jDE is more appropriate for the hybridization with the NS than the DE due to generating

more novelty solutions. 

Finally, Fig. 4 (a) also offers an answer to our first question, i.e., the problem emerged by optimizing the benchmark

function of dimension D = 30 with the nDE. Because the number of injected novelty solutions is at most one, allowing it to

replace more than one solution does not have any effect on the optimization. 

Influence of the population diversity. The goal of this test was to discover the influence of the population diversity

on the results of optimizing the CEC 2014 benchmark function suite. In line with this, two functions, precisely f and f ,
22 27 
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Table 8 

The final results of the optimization. 

D Algorithm 

nDE njDE DE jDE 

f 22 f 27 f 22 f 27 f 22 f 27 f 22 f 27 

10 0.0503 2.5200 0.1052 2.4701 0.3687 30 0.0 0 0 0 0.0759 2.9380 

20 24.7830 400.2890 41.0955 400.4760 39.7045 30 0.0 0 0 0 31.6990 40 0.40 0 0 

30 45.2512 355.6660 49.7878 354.4160 56.3622 337.2350 107.4430 400.9380 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are taken into detailed analysis, because the characteristics of these functions are that they operate with a huge number of

injected novelty solutions. Thus, we were focused on analyzing the behavior of both functions, varying their dimensions in

interval D ∈ {10,20,30}. 

As a measure of the population diversity, a moment of inertia I c was used in our study as proposed by Morri-

son [23] , and calculates the dispersion of each population member from their mass center. Mathematically, the mass center

c = { c 1 , . . . , c D } for j = 1 , . . . , D is defined as follows: 

c j = 

1 

D 

Np ∑ 

i =1 

x i, j . (8) 

The I c is simple a sum of square distances from the mass center, in other words: 

I c = 

√ √ √ √ 

Np ∑ 

i =1 

D ∑ 

j=1 

(x i, j − c j ) 2 . (9) 

The results of measuring the population diversity according to measure I c in each generation of a typical evolutionary run

are presented in Fig. 5 , in which the optimization of the function f 22 and f 27 is conducted. 

The figure is divided into six diagrams, where the population diversity is tracked according to both functions and their

corresponding dimensions. In each diagram, a comparison of four algorithms is performed, as follows: nDE, njDE, DE, and

jDE. 

From the diagrams of functions f 22 and f 27 it can be seen that losing population diversity is the most evident for all

algorithms optimizing the functions of dimension D = 10 ( Figs. 5 (a)–5 (b)), where this measure decreases from the starting

value towards zero. This phenomenon is the most expressive for the jDE algorithm, as can be seen in the graph of f 22 . By

optimizing the same function of higher dimensions (i.e., D = 20 , and D = 30 ), this is not so distinct, although also there the

population diversity is lost the most by the jDE algorithm. 

Interestingly, diagrams, illustrating a loss of the population diversity by optimizing function f 27 , show that the mentioned

phenomenon is the most observable for the original DE ( Figs. 5 (b), 5 (d) and 5 (f)), where the I c measure falls to zero already

after the some generations. On the other hand, the jDE is also capable of maintaining the population diversity in matured

phases of the evolutionary search process. 

The primary goal of this test was to show how the population diversity affects the quality of the results. In line with

this, the results obtained in a randomly selected run of the particular evolutionary algorithm, are aggregated and presented

in Table 8 . 

In the table, the best results are presented in bold case. As can be seen from this table, the best result obtained by opti-

mizing the function f 22 of dimension D = 10 were obtained by the nDE algorithm, while the njDE outperformed the results

of the other algorithms in the test by optimizing the function f 27 of the same dimension. Although the best population

diversity by optimizing both benchmark functions of higher dimensions was maintained by the jDE, this algorithm did not

achieve the best results. 

In summary, higher population diversity does not ensure that the best results are achieved. Actually, the higher popula-

tion diversity can prevent premature convergence, and directs the evolutionary search process to new undiscovered regions

of the search space, where also exists huge potential for finding the best solution. 

As shown from results of the experiments, the jDE is capable of maintaining the population diversity inherently. The NS

adds an additional mechanism for maintaining this explicitly. 

5. Conclusion 

Nature-inspired algorithms have gained a new momentum, with huge development of ER and SR. This so-called nature-

inspired robotics demands embodying these algorithms into hardware, where they act as autonomous artificial agents. New

problems have arisen by moving them into the hardware, where the selection pressure is one of the topical issues. The

higher selection pressure affects losing population diversity that is a prerequisite for the open-ended evolution and Alife.

The NS presents one of the fundamental solutions for preserving the population diversity, because it introduces an additional

measure for evaluating the individual’s quality besides the fitness function. 
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Fig. 5. Maintaining the population diversity by different stochastic nature-inspired population-based algorithms solving the benchmark functions of differ- 

ent dimensions. Top: D = 10 , Middle: D = 20 , Bottom: D = 30 . 

 

 

 

 

 

 

 

 

In our study, the original DE and the self-adaptive jDE were hybridized with the NS due to explicit maintaining of the

population diversity and preventing the fitness function deception. As a result, two versions of hybrid DE algorithms were

developed, i.e., nDE and njDE. The CEC 2014 benchmark function suite served as a testbed for testing the quality of the

developed algorithms. Indeed, the functions of three different dimensions D = 10 , D = 20 , and D = 30 were taken into con-

sideration. 

During the experimental work, a huge number of experiments were conducted, in which searching for the best parameter

settings of the hybrid DE algorithms was performed at first. These algorithms support four new parameters that have crucial

impact on the results of the optimization. The best parameter settings were discovered using the systematic search, where it

was found out that the nDE algorithm is insensitive on the replacement size parameter by solving the benchmark functions
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of dimension D = 30 . Then, the comparative analysis, in which the results of the hybrid algorithms were compared with the

other state-of-the-art algorithms, like L-Shade and MVMO. 

In summary, the results showed that the nDE improves the results of its original DE counterpart, except for solving the

benchmark functions of dimension D = 30 . On the other hand, the njDE overcame the results of the original jDE by solving

the benchmark functions of all dimensions. The comparative study showed that the L-Shade remains the best algorithm,

while the njDE produced results comparable with the MVMO. 

Finally, the insensitiveness of the nDE on the replacement size parameter R by solving the benchmark functions of dimen-

sion D = 30 was discovered. In line with this, two tests were performed: counting the number of injected novelty solutions,

and evaluating the influence of the population diversity during the typical run. The results of the former test showed that

the number of injected novelty solutions falls beyond the value of replacement size parameter by solving all the benchmark

functions. Consequently, this parameter does not have any influence on the results of the optimization. On the other hand,

the number of injected solutions depends on the observed function. Therefore, using the same value of novelty area width

is not appropriate for all the benchmark functions. The latter test showed that maintaining the population diversity does

not also lead automatically to the best solution, but it is a prerequisite for the open-ended evolution. In this sense, the njDE

has a great potential for use in environments that demand an open-ended evolution. 

As the future work, the self-adapting of the novelty area width parameter σ sh might be realized at first. Thus, all bench-

mark functions could have the same chances to operate with the novelty solution and not only those, for which this value

is selected properly by chance. Additionally, the impact of the NS on the multiagent systems based on DE could become a

big challenge direction. 
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