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Abstract. Association rule mining is a method for identification of de-
pendence rules between features in a transaction database. In the past
years, researchers applied the method using features consisting of cate-
gorical attributes. Rarely, numerical attributes were used in these studies.
In this paper, we present a novel approach for mining association based
on differential evolution, where features consist of numerical as well as
categorical attributes. Thus, the problem is presented as a single objec-
tive optimization problem, where support and confidence of association
rules are combined into a fitness function in order to determine the qual-
ity of the mined association rules. Initial experiments on sport data show
that the proposed solution is promising for future development. Further
challenges and problems are also exposed in this paper.
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1 Introduction

Data mining methods are intended to infer new insights (knowledge) from a
bunch of structured or unstructured data. With the rise of big data on almost
all areas of human endeavor, data mining methods have received a high priority
within business and industry. In the past, many methods for various data mining
tasks were developed, which are primarily devoted for the classification, cluster-
ing, regression as well as association rule mining (ARM). ARM is basically the
process of identifying the dependence rules between features inside transaction
databases. Therefore, ARM is appropriate for market basket analysis, analysis
of human habits, driver strategies and so on.

Researchers introduced association rule mining in the 90s with seminal work
of Agrawal [3]. From that time, ARM was deeply studied in theory and practice.
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After more than 20 years of research, these methods have became matured.
On the other hand, rising of the big data has demanded development of the
new scalable methods that can easily be parallelized. There exist many ARM
algorithms, as for example Apriori [3], Eclat [19], FP-growth [12].

Interestingly, researchers also developed some ARM methods that are based
on stochastic population-based nature-inspired algorithms [4, 6, 7, 16], such as
Particle Swarm Optimization (PSO) [14], Ant Colony Optimization (ACO) [8],
Differential Evolution (DE) [17]. Main features of these algorithms is that they
can easily be parallelized, while they basically also ensure scalability.

However, ARM was initially applied for mining categorical (i.e., non-numerical)
features, where all features must be discretized before usage. Normally, this task
is trivial due to a simple mapping of the attribute to intervals of real values rep-
resenting the corresponding attributes. However, similar methods that are able
to handle also numeric attributes were proposed in [11, 5, 15, 2]. Introducing the
numerical attributes demands dealing with explicit intervals of real values for
each numerical attribute of the feature.

Therefore, the purpose of the paper is to extend our previous work on ARM
for mining categorical features based on bat algorithm, i.e. BatMiner [10] with
new feature that allows mining combination of numerical data as well as cate-
gorical data. Additionally, the bat algorithm [18] is here replaced by differential
evolution. There are two issues for this decision as follows: (1) To show how
the evolutionary algorithms behaves by solving this problem, and (2) To find
out how the operator of crossover affects the results of the mining. As already
known, the bat algorithm works only using the mutation operator [9]. Algorithm
is evaluated on sport data that consists of 14 features, where attributes of three
features are numerical, while the attributes of the 11 other features represent
categorical values.

In a nutshell, main contributions of this paper are as follows:

– A new differential evolution algorithm for mining association rules is pro-
posed.

– The algorithm is capable of dealing with numerical and categorical features.
– The algorithm is tested on dataset that encompass habits of athlete in train-

ing.

The structure of this paper is as follows: In Section 2, the background in-
formation is discussed that is necessary for understanding the subjects in the
remainder of the paper. Section 3 describes the proposed algorithm for ARM
using mixed numerical and categorical feature attributes. In Section 4, experi-
ments and results are illustrated, while the paper is concluded with summarizing
the performed work and outlining the possible directions for the future.

2 Background information

2.1 Association rule mining

This section briefly presents formal definition of ARM. Let us suppose, a set of
objects O = {o1, . . . , on} and transaction set D are given, where each transaction



T is a subset of objects, in other words T ⊆ O. Then, an association rule can be
defined as implication:

X ⇒ Y, (1)

where X ⊂ O, Y ⊂ O, in X ∩ Y = ∅. The following two measures are defined
for evaluating the quality of association rule [3]:

conf (X ⇒ Y ) =
n(X ∪ Y )

n(X)
, (2)

supp(X ⇒ Y ) =
n(X ∪ Y )

N
, (3)

where conf (X ⇒ Y ) ≥ Cmin denotes confidence and supp(X ⇒ Y ) ≥ Smin

support of association rule X ⇒ Y . Thus, N in equation (3) represent num-
ber of transactions in transaction database D and n is number of repetitions
of particular rule X ⇒ Y within D. Here, Cmin denotes minimum confidence
and Smin minimum support. This means that only those association rules with
confidence and support higher than Cmin and Smin are taken into consideration,
respectively.

2.2 Differential evolution basics

Differential Evolution is an Evolutionary Algorithm appropriate for continuous
as well as combinatorial optimization. This algorithm was introduced by Storn
and Price in 1995 [17]. It is a population-based and consists of Np real-coded
vectors representing the candidate solutions, as follows:

x
(t)
i = (x

(t)
i,1, . . . , x

(t)
i,n), for i = 1, . . . ,Np, (4)

where each element of the solution is in the interval x
(t)
i,1 ∈ [x

(L)
i , x

(U)
i ], and x

(L)
i

and x
(U)
i denotes the lower and upper bounds of the i-th variable, respectively.

The variation operator in DE supports a differential mutation and a dif-
ferential crossover. In particular, the differential mutation selects two solutions
randomly and adds a scaled difference between these to the third solution. This
mutation is expressed as follows:

u
(t)
i = x

(t)
r1 + F · (x(t)

r2 − x
(t)
r3 ), for i = 1, . . . ,Np, (5)

where F denotes the scaling factor as a positive real number that scales the
rate of modification while r1, r2, r3 are randomly selected values in the inter-
val 1 . . .Np. Note that, typically, the interval F ∈ [0.1, 1.0] is used in the DE
community.

As a differential crossover, uniform crossover is employed by the DE, where
the trial vector is built from parameter values copied from two different solutions.
Mathematically, this crossover is expressed as follows:

w
(t+1)
i,j =

{
u
(t)
i,j randj(0, 1) ≤ CR ∨ j = jrand ,

x
(t)
i,j otherwise,

(6)



where CR ∈ [0.0, 1.0] controls the fraction of parameters that are copied to the
trial solution. Note, the relation j = jrand ensures that the trial vector is different

from the original solution x
(t)
i .

A differential selection is, in fact, a generalized one-to-one selection that is
expressed mathematically as follows:

x
(t+1)
i =

{
w

(t)
i if f(w

(t)
i ) ≤ f(x

(t)
i ),

x
(t)
i otherwise .

(7)

In a technical sense, crossover and mutation can be performed in several ways
in Differential Evolution. Therefore, a specific notation is used to describe the
varieties of these methods (also strategies) generally. For example, ’DE/rand/
1/bin’ denotes that the base vector is selected randomly, 1 vector difference is
added to it, and the number of modified parameters in the mutant vector follows
binomial distribution.

3 DE for ARM using numerical and categorical attributes

In this section, a new DE for ARM using mixed (i.e., numerical and categori-
cal) attributes (ARM-DE) is proposed. Basically, development of this algorithm
consists of the following stages:

– domain analysis,
– representation of solution,
– definition of a fitness function.

The aim of the first stage is the identification of features. In the second stage,
the representation of solution is discussed, while a definition of the fitness func-
tion is illustrated in the last stage. In the remainder of the paper, the mentioned
stages are presented in detail.

3.1 Domain analysis

In this stage, we identify the features along with their attributes and corre-
sponding domain values. Actually, there can be numerical as well as categorical
attributes. If attributes are numerical values, minimum lower and maximum up-
per bounds are prescribed determining intervals of domain values, from which
the minimum and maximum values for each particular numerical attribute can
be drawn. For categorical attributes, a set of feasible attributes needs to be
enumerated, because of their discrete nature.

The minimum lower and maximum upper bounds, from which the numer-
ical attributes can be drawn, are presented in Table 1. There are also eleven
features with categorical attributes as illustrated in Table 2. The numerical at-
tributes are presented in the tables as a particular feature with corresponding
interval of domain values (i.e., DISTANCE ∈ [50, 100]), while the categorical
attributes as the feature followed by an attribute preceded by point sign ’.’ (i.e.,
CALORIES.SMALL).



Table 1. Numerical attributes and their domain values.

Feature
Attribute domain

Minimum lower bound Maximum upper bound

DISTANCE 20 200

DURATION 20 330

HEART RATE 80 185

Table 2. Categorical attributes and their domain values.

Feature Attribute domain

CALORIES {NULL, SMALL, MEDIUM, HIGH}
WEATHER {NULL, SUNNY, CLOUDY, RAINY, SNOWY}
TYPE {NULL, EASY, INTERVALS, POWER, ENDURANCE}
NUTRITION {NULL, POOR, MODERATE, GOOD}
FOOD {NULL, PROTEINS, CARBOHYDRATES, FAT, FRUITS}
BEVERAGES {NULL, WATER, JUICE, ISO, COKE}
REST {NULL, AFTER TRAINING, NO}
NIGHT REST {NULL, BAD, MEDIUM, GOOD}
INJURIES {NULL, NO, LOW, MEDIUM, HIGH}
CRAMPS {NULL, NO, LOW, HIGH}
HEALTH PROBLEMS {NULL, NO, LITTLE, YES}

3.2 Representation of solutions

Each individual is represented as a real-valued vector, where every numerical
attribute is represented by a corresponding minimum and maximum boundaries
determining domain values, from which the attribute can be drawn. In contrary,
every categorical attribute is represented by the real-value drawn from interval
[0, 1]. Additionally, the last element in the vector denotes the cut point. It means
that this number says, which part of the vector belong to the antecedent and
which to the consequence of the mined association rule.

In a nutshell, each solution is mathematically represented as the real-valued
vector:

x
(t)
i = {(x(t)i,1, x

(t)
i,2)︸ ︷︷ ︸

Attr
(num)
1

, . . . , (x
(t)
i,2n−1, x

(t)
i,2n)︸ ︷︷ ︸

Attr
(num)
n

, x
(t)
i,2n+1︸ ︷︷ ︸

Attr
(cat)
n+1

, . . . , x
(t)
i,d︸︷︷︸

Attr
(cat)
d−n

, x
(t)
i,d+1︸ ︷︷ ︸

Cut point

}, (8)

where x
(t)
i,j for i = 1, . . . , d codes attributes of features in association rule, x

(t)
i,d+1

denotes cut point and t is counter of iterations. Thus, each numerical attribute is

represented as a pair Attr
(num)
j = (x

(t)
i,2j−1, x

(t)
i,2j) for j = 1, . . . , n, where x

(t)
i,2j−1 ∈

[Lb2j−1] and x
(t)
i,2j ∈ [Lb2j ], and the attribute is calculated according to the

following equation:

Attr
(num)
j =


(NULL,NULL), if |x(t)i,2j−1 − x

(t)
i,2j | < b

Ub2j−1−Lb2j−1

50 c,
(x

(t)
i,2j−1, x

(t)
i,2j), if x

(t)
i,2j−1 > x

(t)
i,2j ,

(x
(t)
i,2j , x

(t)
i,2j−1), otherwise.

(9)



In Eq. 9, the Lb2j−1 and Ub2j−1 denote the lower and upper bound of the specific
attribute value, respectively. On the other hand, the range of feasible values for

categorical attributes in interval x
(t)
i,j ∈ [0, 1] is divided into mj + 1 equidistant

intervals, where each interval [k, k + 1) for k = 0, . . . ,mj corresponds to one

of the potential attributes Attr
(cat)
j ∈ {Attr0, . . . ,Attrmj

}, and parameter mj

denotes the number of attributes belonging to the j-th feature. Actually, the
categorical attribute is calculated according to the following equation:

Attr
(cat)
j = b

x
(t)
i,j

mj + 1
c, for j = n, . . . , d− n. (10)

Attribute Attr
(cat)
0 = NULL has a special meaning, because it determines that

the corresponding feature is not presented in the association rule.
Finally, the cut point is calculated according to the following equation:

cp
(t)
i = bx(t)i,d+1 · (d− n− 2)c+ 1, for i = 0, . . . ,Np, (11)

3.3 Definition of the fitness function

Fitness function is defined as follows [10, 13]:

f(x
(t)
i ) =

{
α ∗ conf (x

(t)
i ) + γ ∗ supp(x

(t)
i )/α+ γ, if feasible(x

(t)
i ) = true,

−1, drugae,
(12)

where conf () is confidence, supp() support, α and γ are weights, function feasible(xi),
denotes if solution is feasible. The task of optimization is to find maximum value
of fitness function.

4 Experiments and results

The aim of experimental work was to test the performance of proposed ARM-DE
in practice. In line with this, it is expected that the results of this algorithm make
sense from the real sports trainer point of view. As mentioned before, ARM-
DE is able to handle both categorical and numerical data stored in transaction
database consisting of 14 features, where the first three features have numerical
attributes (i.e., distance, duration and average heart rate), while the other eleven
feature’s attributes are represented by categorical data.

Let us mention that we taken the full set of attributes that can be obtained
from the sport activity datasets. Obviously, each sport activity presents one
transaction in transaction database. Unfortunately, the real data is hard to ob-
tain. In the case, when the real activities can be gained from the athlete, the
number of these activities is limited due to physical limitation of an athlete. The
professional cyclist, for example, finishes typically one sports training per day.
When we assume that one day is reserved for resting, this athlete can perform at



most 300 sports activities per year. This number is rapidly decreased, if the am-
ateur cyclist is taken into consideration that cannot be affordable to train each
day. Therefore, the generator of sports training activities has been proposed by
Fister et al. [1], with which these limitations can be circumvent. The generated
sports activities were used also in our study.

Because of lack of real data, the transaction database consisting of 500 trans-
actions were generated randomly, in this study. The following parameters were
used in DE algorithm: D = 19, NP = 100, FES = 70, 000, F = 0.5, CR = 0.9,
where FES represents the number of fitness function evaluations. Thus, all fea-
sible solutions obtained after 10 independent runs of the ARM-DE algorithm
were accumulated, while the best results are presented in Table 3, and their
corresponding quality measures in Table 4. Let us mention, that all numerical
attributes in our experiments must be present in each association rule, otherwise
this is considered as infeasible. Illustrated association rules referring to athlete’s

Table 3. Examples of the best solutions found by the ARM-DE algorithm.

Rule Antecedent Consequent

1
DISTANCE ∈ [25.80, 111.96] ∧ DURATION ∈ [31.08, 172.86] ∧

HEART RATE ∈ [136.68, 180.52) ∧ WEATHER.SNOWY
REST.NO

2
DISTANCE ∈ [133.32, 220] ∧ DURATION ∈ [281.10, 315.19]
HEART RATE ∈ [104.62, 149.49) ∧ TYPE.ENDURANCE

HEALTH PROBLEMS.NO

3
DISTANCE ∈ [160.14, 220] ∧ DURATION ∈ [181.22, 330.0]
HEART RATE ∈ [111.47, 139.56) ∧ TYPE.INTERVALS

HEALTH PROBLEMS.NO

4
DISTANCE ∈ [121.37, 199.40] ∧ DURATION ∈ [187.66, 330]
HEART RATE ∈ [133.02, 168.80) ∧ BEVERAGES.JUICE ∧

REST.AFTER TRAINING
HEALTH PROBLEMS.NO

Table 4. Quality measures obtained by the best solutions found.

Rule Fitness Support Confidence

1 0.519 0.038 1.0

2 0.516 0.032 1.0

3 0.512 0.024 1.0

4 0.511 0.022 1.0

health condition are very similar between each other and say that cyclist over-
coming moderate-distance courses in ultra-long duration and moderate intensity,
in either endurance or interval type of training session, or drinking juice during
and resting after the training probably should not have any health problems.
Obviously, the rule is valid in real-world.

Similar as observed in our previous work [10], the best solutions usually have
only one consequence. However, there are also more complex association rules
in Table 5 with their corresponding quality measures in Table 6, where more



attributes can be observed in association rules. The last association rule in the

Table 5. Examples of more complex solutions that were found by ARM-DE algorithm.

Rule Antecedent Consequent

1
DISTANCE ∈ [20.0, 71.39] ∧ DURATION ∈ [178.55, 139.89] ∧

HEART RATE ∈ [139.89, 180.18) ∧ CALORIES.HIGH ∧
TYPE.ENDURANCE

CRAMPS.NO ∧
HEALTH PROBLEMS.NO

2

DISTANCE ∈ [85.03, 134.63] ∧ DURATION ∈ [81.81, 228.50] ∧
HEART RATE ∈ [93.96, 146.05) ∧ NUTRITION.GOOD ∧

FOOD.PROTEINS ∧ BEVERAGES.JUICE ∧
REST.AFTER TRAINING

CRAMPS.NO ∧
HEALTH PROBLEMS.NO

3
DISTANCE ∈ [20.00, 86.60] ∧ DURATION ∈ [155.31, 161.87] ∧

HEART RATE ∈ [161.87, 183.43) ∧ CALORIES.HIGH ∧
TYPE.POWER

INJURIES.NO ∧
CRAMPS.NO

Table 6. Quality measures obtained by the more complex solutions found.

Rule Fitness Support Confidence

1 0.505 0.010 1.0

2 0.503 0.006 1.0

3 0.502 0.004 1.0

table is the most interesting and asserts that cyclist overcoming the medium-
distance course in ultra-long duration with moderate intensity and high calorie
consumption by performing the power training session should not have the in-
juries as well as cramps. This rule also hold in practice.

5 Conclusion and future challenges

Association rule mining with numerical attributes is a very challenging problem.
In this paper, we try to solve the problem using differential evolution. Our pro-
posed solution is capable to mine association rule, where features can consist of
either numeric or categorical attributes. This assertion is evident by obtaining
the highest confidence values of mined rules. Practical experiments on syntheti-
cally generated data showed that this approach is interesting, but there are still
many problems that should be elaborated in future, i.e. how to shrink lower and
upper borders on numerical attributes, how to better evaluate these borders,
testing the algorithm on bigger transaction databases with more features as well
as applying this approach to other population-based nature-inspired algorithms.
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