
Iztok Fister Jr.∗, Suash Deb†, Iztok Fister∗
∗University of Maribor,

Faculty of Electrical Engineering and Computer Science
Koroška cesta 46, 2000 Maribor,

Slovenia
iztok.fister1@um.si
†Victoria University,

Decision Sciences and Modeling Program,
Melbourne, Australia

‡IT & educational Consultant, Ranchi, Jharkhand, India

Abstract—For solving optimization problems, stochastic
population-based nature-inspired algorithms use inspirations
from nature. Despite their applicability in real-world environ-
ments, their bottleneck is high time complexity. Usually, they
are searching for optimal solutions on computing devices of
full computational power. However, in some situations, we deal
with devices of limited computational power. Some examples of
such devices are smartphones, which have been becoming very
powerful for running various applications. However, there is still
a lack of researches that would study the performance of nature-
inspired algorithms on these devices. In this paper, we analyze
the performance of one member of the nature-inspired algo-
rithms, the so-called Bat algorithm, on the Android smartphone.
Although smartphones nowadays offer a computational power
comparable with the personal computer, we focus on the cheaper
and older smartphones that are most widespread today.

Index Terms—nature-inspired algorithms, smartphones, opti-
mization

I. INTRODUCTION

Stochastic population-based nature-inspired algorithms are a
suitable tool for coping with optimization problems that have
arisen in many areas. These kinds of algorithms consist of
a population of individuals that undergo variation operators
governed by some principles inspired by nature. For example,
individuals in Genetic Algorithms (GA) [5] (a member of
Evolutionary Algorithms (EAs)) that are governed by Dar-
winian evolution, undergo operations of mutation, crossover
and selection operators, while individuals in the Bat Algo-
rithm (BA) [13] (a member of Swarm Intelligence (SI) based
algorithms) that mimics the echolocation observed by micro-
bats, undergo the variation operator guided by this physical
phenomenon.

Many variants of the algorithms have been proposed for
solving optimization problems. Due to the time complexity,
the algorithms are devoted to executing on powerful computing
devices that have enough resources, such as, for example, a

lot of memory and processor power (i.e., many CPU cores).
Moreover, some of these variants were even tailored to specific
hardware. Let us mention a few examples:

• Graphics Processing Units (GPU): Were firstly intended
for calculations in computer graphics, as well as in video
games, but were later transferred also to other fields.
GPUs allow the parallelization mechanism easily and fast
floating-point operations [14]. So far, researchers have
already implemented many variants [14], [9], [6], [2]
of nature-inspired algorithms for GPUs‘ platforms and
reported high gains over CPUs.

• Field Programmable Gate Array (FPGA): Are intended to
decrease computation time by performing as many calcu-
lations as possible simultaneously [11]. Similar to GPUs,
researchers also implemented many nature-inspired algo-
rithms for FPGA platforms [11], [1].

• Limited hardware: Are special implementations of nature-
inspired algorithms for environments where a full power
computing device may not be available. It is typical for
robotics and control problems [8]. Some works illustrat-
ing a solution for such environments can be found in [10],
[8].

Smartphones are a new generation of mobile phones that
can be considered as personal computers. They run a mobile
operating system that is tailored to the limited architecture of
mobile devices. At the moment, the most popular mobile oper-
ating systems include Android, Blackberry and iOS (formerly
iPhone OS)1. An interesting aspect of these mobile operating
systems is the almost effortless development of applications
by users who are not professional programmers. No wonder
authors of these operating systems prepared a lot of software
development kits that simplify development, testing, and even

1Sorted alphabetically.

Near Real-time Performance of Population-based Nature-Inspired Algorithms on

Cheaper and Older Smartphones

12

th International Conference on Soft Computing and Machine Intelligence

978-1-7281-1300-5/18/$31.00 ©2018 IEEE

 5

deployment of various applications that can use all capabilities
of this limited hardware.

Android is a mobile operating system based on the Linux
operating system. It is an open source software developed
originally by Google. In this paper, we explore ways for
implementing nature-inspired algorithms running on these
devices. As is commonly known, these kinds of algorithms are
time complex. On the other hand, most of the mobile platforms
for running this software, especially older ones, are limited
with computational power. In these cases, how to develop
applications using the nature-inspired algorithms in real-time
on this limited hardware is very important. However, running
these kinds of applications on mobile devices may open new
possibilities for their usage. For instance, development of some
fitness & health applications for athletes allow monitoring of
several load indicators during the training that can contribute
to improving the performances of the athlete online.

Therefore, this paper tries to find an answer to the following
question: Are the cheaper smartphones able to run population-
based nature-inspired algorithms in near real-time? In line
with this, the BA nature-inspired population-based algorithm
was developed that was applied to a benchmark function suite
consisting of 10 functions that was run on two platforms: PC,
and Android smartphone.

In a nutshell, the paper is organized as follows. Section II
presents an analysis of the main nature-inspired algorithms‘
components, and outlines some features of the Bat Algorithm,
Section III proposes a new implementation of the Bat Algo-
rithm. In Section IV, experiments and results are presented,
while Section V concludes the paper and outlines the future
directions.

II. ANALYSIS OF NATURE-INSPIRED ALGORITHM’S
COMPONENTS

The main components of population-based SI-based algo-
rithms operating without crossover can be summarized as
follows [3]:

• representation,
• initialization,
• fitness function evaluation,
• variation operators,
• replacement,
• termination condition.

Representation is intended for the representation of individ-
uals. Mostly , individuals are represented as real numbers.
However, binary representation or a tree structure presen-
tation is also very suitable for nature-inspired algorithms.
Initialization serves for setting the control parameters and
generating the initial population. Usually, a population is
initialized randomly, while, in some cases, authors also use
other heuristic methods. Fitness function evaluates the quality
of individuals in a population and presents a connection with
the problem to be solved. Variation operators, such as, for
example, crossover or mutation, change the genetic material
of individuals. Replacement takes care of eliminating the bad

solutions. Finally, the termination condition defines when the
algorithm must be terminated.

A. Bat algorithm

The Bat Algorithm (BA) [12] is an SI-based algorithm
created for solving optimization problems. It consists of a
population of bats that are governed by the physical rules
of echolocation. The BA was shown to perform well by
solving continuous, as well as discrete optimization problems
of smaller dimensions. A very interesting aspect of the BA is
its low time complexity compared to the other algorithms from
this family. A pseudo-code of the canonical BA is depicted in
Algorithm 1,

Algorithm 1 Canonical Bat algorithm
1: init bats();
2: evaluate the new population;
3: find the best solution(xbest);
4: while termination condition not meet do
5: for i = 1 to Np do
6: generate new solution(xi);
7: if rand(0, 1) > ri then
8: improve the best solution(xbest)
9: end if

10: evaluate the new solution(y);
11: if fnew ≤ fi and N(0, 1) < Ai then
12: xi = y; fi = fnew;
13: end if
14: find the best solution(xbest);
15: end for
16: end while

from which it can be seen that the BA searches for the
good solutions in the search space using two strategies:
(1) Exploration, implemented in ’generate new solution’, and
(2) Exploitation, implemented in ’improve the best solution’
function. The former modifies the trial solution according
to the physical rules of echolocation, while the latter is an
implementation of the local search in the vicinity of the best
solution. Both strategies are balanced using the parameter ri.

B. Bat algorithm implementation issues

As mentioned before, most of the SI-based algorithms
consist of six components that are not equally computationally
expensive. The past studies in [4], [13] showed that the BA can
be considered as a very fast and computationally inexpensive
algorithm. However, there may still be some issues that can
lower the execution time of the BA. If we refer to Sec. II, we
can observe all the advantages and disadvantages of the BA
implementation.

Thus, the BA is initialized randomly using a uniform
distribution. Hence, there are not any special computational
loads that might affect its performance on a mobile device.
Additionally, individuals are presented as real-valued vectors.
Therefore, no explicit genotype-phenotype mapping is needed
for a fitness function evaluation. The fitness function depends

13

on the complexity of the problem to be solved, while the most
important parts of the algorithm are variation operators. The
operators in the BA are not time consuming, especially when it
is assumed that there is still a possibility to remove local search
step [4], [13]. Original local search is actually a random walk
with direct exploitation. Replacement in the Bat Algorithm is
conducted in the fashion of a simulated annealing heuristic [7].
The termination condition in the BA can be either the number
of generations 2 or a number of function evaluations.

A summary of the BA’s components and its alternatives is
presented in Table I.

TABLE I
SUMMARY OF BAT ALGORITHM MAIN COMPONENTS WITH SOME

ALTERNATIVES IN IMPLEMENTATION.

Component Bat algorithm Better alternative
Representation real-valued vectors N/A
Initialization uniform N/A
Fitness function N/A N/Aevaluation
operators mutation according to phys-

ical rules of bat echoloca-
tion, use of local search

without local search

replacement in the fashion of simulated
annealing

without simulated an-
nealing step

termination con-
dition

iterations N/A

III. DESIGN AND IMPLEMENTATION OF NATURE-INSPIRED
ALGORITHMS FOR ANDROID

The Android studio was used for the development of the
Android application. This is a very convenient, robust, easy
to use development kit for developing Android applications.
The front end of the application was developed in Java, while
the BA was implemented fully in C++. Android supports C++
for the development of applications. Thus, the C++ code was
placed in a cpp directory. It was compiled by CMake. The
code was compiled into a native library that the build system
Gradle can package within APK (Android Package Kit) 3. Java
communicates with the native library thorough the Java Native
Interface (JNI).

Basically, the layout of the smartphone application is very
simple, where each button on the screen represents a definite
benchmark function that needs to be optimized. Let us mention
that 10 well known benchmark functions are used in our
study, i.e., Griewank, Rastrigin, Rosenbrock, Ackley, Schwe-
fel, DeJong, Easom, Michalewicz, Xin-She, and Zakharov.
The layout of the Android application is shown in Figure 1.
Implementation on the PC was run in a Linux terminal without
GUI.

Let us mention that execution time was measured using the
chrono library that comes with C++ 11 standard.

2Let us mention that counting every function evaluation may be much more
time consuming that iterating through a number of generations.

3https://developer.android.com/studio/projects/add-native-code

Fig. 1. Android application.

IV. EXPERIMENTAL WORK

In this experiment, we used C++ application that was
rewritten from the main implementation of the Bat Algorithm
in Matlab programming language. It also corresponds with
the basic publication about Bat Algorithms [12]. The same
algorithm was run on the following two different platforms:
Smartphone and PC.

The mobile application was installed on a Huawei smart-
phone Y625-U32 with the following specifications:

• CPU model: Qualcomm MSM8212
• Number of cores: Quad-core
• CPU frequency: 1.2 GHz
• ROM: 4GB
• RAM: 1GB
• Android version 4.4.2; Kernel version 3.4.0

For comparison of the same implementation, we used a
personal computer of the following characteristics:

• Processor: 8x Intel(R) Xeon(R) CPU E3-1240 v5 @
3.50GHz

• Memory: 16344MB
• Operating System: Ubuntu 16.04.5 LTS
Parameter settings of the BA on both platforms were set the

same, as follows: D = 10, NP = 10, MAX RUNS = 25,
MAX GEN = 1, 000, A = 0.5, r = 0.5, Qmin = 0.0,
Qmax = 2.0.

A. Results

The numerical results of the experiments are presented in
Table II,

which is divided into two parts, where the former presents
the results obtained by optimizing the benchmark functions on
the personal computer, while the latter the same obtained on
the observed smartphone. Obviously, the results are presented
according to the specific functions from the benchmark suite.

14

TABLE II
RESULTS OF IMPLEMENTATIONS.

Function Personal computer Smartphone
tbest tworst tmean tmedian tstdev ttotal tbest tworst tmean tmedian tstdev ttotal

Griewank 0.0472 0.0567 0.0478 0.0472 0.0017 1.48 0.4433 0.5028 0.4633 0.4611 0.0132 14.36
Rastrigin 0.0482 0.0614 0.0491 0.0485 0.0023 1.52 0.4288 0.4603 0.4393 0.4367 0.0072 13.62
Rosenbrock 0.0453 0.0578 0.0460 0.0456 0.0022 1.43 0.4670 0.5094 0.4796 0.4796 0.0094 14.87
Ackley 0.0479 0.0621 0.0490 0.0488 0.0024 1.52 0.4176 0.4593 0.4308 0.4283 0.0102 13.35
Schwefel 0.0455 0.0601 0.0467 0.0463 0.0024 1.45 0.4336 0.4824 0.4461 0.4459 0.0094 13.83
DeJong 0.0438 0.0571 0.0445 0.0439 0.0023 1.38 0.4225 0.4616 0.4320 0.4307 0.0074 13.39
Easom 0.0487 0.0616 0.0499 0.0498 0.0023 1.55 0.5153 0.5639 0.5250 0.5238 0.0086 16.27
Michalewicz 0.0412 0.0563 0.0424 0.0420 0.0026 1.31 0.4670 0.4998 0.4832 0.4851 0.0079 14.98
Xin-She 0.0462 0.0586 0.0467 0.0462 0.0022 1.45 0.4229 0.4577 0.4366 0.4360 0.0094 13.54
Zakharov 0.0452 0.0587 0.0460 0.0457 0.0023 1.43 0.4321 0.4684 0.4452 0.4438 0.0088 13.80

Fig. 2. Comparison of the total time ttotal between PC and SmartPhone.

The results obtained by comparison of the total time needed
for executing the whole benchmark function suite on both
observed platforms are depicted graphically in Fig. 2.

As can be seen from the Table as well as the Figure,
the same algorithm on the smartphone needs approximately
10-times more time than its counterpart running on the per-
sonal computer. However, with producing the results on the
smartphone platform we showed that this is also a promising
platform for solving the most complex problems with which
humans are confronted today. Actually, this fact proves that
mobile platforms could also become interesting for solving the
NP-hard problems in real-time environments for the future.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we analyzed the performance of a stochas-
tic population-based nature-inspired algorithm on a cheap
smartphone device running the Android operating system.
Experiments showed the great potential of applying stochastic
population-based nature-inspired algorithms on smartphone
devices. As a result, modern mobile devices based on Android
really allowed us to run the Bat Algorithm in near real-time.

There is also a lot of future work like testing the other
stochastic population-based nature-inspired algorithms, such
as, for example, Genetic Algorithms or Particle Swarm Opti-
mization. It would also be important to verify the performance
of implementation that is written fully in Java. A very impor-
tant work would also include the use of various device sensors
that would collect data in combination with nature-inspired
algorithms.

ACKNOWLEDGEMENT

Iztok Fister Jr. acknowledges the financial support from the
Slovenian Research Agency (Research Core Funding No. P2-
0057). Iztok Fister acknowledges the financial support from
the Slovenian Research Agency (Research Core Funding No.
P2-0041).

REFERENCES

[1] François CJ Allaire, Mohamed Tarbouchi, Gilles Labonté, and Giovanni
Fusina. Fpga implementation of genetic algorithm for uav real-time
path planning. In Unmanned Aircraft Systems, pages 495–510. Springer,
2008.

[2] Lauro CM de Paula, Anderson S Soares, Telma W de Lima, Alexan-
dre CB Delbem, Clarimar J Coelho, and RG Arlindo Filho. A gpu-
based implementation of the firefly algorithm for variable selection in
multivariate calibration problems. PloS one, 9(12):e114145, 2014.

[3] Iztok Fister Jr., Janez Brest, Uroš Mlakar, and Iztok Fister. Towards the
universal framework of stochastic nature-inspired population-based al-
gorithms. In Computational Intelligence (SSCI), 2016 IEEE Symposium
Series on, pages 1–8. IEEE, 2016.

[4] Iztok Fister Jr., Iztok Fister, Xin-She Yang, Simon Fong, and Yan
Zhuang. Bat algorithm: Recent advances. In Computational Intelligence
and Informatics (CINTI), 2014 IEEE 15th International Symposium on,
pages 163–167. IEEE, 2014.

[5] David E Goldberg. Genetic algorithms in search, optimization, and
machine learning. 1989.

[6] Alwyn V Husselmann and KA Hawick. Parallel parametric optimisation
with firefly algorithms on graphical processing units. In Proc. Int. Conf.
on Genetic and Evolutionary Methods (GEM12). Number CSTN-141,
Las Vegas, USA, CSREA (16–19 July 2012), pages 77–83, 2012.

[7] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization
by simulated annealing. science, 220(4598):671–680, 1983.

[8] Ernesto Mininno, Ferrante Neri, Francesco Cupertino, and David Naso.
Compact differential evolution. IEEE Transactions on Evolutionary
Computation, 15(1):32–54, 2011.

[9] Luca Mussi, Fabio Daolio, and Stefano Cagnoni. Evaluation of parallel
particle swarm optimization algorithms within the cuda architecture.
Information Sciences, 181(20):4642–4657, 2011.

[10] Ferrante Neri. Memetic compact differential evolution for cartesian robot
control. IEEE Computational Intelligence Magazine, 5(2):54–65, 2010.

15

[11] Paul D Reynolds, Russell W Duren, Matthew L Trumbo, and RJ Marks.
Fpga implementation of particle swarm optimization for inversion of
large neural networks. In Swarm Intelligence Symposium, 2005. SIS
2005. Proceedings 2005 IEEE, pages 389–392. IEEE, 2005.

[12] Xin-She Yang. A new metaheuristic bat-inspired algorithm. In Nature
inspired cooperative strategies for optimization (NICSO 2010), pages
65–74. Springer, 2010.

[13] Xin-She Yang and Xingshi He. Bat algorithm: literature review and ap-
plications. International Journal of Bio-Inspired Computation, 5(3):141–
149, 2013.

[14] You Zhou and Ying Tan. Gpu-based parallel particle swarm optimiza-
tion. In Evolutionary Computation, 2009. CEC’09. IEEE Congress on,
pages 1493–1500. IEEE, 2009.

16

