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Abstract. Over last years the deep neural network
has become one of the most popular classification
methods with performance comparable and in some
cases even superior to humans in the wide range of
applications. However, there are still some major
challenges regarding the deep neural networks. One
of the biggest, with the huge impact on the classifica-
tion performance, is the design of such deep neural
network. In this paper, we propose a population-based
metaheuristics approach for designing a deep neural
network topology in a straightforward automatic
manner, which performance we compare against the
conventional classifiers across three different datasets.
With the usage of our proposed method, unlike the
conventional classifiers, we were able to achieve high
classification performance with no major performance
drops throughout all tested datasets.

Keywords. machine learning, neural networks, swarm
and evolutionary computation, optimization

1 Introduction
In recent years, deep neural networks (DNNs) have
demonstrated performance comparable, in some cases
even superior to humans in areas such as image recog-
nition [8, 27, 6], speech recognition [7], natural lan-
guage processing [5] and even in playing two-player
games such as Go [21]. Such accomplishments in
the application of DNNs can be largely credited to in-
creasing computer power and a growing abundance of
data. As more and more computation power becomes
available, more data - bigger datasets can be used to
train DNNs with more layers and more neurons at each
layer, which should eventually translate to higher accu-
racy of such DNN models [31].

Regardless of all the major successes of utilizing the
DNNs to various problems, the researchers are still fac-
ing the two major problems: the design of DNN and
parameter setting for the training of the DNN. The de-
sign of DNN including the number of hidden layers,
the number of neurons at each layer, the type of activa-
tion function for each layer is, generally speaking, done

manually, as well as picking out the right parameters
for training such DNN. However, the choice of design
of DNN, as well as the choice of training parameters,
has an important impact on how a DNN is going to per-
form a specific task. The major problem in designing
the DNN topology and in picking the right training pa-
rameters is the lack of some general rules or recipes
to follow, which would guarantee a good DNN perfor-
mance. Basically, it depends more or less on our pre-
vious experience and trying out different DNN topolo-
gies and/or training parameters.

There are not many studies on using the population-
based nature-inspired algorithms [4] for tackling the
mentioned problems of using the DNNs since such ap-
proach has high computational costs. Most of the stud-
ies are focusing on solving just one part of the prob-
lem in order to keep the search space as small as pos-
sible. For example in [24, 19, 12, 28] the authors
are trying to optimize the architecture of feed-forward
DNNs and recurrent neural networks using evolution-
ary approach and in [9, 30] authors are attempting to
optimize the training parameters of neural networks.
Based on those encouraging results from mentioned
studies, we developed a method for designing DNNs
with the use of population-based metaheuristics in a
straightforward automatic manner titled as GWODNN
or DEDNN (Grey Wolf Optimizer for Deep Neural
Network/Differential Evolution for Deep Neural Net-
work).

The main goal of our research is to study whether a
model based on DNN topology designed with our pro-
posed population-based metaheuristics approach for
designing a DNN topology in a straightforward man-
ner, will give us generally better classification accuracy
across different datasets over the conventional classi-
fiers (e.g. k-nearest neighbor, decision tree, multi-
layer perceptron). The main advantages of the pro-
posed method are the very straightforward usage and
the adaptability to different datasets while achieving
high classification accuracy.

The remaining of this paper is organized as follows.
Section 2 briefly describes methods we used. In Sec-
tion 3 we present the proposed GWODNN/DEDNN
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method, whose performance of classification on var-
ious datasets are presented in Section 4. Conclusion
and final remarks are gathered in Section 5.

2 Methods

2.1 Population-based metaheuristics
This subsection familiarizes readers with population-
based metaheuristics, i.e. differential evolution and
grey wolf optimizer.

2.1.1 Differential evolution

Differential Evolution (DE) [25] is a population-based
metaheuristic algorithm that belongs to the family of
evolutionary algorithms [3]. DE was introduced in
1995 by Storn and Price [25]. Because of many wins at
international competitions, DE is considered as one of
the most powerful algorithms appropriate for continu-
ous optimization. DE consists of Np real-coded vec-
tors representing the candidate solutions, as follows:
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lower and upper bounds of the i-th variable, respec-
tively. There are three different operators in DE, i.e.:
mutation, crossover, and selection.

DE mutation is expressed as follows:
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where F denotes the scaling factor as a positive real
number that scales the rate of modification while
r1, r2, r3 are randomly selected values in the inter-
val 1 . . .Np.

Crossover in DE is expressed as follows:
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where CR ∈ [0.0, 1.0] controls the fraction of parame-
ters that are copied to the trial solution.

Selection is expressed mathematically as follows:
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2.1.2 Grey wolf optimizer

Grey wolf optimizer or simply GWO [13] is a swarm
intelligence based algorithm [4], which mimics the
leadership hierarchy and hunting mechanism of grey
wolves. For simulating the leadership hierarchy, four
types of grey wolves are employed, i.e. alpha, beta,
delta, and omega [13]. In line with this, algorithm con-
sists of three main steps:

• searching for prey,

• encircling prey, and

• attacking prey.

Basic GWO algorithm is presented in Alg. 1. For
deeper outline of GWO algorithm, readers are referred
to the paper [13].

Algorithm 1 Grey wolf optimizer

1: Initialize the grey wolf population Xi (i = 1, 2, ...,
n)

2: Initialize a, A, and C
3: Calculate the fitness of each search agent
4: Xα = the best search agent
5: Xβ = the second best search agent
6: Xδ = the third best search agent
7: while termination_condition_not_meet do
8: for each search agent do
9: Update the position of the current search

agent
10: end for
11: Update a, A, and C
12: Calculate the fitness of all search agents
13: Update Xα, Xβ , and Xδ

14: end while
15: return Xα

2.2 Deep Neural Network
A standard neural network (NN) [11] consists of many
simple and connected processors called neurons, each
producing a sequence of real-valued activations. The
input neurons get activated through sensors perceiv-
ing the environment, on the other side, other neurons
get activated through weight connections from a pre-
viously active neuron. Learning of such NNs is about
finding weights that make the NN exhibit the desired
behavior (e.g. recognize a person from the picture).
Such behavior may require long causal chains of com-
putational stages, where each stage transforms (most
often in a non-linear way) the aggregate activation of
the network [20].

For decades have been around shallow NN-like mod-
els with few such stages. Models with several suc-
cessive nonlinear layers of neurons date back to 50s
and 60s years in a previous century. In last few years,
deeper NN-like models also known as deep neural net-
works or DNN are gaining on the popularity.

In formal terms, a feed-forward (acyclic) and deep
neural network is a tuple N = (L, T,Φ), where each
of its elements is defined as follows [26]:

• L = {Lk|k ∈ {1, ...,K}} is a set of layers, where
L1 is the input layer, LK is the output layer, and
layers in between are known as hidden layers. Each
layer Lk consists of sk nodes known as neurons.
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• T ⊆ L × L is a set of connections between layers
in such way that except input and output layers, each
of hidden layer has an incoming connection and an
outgoing connection.

• Φ = {Φk| ∈ {2, ...,K}} is a set of activation func-
tions, one for each non-input layer.

3 Proposed method
Our proposed method for designing DNN topology
is presented in Alg. 2. The method is based on the
grey wolf optimizer and differential evolution algo-
rithm variants named GWODNN and DEDNN. GWO
and DE are used to find the optimal DNN topology - in
our case to find the number of hidden layers, number
of neurons, dropout probability and activation function
for each layer and the optimizer function for DNN. The
output layer of each DNN topology is fixed, using Sig-
moid activation function and Uniform function for the
initialization of kernel.

Algorithm 2 Proposed method
Output: The best DNN topology based on best solu-
tion

1: gwo_alg.init_bat();
2: while termination_condition_not_meet do
3: solution = gwo_alg.get_best_solution();
4: layer_num = map_batch(solution[75]);
5: optimizer = map_optimizer(solution[76]);
6: layers = map_layers_triples(solution[0− (3 ∗

layer_num)]);
7: fitness = train_and_eval(layers, optimizer,

100, 32);
8: gwo_alg.generate_new_solution(fitness);
9: end while

10: best = create_model(gwo_alg.get_best_solution());

As shown in Alg. 21 used algorithms are producing
a solution with the dimension of 77. The dimension of
the problem relates to our predefined limitation with re-
gard to the maximum number of hidden layers of DNN.
In our case, the maximum number of hidden layers is
set to 25 but it could be easily changed to any value.
Each of those layers is defined with 3 values: number
of layers, number of neurons and dropout probability.
Besides definitions of layers, the last two values of a
solution are defining the number of hidden layers used
to create DNN topology and an optimizer function used
to build the DNN model.

Therefore, the individuals in GWODNN and
DEDNN are presented as real-valued vectors:

x
(t)
i = (x

(t)
i,0, . . . , x

(t)
i,n), for i = 0, . . . ,Np − 1 , (5)

where each element of the solution is in the interval
x
(t)
i,1 ∈ [0, 1].

1DEDNN is basically the same algorithm, only GWO steps are
replaced by DE steps.

The real values of real-valued solution vectors
are then mapped according to the equations 6,
7, 8, 9 and 10 where y1 presents the number of
hidden layers, y2 optimization function, y3 number
of neurons in hidden layer, y4 dropout probability
of hidden layer and y5 activation function for hid-
den layer. Each y2 is member of population O =
{sgd, rmsprop, adagrad, adadelta, adam, adamax,
nadam} which represents a group of available opti-
mization functions, while y5 is member of population
A = {softmax, elu, selu, softplus, softsign, relu,
tanh, sigmoid, hard_sigmoid, linear} which
represents a group of available activation functions.

y1 = bx[i] ∗ 20 + 5c; y1 ∈ [5, 25] (6)

y2 =

{
bx[i] ∗ 7 + 1c; y2 ∈ [1, 7] x[i] < 1

7 otherwise,
(7)

y3 =

{
bx[i] ∗ 100 + 1c; y3 ∈ [1, 100] x[i] < 1

100 otherwise,
(8)

y4 = bx[i] ∗ 30 + 20c; y4 ∈ [20, 50] (9)

y5 =

{
bx[i] ∗ 10 + 1c; y5 ∈ [1, 10] x[i] < 1

10 otherwise,
(10)

The fitness function was defined in two variants: one
using the test accuracy calculated on validation set and
one using train accuracy calculated on the train set. In
equations ( 11) and ( 12) are presented the formal defi-
nitions of mentioned fitness functions, where test_acc
stands for accuracy calculated on validation set and
train_acc stands for accuracy calculated on train set.
Used implementations of GWO and DE are optimized
to search for the global minimum, so our fitness func-
tions are defined in a way, which is converting the prob-
lem of searching maximal accuracy to the problem of
searching minimum as presented in formal definitions.

f(test_acc) = 1− test_acc (11)

f(train_acc) = 1− train_acc (12)

4 Experiments and Results

4.1 Datasets
For the purpose of better overall evaluation of our
proposed method, we chose 3 datasets with a differ-
ent number of instances, features, and distribution of
classes. In the following chosen datasets are presented
in more details.
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4.1.1 Phishing Websites Data Set

Phishing Websites Data Set [14] from UCI Machine
Learning repository [10], prepared by Mohammad et
al. [15] was used for purpose of predicting phishing
websites. The basic information of this dataset is pre-
sented in Table 1.

Parameter Value

Number of features 31

Number of instances 11,055

Number of classes 2 classes

Distribution of classes 3,793 phishing websites

7,262 legitimate websites

Table 1: The basic information about the Phishing
Websites Data Set.

4.1.2 Pima Indians Diabetes Database

Pima Indians Diabetes Database [22] from Kaggle,
prepared by Smith et al. [23] is dataset used for diag-
nostically predict whether or not a patient has diabetes.
The basic information of this dataset is presented in Ta-
ble 2.

Parameter Value

Number of features 8

Number of instances 768

Number of classes 2 classes

Distribution of classes 268 with diabetes

500 without diabetes

Table 2: The basic information about the Pima Indians
Diabetes Database.

4.1.3 Bank Marketing Data Set

Bank Marketing Data Set [16] from UCI Machine
Learning repository [10], prepared by Moro et al. [17]
is data set related to direct marketing campaigns of a
Portuguese banking institution. Dataset is used for pre-
dicting if a client will subscribe a term deposit or not.
The basic information of this dataset is presented in Ta-
ble 3.

Parameter Value

Number of features 17

Number of instances 45211

Number of classes 2 classes

Distribution of classes 5289 subjects subscribed

40922 subjects not subscribed

Table 3: The basic information about the Bank Mar-
keting Data Set

4.2 Experimental settings

4.2.1 GWO and DE parameters

GWO and DE algorithms were initialized with param-
eters presented in Table 4. Algorithms were used for
searching for an optimal number of hidden layers, a
number of neurons, dropout probability and activation
function for each hidden layer as well as for searching
for optimization function used for building the model.

In our experiments, 20% of the initial dataset was
used when calculating fitness using equation (12) pre-
sented in Section 3.2. When calculating fitness us-
ing equation (11) those 20% of the initial instances
are further divided to train and test split in ratio 70:30
where 70% is used for training and calculating the
train_accuracy, while 30% is used to calculate the
test_accuracy in previously mentioned equations.

Parameter GWO DE

Dimension of the problem 77 77

Population size 40 40

Number of function evaluations 500 500

Lower bound 0.0 0.0

Upper bound 1.0 1.0

F (Scaling factor) 0.5

CR (Crossover probability) 0.9

Table 4: Used parameter values for GWO and DE al-
gorithms.

4.2.2 Deep Neural Network

The base of our proposed method is feed-forward NN
with predefined input layer using uniform kernel ini-
tializing function and output layer with one neuron
also using uniform kernel initializing function and ac-
tivation function set to sigmoid. The number of the
hidden layers, the configuration of each of the hid-
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den layers and optimization function used for compil-
ing the model is defined with the solution found using
GWODNN and DEDNN.

4.2.3 Learning parameters

Beside the DNN topology and its layer parame-
ters which were obtained from the solution of our
GWODNN / DEDNN the other learning parameters
(e.g. batch size, epochs) were picked based on our pre-
vious experience in machine learning. The training of
DNN was performed with a batch size of 32 and 100
epochs. We used the same learning parameters for each
of the used experimental datasets.

4.3 Results
The proposed method and experiments were imple-
mented in Python programming language using the
following frameworks and/or libraries: NiaPy [29],
Keras [2] with Tensorflow [1], NumPy, Pandas and
scikit-learn [18]. For all of the existing classification
algorithms the implementations from scikit-learn with
their default settings were used.

In order to objectively evaluate the performance
of our proposed method, we followed an established
methodology. All of the used datasets were initially di-
vided into two subsets in a ratio 80:20. The smaller
subset was used for finding the best DNN topology
using the proposed metaheuristic methods. After ob-
taining the optimal DNN topology, only the remaining
larger subset was used to perform the ten-fold cross-
validation procedure. Namely, in order to keep the
evaluation procedure as fair as possible, the 20% of
the original instances, which have been already used
to search for DNN topology, were not included in the
final results. In the case of conventional classifiers, the
standard ten-fold cross-validation approach was used
on the original datasets.

Results presented in following sections are min-
imum, maximum, average and median of the ten-
folds achieved by a specific method on test sets.
With the labels GWODNN/DEDNN - train we re-
fer to our GWODNN/DEDNN methods with fit-
ness calculated based on train accuracy, while with
the labels GWODNN/DEDNN - test we refer to our
GWODNN/DEDNN methods with fitness calculated
based on test accuracy. Performance of our pro-
posed method variations were compared against mul-
tilayer perceptron classifier (MLP), with 5 hidden lay-
ers each with 100 neurons, k-nearest neighbor (KNN)
with number of neighbors set to 5 classifier and deci-
sion tree classifier (DT) with minimum number of sam-
ples required to split an internal node set to 2. Beside
the mentioned conventional classifiers, we also com-
pared the performance of our proposed method variants
against baseline DNN with an input layer, 2 hidden lay-
ers and an output layer. The first hidden layer is hav-
ing 12 neurons while the second is having 8 neurons,

both of them are utilizing ReLU activation function.
On the output layer, the Sigmoid activation function is
used. The same baseline DNN is used over all three
datasets, which provides us with the solid baseline per-
formance for further performance comparison against
our GWODNN/DEDNN variants.

4.3.1 Performance on Phishing Websites Data Set

The results of the performance of the classifiers on the
Phishing Websites Data Set is presented in Figure 1.
The best performing classifier with the average accu-
racy of 96.9% is MLP, closely followed by the DEDNN
- train and DT with the average accuracy of 96.6%. In
general, all classifiers performed comparable, except
the Base DNN and the KNN classifier which are lack-
ing behind 2.8% and 2.4%. Looking closer at the per-
formance of our proposed method variations, we can
see that none of them is performing noticeably better
than the others, with all the accuracies in the range of
0.6%.

Figure 1: Comparison of accuracy between our pro-
posed methods and other conventional classifiers using
10-fold cross validation on Phishing Websites Data Set.

4.3.2 Performance on Pima Indians Diabetes
Database

The performance of classifiers on the Pima Indians Di-
abetes Database is presented in Figure 2. With the
average accuracy of 72.6%, GWODNN - test proves to
be the best performing classifier by the noticeable mar-
gin of 2.1% against the second best the KNN classifier.
The worst performance achieved the DT classifier with
67.1% of average accuracy. Focusing on our methods,
we can see, that the GWODNN variations did outper-
form the DEDNN variations by a noticeable margin of
3.9% on the case of the test variations and by 1.0% on
the case of train variations. The best performing classi-
fier on the previous dataset - MLP classifier is lagging
behind the best performing classifier significantly by
the margin of 3.8%.
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Table 5: Average accuracy performance for all classifiers against all of the datasets

Phishing Websites Pima Indians Diabetes Bank Marketing

DEDNN - train 0.966 0.692 0.895
DEDNN - test 0.960 0.687 0.889
GWODNN - train 0.965 0.702 0.889
GWODNN - test 0.963 0.726 0.896
Base DNN 0.941 0.692 0.895
MLP 0.969 0.688 0.889
KNN 0.945 0.705 0.882
DT 0.966 0.671 0.874

Figure 2: Comparison of accuracy between our pro-
posed methods and other conventional classifiers us-
ing 10-fold cross validation on Pima Indians Diabetes
Database

4.3.3 Performance on Bank Marketing Data Set

The experimental results of the performance of the
classifiers on the Bank Marketing Data Set is presented
in Figure 3. Looking at the boxplots, we can see
that all of tested classifiers, except the DT, performed
somewhat similar. The best performing classifier is
GWODNN - test with the 89.6% of average accuracy.
The second best classifier, leaving out the results of our
method variations, is Base DNN with 89.5% lacking
behind the best performing classifier by 0.1%. Com-
paring the performance of our method variations, we
can see that results are ranging from 0.1% to 0.7%.

4.3.4 Performance comparison across all datasets

Shown in Table 5 are results of all average accuracy
performances for all of the tested classifiers and on all
datasets. In general, the GWODNN - test classifier per-
forms the best in two out of three datasets, achieving
the best performance on the Pima Diabetes Database
and Bank Marketing Data Set, while not much (0.6%)
lagging behind the MLP on the Phishing Websites Data
Set. Generally speaking, all of our proposed method
variants, were able to achieve high classification per-

Figure 3: Comparison of accuracy between our pro-
posed methods and other conventional classifiers using
10-fold cross validation on Bank Marketing Data Set

formance with no major performance drops throughout
all tested datasets, unlike the conventional classifiers,
which in some cases are lagging behind by a notice-
able margin. The same performance drops through-
out all tested datasets, can also be observed when
comparing the performance of base DNN against out
GWODNN/DEDNN variants performance.

5 Conclusions
In this paper, we presented a new approach utilizing a
population-based metaheuristics algorithms to design
a DNN topology in a straightforward automatic man-
ner. The results, obtained from conducted experiments,
have proven our method to be very promising, giving
us high classification performance on all of the tested
datasets, with no major performance drops, in compar-
ison with conventional classifiers.

In the future, based on those encouraging results, we
would like to expand our work with the use of differ-
ent algorithms (e.g. Cuckoo search algorithm and Par-
ticle swarm optimization), as well as tackle the prob-
lem of time complexity using such population-based
metaheuristics approach for designing a DNN topol-
ogy, with parallelization methods and techniques.
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