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Abstract. In this paper, we present a novel algorithm called STAPSO,
which comprises Scrum task allocation and the Particle Swarm Opti-
mization algorithm. The proposed algorithm aims to address one of the
most significant problems in the agile software development, i.e., iteration
planning. The actuality of the topic is not questionable, since nowadays,
agile software development plays a vital role in most of the organizations
around the world. Despite many agile software development methodolo-
gies, we include the proposed algorithm in Scrum Sprint planning, as
it is the most widely used methodology. The proposed algorithm was
also tested on a real-world dataset, and the experiment shows promising
results.
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1 Introduction

The idea of the iterative and agile development is all but new [1]. Ongoing chang-
ing priorities, desire to accelerate product delivery, the increase of productivity,
improvement of project visibility, and enhancing software quality [2] are the top
five reasons for adopting agile. Furthermore, in the report from Gartner Inc. [3],
which is the world’s leading research and advisory company, it is evident that
the traditional project and development methods, e.g., waterfall, are evermore
unsuitable [4, 5]. Consequently, we can state that agile software development is,
nowadays, not a competitive advantage anymore, but rather the need for the
organizations to survive on the market.

Regardless of the chosen agile method, e.g., Scrum, Kanban, Scrumban, XP
(extreme programming), and Lean, monitoring of its performance must be car-
ried out. Success in agile projects is most often measured by velocity in 67%,
followed by the iteration burndown (51%), release burndown (38%), planned
vs. actual stories per iteration (37%), and Burn-up chart (34%) [2]. However, a
prerequisite for a successful monitoring of the progress is undoubtedly precise
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iteration planning. The latter is not only the number one employed agile tech-
nique in the organizations [2], but also one of the hardest tasks, as is evident
from many scientific papers [6, 7] and interviews conducted with different CIOs
(Chief Information Officers). Also, each task defined in a given iteration must be
estimated precisely. The estimation can be conducted with various techniques [8,
2], e.g., number sizing (1, 2, . . . , 10), Fibonacci sequence (1, 2, 3, 5, 8, . . . ), and
T-shirt sizes (XS, S, M, L, XL, XXL or XXXL). However, we must not forget
about dependencies between tasks which result in the implementation order.

Thus, from an apparently simple problem arises a considerable optimization
problem that is dealt with daily in organizations all around the world. When
dealing with numerous dependencies and tasks, solving a problem by hand be-
comes very hard. On the contrary, we propose a systematical solution that is
based on nature-inspired algorithms. Nature-inspired algorithms are a modern
tool for solving hard continuous and discrete problems. They draw inspiration
for solving such problems from nature. Until recently, more than 100 nature-
inspired algorithms have been proposed in the literature [9], where Particle
Swarm Optimization (PSO) [10] is one of the oldest and well-established nature-
inspired algorithms. Many studies have proved theoretically and practically that
PSO is a very simple, as well as efficient algorithm [11, 12] appropriate even for
real-world applications [13].

In this paper, we show the modifications of the basic PSO algorithm that
is applied to the problem of Scrum task allocation. The new algorithm, called
STAPSO, is developed, implemented, and tested on a real dataset.

We believe that this is the first work that deals with the problem of Scrum
task allocation in the optimization domain. Altogether, the purpose of this paper
is to:

– represent Scrum task allocation as an optimization problem,
– propose the Particle Swarm Optimization algorithm for solving Scrum task

allocation, or simply STAPSO, and
– test the proposed algorithm on a real dataset.

The structure of this paper is as follows: Section 2 outlines the fundamentals
of Scrum, while Section 3 describes the fundamentals of the PSO algorithm, to-
gether with STAPSO algorithm. Section 4 presents the design of the experiment,
along with the results in Section 5. The paper concludes with a summary of the
performed work and future challenges.

2 Scrum

Scrum is the most used agile methodology, with 58% share of the market [2] and
is by definition “a framework for developing, delivering, and sustaining complex
products” [14, 15]. It consists of three primary roles, i.e. the Scrum Master, the
Product Owner, and the Development Team. In the organizations, the Scrum
Master is responsible for Scrum promotion and offers support regarding Scrum
theory, values, and practices. Product Owner is a focal role since it is connected
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with the development team and the stakeholders. Two of his/her primary goals
are to maximize the value of the product, and definition of the user stories from
the product backlog. The remaining role, i.e., the Development Team, is liable
for product increment delivery at the end of each Sprint. The Development Team
is cross-functional and self-organizing, meaning that the people in it have all the
skills required to deliver the product successfully.

Fig. 1. The Scrum framework.

In Scrum, the process starts with the Product Owners’ definition of the
product backlog, which is a prioritized list of user stories (see Fig. 1). Afterwards,
Sprint Planning starts. At this meeting, the team decides which user stories from
the Product Backlog will be carried out in the upcoming Sprint (because the
Product Backlog is prioritized, they pull user stories from the top of the list).
The newly created document is called a Sprint Backlog and contains an in-
depth description of the chosen user stories. After that, everything is ready for
the beginning of the Sprint, that usually lasts between one and four weeks. Each
day of the Sprint starts with a brief daily Scrum (short stand-up meeting) at
which the Development Team exchanges opinions regarding the previous day
and highlights possible problems. At the end of each Sprint, Sprint Review and
Sprint Retrospective are carried out by the Development Team and the Product
Owner, with the intention to find the potential for improvement.

For the calculation of the optimal line, it is necessary to determine the du-
ration of the Sprint first (n days). For example, if we decide on the two week
long Sprints, the Development Team actually has ten working days, assuming
Saturday and Sunday are free days. After that, based on tasks from the Sprint
Backlog, the total estimated effort (t effort) is obtained as their sum. Optimum
per day (opt d) can now be calculated by Eq. 1.

opt d =
t effort

n days
(1)
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Ideal or optimal line (Oline) is derived from linear function f(x) = ax + b
and is presented by Eq. 2, where x denotes the specific day of the Sprint.

Oline = − t effort
n days

∗ x+ t effort (2)

Current line (Cline) is calculated by Eq. 3, where Edone denotes the sum-
marized effort of the tasks per given day.

Cline = Oline(x)− (Oline(x− 1)− Edone) (3)

3 Particle Swarm Optimization for Scrum task allocation

In this Section, the proposed algorithm called STAPSO is described in detail.
Since the algorithm is based on the PSO, its explanation is divided into two Sub-
sections. Subsection 3.1 depicts the fundamentals of the PSO, and Subsection 3.2
presents the proposed algorithm in detail.

3.1 Fundamentals of PSO

The PSO algorithm [10] preserves a population of solutions, where each solution
is represented as a real-valued vector x = (xi,1, . . . , qi,D)T for i = 1, . . . ,Np and
j = 1, . . . ,D , and the parameter Np denotes the population size, and the param-
eter D dimension of the problem. This algorithm explores the new solutions by
moving the particles throughout the search space in the direction of the current

best solution. In addition to the current population x
(t)
i for i = 1, . . . ,Np, also

the local best solutions p
(t)
i for i = 1, . . . ,Np are preserved, denoting the best i-

th solution found. Finally, the best solution in the population g(t) is determined
in each generation. The new particle position is generated according to Eq. (4):

v
(t+1)
i = v

(t)
i + C1U(0, 1)(p

(t)
i − x

(t)
i ) + C2U(0, 1)(g(t) − x

(t)
i ),

x
(t+1)
i = x

(t)
i + v

(t+1)
i ,

(4)

where U(0, 1) denotes a random value in interval [0, 1], and C1 and C2 are
learning factors. Algorithm 1 depicts the original PSO algorithm.

Interestingly, many surveys have recently revealed that the PSO algorithm
was used in numerous real-world applications [13, 16]. However, the presence
of the PSO algorithm in the software engineering research area is still in the
minority.

In the next Subsection, the proposed STAPSO algorithm is presented for the
Scrum task allocation problem.
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Algorithm 1 Pseudocode of the basic PSO algorithm

Input: PSO population of particles xi = (xi1, . . . , xiD)T for i = 1 . . . Np, MAX FEs.
Output: The best solution xbest and its corresponding value fmin = min(f(x)).
1: init particles;
2: eval = 0;
3: while termination condition not meet do
4: for i = 1 to Np do
5: fi = evaluate the new solution(xi);
6: eval = eval + 1;
7: if fi ≤ pBesti then
8: pi = xi; pBesti = fi; // save the local best solution
9: end if

10: if fi ≤ fmin then
11: xbest = xi; fmin = fi; // save the global best solution
12: end if
13: xi = generate new solution(xi);
14: end for
15: end while

3.2 STAPSO algorithm

The following Section depicts the process of a Scrum task allocation problem
using the STAPSO algorithm. For this problem, the following three modifications
were applied to the basic PSO algorithm:

– representation of individuals,
– design of fitness function, and
– constraint handling.

Representation of individuals Candidate solutions in the basic PSO al-
gorithm are represented as real-valued vectors x, whilst a Scrum task alloca-
tion problem demands an integer vector y symbolizing the effort of a particular
task. For that reason, mapping between representation of solutions in real-valued
search space to the solution in a problem space is needed. In a STAPSO, this
mapping is conducted in a similar manner as it was done for the problem of sport
training sessions’ planning [17]. A candidate solution in the proposed STAPSO
algorithm is also represented, using the real-valued vector xi = {xi0, . . . , xin}T
for i = 1 . . . n with elements xij ∈ [0, 1]. In order to obtain effort values for fitness
function calculation, firstly the permutation of task effort πi = {πi1, . . . , πin} is
mapped from the vector xi such that the following relation is valid:

xiπi0
< xiπi1

< . . . < xiπin
. (5)

Vector yi = {yi0, . . . , yin}T is determined from task description, Table 1. Table 2
presents an example of mapping the candidate solution xi via permutation of
task effort πi to the final task allocation.
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Table 1. Task description table (example)

Task ID Effort

0 3
1 2
2 4
3 3
4 5

Table 2. Candidate solution mapping

Dimension j

Elements i 0 1 2 3 4
Candidate solution xi 0.70 0.42 0.21 0.94 0.52
Permutation πi 3 1 0 4 2
Task allocation yi 3 2 3 5 4

Fitness function Fitness function is calculated according to Eq. 6 as follows:

f(x) = |
n days∑

j=0

(calculated effort per dayj)| (6)

where n days denotes the number of days, and calculated effort per day is cal-
culated effort for every day according to the constraint:

∀d ∈ {1, 2, . . . , n days},∀t ∈ {1, 2, . . . , n tasks(d)},
t∑

i=1

effort(i) ≤ opt d
(7)

where the variables d and t denote the current day of the Sprint, and the number
of tasks per day, respectively. Final effort per day is then calculated as the sum
of the tasks’ efforts, that should not exceed the value of the opt d (Eq. 1).

Constraint handling As discussed in previous Sections, there is sometimes a
particular order (dependency) of some tasks. In other words, it means that one
task must be completed before the beginning of another task. Most candidate
solutions that are obtained according to mapping in Table 2 are unfeasible, i.e.,
they violate the dependency conditions. In our case, unfeasible solutions are pe-
nalized. Algorithm 2 presents our solution for handling constraints, where the
function is violated() checks if the dependency condition is violated. If the de-
pendency condition is violated, the algorithm assigns a very high penalty [18]
value to this particle. Despite many constraint handling methods, our penaliza-
tion method behaves very well on the current problem. For that reason, we have
not tested the behavior of any other constraint handling methods yet [19].
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Algorithm 2 Constraint handling in STAPSO

1: violations = 0;
2: fitness = f(x);{calculated by Eq. 6}
3: for i = 1 to NumRules do
4: if is violated() then
5: violations = violations+ 1;
6: end if
7: end for
8: if violations > 0 then
9: fitness = violations ∗ 1000;

10: end if

4 Experiment

The experimental approach was used in order to show the power of the STAPSO
algorithm. Thus, Subsection 4.1 comprises parameter settings of the algorithm
and the computer environment, and Subsection 4.2 presents test data, along
with the constraints on Scrum tasks that were used in this study.

4.1 Setup

Experiments were conducted on an Intel XEON Z240 computer. STAPSO is
implemented in the Python programming language without using any special
software libraries. The algorithm ran on a Linux Ubuntu 16.04 operating system.
After the extensive parameter tuning, the following parameter settings were used
based on their best performance:

– population size Np: 75,
– dimension of the problem D: 60,
– number of function evaluations per run MAX FEs = 30000,
– total runs: 25,
– cognitive component C1 = 2.0,
– social component C2 = 2.0,
– velocity: [-4, 4],
– number of days: 10,
– number of Sprint: 1.

4.2 Test data and constraints

Table 4 presents test data that were used in this study. Test data for such
experiments is very hard to get due to the company policy of confidential data.
Thus, the source of test data is an internal project that was conducted within our
laboratory. In Table 4, Task ID denotes the identification number of a particular
task, while Effort symbolizes the effort of this task. In this study, the following
constraints were considered:

Ψ = {(T7, T3), (T6, T22), (T4, T58), (T33, T31)}.
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Thereby, Ψ denotes the implementation order of the tasks, i.e., task T7 must
be implemented before task T3, task T6 must be implemented before task T22,
etc. In the context of the algorithm, this means that all of the possible solutions
must obey all of the given constraints and provide legitimate task allocation also
considering Eq. 2 and Eq. 3.

5 Results

In the total of 25 runs, an optimal solution was found 20 times (i.e. success rate:
80%), meaning that no tasks were left behind for the next Sprint. In three cases
(12%), the algorithm did not allocate one task with the estimated effort of 1, and
in two cases (8%), the algorithm did not allocate one task estimated with the
effort of 2. We want to highlight that all constraints presented in Subsection 4.2
were satisfied in all runs. On average, an optimal solution was found after 5533
function evaluations.

Table 3 comprises an in-depth description of one optimal solution. The latter
presents the sequence of tasks’ implementation for one Sprint, which is described
with the Task IDs (column 2) and belonging tasks’ effort (column 3). Per each
day, the number of tasks and remaining effort is recorded, respectively.

Table 3. Example of task allocation from Table 4 (optimal solution)

Day Tasks allocated Tasks’ effort
Number Effort

of tasks remaining

1 4, 12, 15, 17, 21, 32, 42 5, 3, 1, 1, 1, 2, 2 7 0

2 43, 27, 49, 48, 58, 33 3, 3, 3, 1, 1, 4 6 0

3 51, 7, 50, 5 1, 5, 4, 5 4 0

4 24, 26, 45, 35, 57, 54, 25 2, 1, 2, 2, 4, 2, 2 7 0

5 18, 10, 29, 16 2, 5, 3, 5 4 0

6 6, 22, 8, 53, 31 5, 4, 3, 1, 2 5 0

7 28, 44, 19, 0, 30, 3 4, 2, 1, 2, 4, 2 6 0

8 1, 14, 20, 37, 40, 52, 23, 38 2, 2, 2, 1, 1, 3, 3, 1 8 0

9 56, 34, 41, 11, 2, 9, 13 2, 3, 1, 2, 1, 3, 3 7 0

10 36, 39, 46, 47, 55, 59 3, 2, 4, 2, 2, 2 6 0
∑ 60 150 60 0

Fig. 2 and Fig. 3 present the same proposed solution of the STAPSO al-
gorithm, where two tasks with the estimated effort of 1 were not allocated. A
non-optimal solution was chosen deliberately for easier explanation of the results
and deviations. Fig. 2 presents the solution in the form of the burndown chart,
and Fig. 3 shows allocated tasks per day of the Sprint.

In Scrum, a burndown chart is one of the most frequently used graphs to
present the current state of the work of the project [2, 20]. On the abscissa axis
(Fig. 2), days of the Sprint are displayed, and on the ordinate axis, the remaining
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Fig. 2. Burndown chart of non-optimal solution (chosen deliberately for easier expla-
nation of the results)

effort of the Sprint. The preparation of such a graph is carried out in several
stages. Firstly, the optimal line is drawn. The optimal line is calculated with
Eq. 2 and shows an ideal or optimal course of the implementation of the tasks.
In Fig. 2, this line is colored with red. As stated before, all tasks are estimated
with effort (see Table 4) and with their fulfillment, we can monitor remaining
effort in a Sprint. If we look at the first day of the Sprint in Fig. 2, we can
see that ideal effort completed per day is 15 (calculated with Eq. 1). Thus, the
Development Team should, on their first day, complete tasks with the sum of the
effort of at least 15. As we can see from Fig. 3, algorithm STAPSO for the first
day allocated 5 tasks with the estimated effort sum of 14, meaning that, after
the first day, the Development Team is one effort behind the optimal line (see
blue line). In a real-world scenario, we can witness lines that are similar to the
green line. From the latter, it is evident that the Development Team was behind
the optimal line for the first four days, and on day 3 (point A) they fulfilled
tasks with the effort sum of only 4. However, after the third day, the fulfillment
of tasks went very quickly, so in two days they caught up and were in front of the
optimal line on day five (point B). Point C shows that the progress has stopped
on day 8 (they were behind the optimal line again), and they stayed behind it
until the end of the Sprint.

In Fig. 3 the days of the Sprint show the allocated tasks given by the STAPSO
algorithm. As we have said in the description of Fig. 2, the optimal effort sum
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Fig. 3. Task allocation of non-optimal solution (chosen deliberately for easier explana-
tion of the results)

per day is 15 (maximum value of the ordinate axis). This sum is also the value
that the algorithm is trying to achieve per day. If we look at the results, on the
first day the STAPSO algorithm allocated five tasks, i.e., T1, T2, T4, T8, and
T12 (see Table 4), with the sum of effort of 14. On the second day, a sum of
effort of 15 is fulfilled with the tasks T20, T29, T41, T42, T43, T48, and T52,
etc. This kind of graph is beneficial for the Development Team and the Product
Owner, since they have allocated tasks from the beginning of the Sprint.

6 Conclusion

A novel algorithm STAPSO was implemented and tested successfully on a real
dataset. It offers a solution to the global problem of task allocation in the agile
software development. The STAPSO algorithm can be applied to all of the known
estimation techniques, e.g. number sizing, Fibonacci sequence, and T-shirt plan-
ning. Furthermore, it can be included in companies regardless of their size and
maturity degree.

In the design of the algorithm, there is still significant room for improvement.
In the future, we intend to study the impact of various constraint handling meth-
ods and variants of PSO on the behavior of the STAPSO algorithm. Hybridiza-
tion of STAPSO with any other well-established algorithms, e.g., Differential
Evolution is also a sparkling way for future research.
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Since we have not found any similar algorithms for Scrum task allocation that
are based on nature-inspired algorithms yet, we believe that this study could be
a stepping stone for more links between the vibrant agile software development
research area and optimization.
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Test data

Table 4. Test data

Task ID Effort Task ID Effort
T0 2 T30 4
T1 2 T31 2
T2 1 T32 2
T3 2 T33 4
T4 5 T34 3
T5 5 T35 2
T6 5 T36 3
T7 5 T37 1
T8 3 T38 1
T9 3 T39 2
T10 5 T40 1
T11 2 T41 1
T12 3 T42 2
T13 3 T43 3
T14 2 T44 2
T15 1 T45 2
T16 5 T46 4
T17 1 T47 2
T18 2 T48 1
T19 1 T49 3
T20 2 T50 4
T21 1 T51 1
T22 4 T52 3
T23 3 T53 1
T24 2 T54 2
T25 2 T55 2
T26 1 T56 2
T27 3 T57 4
T28 4 T58 1
T29 3 T59 2
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