
Swarm Intelligence Approaches for Parameter Setting of Deep
Learning Neural Network: Case Study on Phishing Websites

Classification
Grega Vrbančič

University of Maribor, Faculty of
Electrical Engineering and Computer

Science
SI-2000 Maribor, Slovenia
grega.vrbancic@um.si

Iztok Fister Jr.
University of Maribor, Faculty of

Electrical Engineering and Computer
Science

SI-2000 Maribor, Slovenia
iztok.fister1@um.si

Vili Podgorelec
University of Maribor, Faculty of

Electrical Engineering and Computer
Science

SI-2000 Maribor, Slovenia
vili.podgorelec@um.si

ABSTRACT
In last decades, the web and online services have revolutionized
the modern world. However, by increasing our dependence on
online services, as a result, online security threats are also increas-
ing rapidly. One of the most common online security threats is
a so-called Phishing attack, the purpose of which is to mimic a
legitimate website such as online banking, e-commerce or social
networking website in order to obtain sensitive data such as user-
names, passwords, financial and health-related information from
potential victims. The problem of detecting phishing websites has
been addressed many times using various methodologies from
conventional classifiers to more complex hybrid methods. Recent
advancements in deep learning approaches suggested that the clas-
sification of phishing websites using deep learning neural networks
should outperform the traditional machine learning algorithms.
However, the results of utilizing deep neural networks heavily de-
pend on the setting of different learning parameters. In this paper,
we propose a swarm intelligence based approach to parameter set-
ting of deep learning neural network. By applying the proposed
approach to the classification of phishing websites, we were able
to improve their detection when compared to existing algorithms.

CCS CONCEPTS
• Computing methodologies → Search methodologies; Neu-
ral networks; • Security and privacy → Human and societal
aspects of security and privacy;

KEYWORDS
Machine learning, neural networks, optimization, phishing, website
classification

ACM Reference Format:
Grega Vrbančič, Iztok Fister Jr., and Vili Podgorelec. 2018. Swarm Intel-
ligence Approaches for Parameter Setting of Deep Learning Neural Net-
work: Case Study on Phishing Websites Classification. In WIMS ’18: 8th

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WIMS ’18, June 25–27, 2018, Novi Sad, Serbia
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5489-9/18/06. . . $15.00
https://doi.org/10.1145/3227609.3227655

International Conference on Web Intelligence, Mining and Semantics, June
25–27, 2018, Novi Sad, Serbia. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3227609.3227655

1 INTRODUCTION
In recent years, we are witnessing an enormous increase of online
services such as online banking, entertainment, shopping, educa-
tion and social networking. Numerous people use such internet
amenities because of the ease of their use and because it saves them
time and money.

On the other side, with such rapid growth of online services, we
are also witnessing a rapid increase of online security threats such
as Pharming, Spoofing and Phishing. The latter is according to the
Internet Crime Report from 2016 [8], one of the most popular online
crime types which affected around 20 thousand people just last year,
resulting in around 31 million dollars of financial loss. Statistics
from the Anti-Phishing Working group published in June 2017 [2]
are showing a 10% increase of unique phishing attacks worldwide
from attacks identified in 2015. Most of the attacks are targeted at
primary industry sectors, with financial institutions, e-commerce,
social networking and money transfer companies being targeted in
over three-quarters of all phishing attacks.

Phishing attack is a type of extensive fraud that happens when a
malicious website acts, looks and feels almost identical to the legit-
imate one, keeping in mind that the end goal is to obtain victim’s
sensitive data. Phishing attacks impact many actors, from indi-
viduals to the corporate and government agencies whose brands
are deceptively used [15]. The victims of phishing attacks often
find their personal or financial information, such as their credit
card numbers, health or insurance information, email, addresses,
login credentials and other sensitive data, stolen. Once that kind
of information is stolen, it can be used to create fake accounts in
the victim’s name which can have a severe impact on their credit
ratings or prevent the victim from accessing their own accounts,
leading to a lack of financial credibility [13].

The aforementioned consequences of phishing attacks clearly
demonstrate that there is a need for a robust anti-phishing solu-
tion for this continuously evolving internet threat. The literature
suggests several conventional techniques for detecting phishing
websites. However, the decision regarding phishing websites using
those techniques was predicted imprecisely [3, 23], which led to
the classification of legitimate websites as phishing. In general, two
most popular approaches are used to detect the phishing websites:

https://doi.org/10.1145/3227609.3227655
https://doi.org/10.1145/3227609.3227655
https://doi.org/10.1145/3227609.3227655

WIMS ’18, June 25–27, 2018, Novi Sad, Serbia Grega Vrbančič, Iztok Fister Jr., and Vili Podgorelec

blacklist and whitelist based approaches and intelligent heuristic-
based approaches [4, 23]. The downside of the first approach is
that the blacklist usually cannot cover all phishing websites since
a newly created phishing website takes a considerable amount of
time before it is added to the list. In contrast to blacklist based
approach, the use of intelligent heuristic-based approaches can
recognize freshly created phishing websites in real time [19].

In last few years, with recent advancements in the field of ma-
chine learning, some intelligent phishing detection methods have
been suggested in order to effectively predict phishing websites.
In [22] authors are tackling the problem with the self-structuring
neural network, in [29] a complex hybrid model was proposed,
combined from various different classification methods such as
Naive Bayes, Bayes Net, Random Forest, Decision Tree, Support
Vector Machines (SVM), etc. In addition, different kinds of neural
networks (NNs) have been employed in the detection of phishing
websites. For example, in [27] authors have used a convolutional
neural network (CNN) as a part of their approach to automating
feature extraction and in [30, 31] the authors also presented the
different approaches for tackling the problem of detecting phishing
websites with the use of NNs.

While comparing the results of different classification methods
used, we can see that in most cases NNs fall behind the conventional
classification methods such as Random Forest, Random Tree, J48,
etc. which is not surprising at all. The biggest drawback in the
usage of NNs is definitely finding the right learning parameters
and topology configuration, to get the best results out of them. The
biggest challenge in finding the right parameters settings for the
NNs is that there is no general rule or recipe to follow, which would
guarantee you a good outcome. It more or less depends on our
previous experience and trying out different configurations.

In our work we propose a novel method, titled as TDLBA or
TDLHBA (Tuning Deep Learning using Bat/Hybrid Bat Algorithm)
which combines swarm intelligence approaches for parameter set-
tings of deep learning neural network. The main goal of our re-
search is to study whether a NN with parameters set by utilizing
our proposed method will give us better classification accuracy
than NN with recommended, sane settings. The main advantage
of the proposed method is the very straightforward usage with
various feed-forward NN topologies and different datasets, without
need to manually search for right learning parameters.

The remaining of the paper is organized as follows. Section 2
briefly describes methods we used. In Section 3 we present the
proposed TDLBA/TDLBHA method, whose results on predicting
phishing websites are presented in Section 4. Our conclusions and
final thoughts are gathered in Section 5.

2 METHODS
2.1 Swarm Intelligence
In order to tackle the optimization problems that were arising in
almost every domain of human endeavor, scientists were looking
back to the nature to get inspiration for the design of complex al-
gorithms. Such algorithms mostly mimic the biological features of
some fascinating animal species, as for example ants, bees, bats or
fireflies. Roughly speaking, these species are capable of decentral-
ized decision making, coordinated movement as well as collective

behavior. Algorithms that are based on these features belong to the
family of swarm intelligence algorithms. In the past years, many
surveys have shown how promising these algorithms are for solv-
ing problems in various domains. Due to the popularity of this
research area, many swarm intelligence algorithms were proposed.
However, our study is based on bat algorithm (BA) [34] and hybrid
bat algorithm (HBA) [10]. Both algorithms are characterized in the
next subsection.

2.1.1 Bat algorithm. Bat algorithm is the member of swarm
intelligence family that is inspired by the behavior of micro-bats.
BAwas developed by Xin-She Yang in 2010 [34]. Interestingly, some
origins of BA can also be found in particle swarm optimization
algorithm and simulated annealing heuristics. Pseudocode of basic
BA is presented in Alg. 1, where parameter D denotes dimension of
the problem, Np is population size,MAX_FE is number of function
evaluations, Ai is loudness and ri is pulse rate.

Algorithm 1 Original Bat algorithm
Input: Bat population xi = (xi1, . . . ,xiD)

T for i = 1 . . .Np,
MAX_FE.

Output: The best solution xbest and its corresponding value
fmin = min(f (x)).1: init_bat();

2: eval = evaluate_the_new_population();
3: fmin = find_the_best_solution(xbest);
4: while termination_condition_not_meet do
5: for i = 1 to Np do
6: y = generate_new_solution(xi);
7: if rand(0, 1) > ri then
8: y = improve_the_best_solution(xbest)
9: end if
10: fnew = evaluate_the_new_solution(y);
11: eval = eval + 1;
12: if fnew ≤ fi and N(0, 1) < Ai then
13: xi = y; fi = fnew ;
14: end if
15: fmin=find_the_best_solution(xbest);
16: end for
17: end while

Main components of BA are the following:
• initialization: the initial population is being generated as
well as evaluated,

• generation of the new solution: virtual bats are moved within
the search space according to the physical rules of echoloca-
tion,

• local search step: the best solution is improved using random
walk direct exploitation heuristic,

• evaluation of new solution: evaluating the new solution,
• conditional saving of best solution: the new best solution is
saved under some probability Ai ,

• finding the best solution: finding the current best solution.
Interested readers are invited to check a more detailed descrip-

tion of BA in paper [34].

2.1.2 Hybrid bat algorithm. Hybrid bat algorithm or simply
HBA [10] is one of the first hybrid variants of BA. HBA is hybridized

Parameter setting of deep learning neural network for phishing websites classification WIMS ’18, June 25–27, 2018, Novi Sad, Serbia

with themutation strategies of differential evolution. In other words,
random walk step from the original bat algorithm is eliminated and
changed by the mutation strategy. A short pseudocode is presented
in Algorithm 2. HBA has achieved very promising performance
when solving small-scale global optimization problems. For that rea-
son, HBA is also evaluated on the problem of tuning neural network
parameters that belong to small-scale optimization problems.

Algorithm 2 HBA
1: if rand (0, 1) > ri then
2: ri=1. . .3 = ⌊rand(0, 1) ∗ Np + 1⌋;
3: n = rand(1, D);
4: for i = 1 to D do
5: if ((rand(0, 1) < CR) | |(n == D)) then
6: yn = xr 1,n + F ∗ (xr 2,n − xr 3,n);
7: n = (n + 1)%(D + 1);
8: end if
9: end for
10: end if

2.2 Deep learning
A standard NN as we know for decades, consists of many simple
connected processors known as neurons, each producing a sequence
of real-valued activations. In the most widely used type of NN,
neurons are stacked together in form of layers. The first layer,
known as an input layer, consists of neurons which get activated
through sensors perceiving the environment. The outputs of the
previous layer become the weighted input to the next layer, with
no interconnections of neurons within each layer. Learning such
NN is about finding the right weights that make the NN exhibit
desired behaviour [11, 28].

Depending on problems, the process of training a NN may take
long causal chains of computational stages, where each stage trans-
forms (mostly in a non-linear way) the aggregate activation of NN.
Deep learning is about accurately assigning credit across many
such stages. Since 1980 back-propagation played an important role
as an efficient gradient descent algorithm. It trains the NNs with
a teacher-based supervised learning approach [18]. Many of deep
learning applications use feed-forwardNN topologies (Fig. 1), which
learn fixed-size input to a fixed size output (e.g. probability for each
of several categories). Going from one layer to the next, a set of
weighted sum is computed from the inputs of the previous layer
and passed through a non-linear function. Currently most popular
non linear function is the rectified linear unit (ReLU), which is the
half-wave rectifier f (z) =max(z, 0). Opposed to other previously
most commonly used smoother non-linearities, such as tanh(z)
or 1/(1 + exp(−z)), ReLU typically learns much faster, especially
in networks with many hidden layers, allowing training of deep
supervised network without unsupervised pre-training [12, 16].

Beside feed-forward NN the most widely used type of NN topol-
ogy is a recurrent neural network (RNN), which contains feedback
connections from neurons in the subsequent layers to neutrons
in the preceding layers. This implied that the output of such NN
not only depends on the external inputs but also on the state of
the network in the previous training iteration [22]. RNNs are very

Figure 1: Simple feed-forward NN topology with one hidden
layer

powerful dynamic systems, mostly used for tasks which involve
sequential inputs such as speech and language, but training them
has proved to be problematic [16].

3 PROPOSED METHOD
Our proposed method for parameter setting of deep learning NN is
presented in Alg. 3. The method is based on the modified bat and
hybrid bat algorithm variants named TLDBA and TDLHBA. The
task of optimizers TLDBA/TLDHBA is to find optimal parameter
settings for the NN. In our case, we took the following parameters
in account: the number of epochs, batch size, learning rate and the
number of neurons in the first hidden layer (the number of neurons
in the second hidden layer is fixed).

As we can see fromAlg. 3, most of the steps are actually similar to
steps presented in Alg. 1. However, the most important components
that differ from Alg. 1 are the following:

• representation of individuals,
• design of fitness function, and
• design of the NN.

All three components are described in detail in the next subsec-
tions.

Algorithm 3 Proposed method
Output: The best model with parameters set based on best

solution
1: BA.init();
2: while termination_condition_not_meet do
3: solution = BA.get_best_solution();
4: epoch = map_epoch(solution[0]);
5: batch = map_batch(solution[1]);
6: learning_rate = map_learning_rate(solution[2]);
7: num_neurons = map_num_neurons(solution[3]);
8: fitness = train_and_eval(epoch, batch,

learning_rate, num_neurons);
9: BA.generate_new_solution(fitness);
10: end while
11: best = create_model(BA.get_best_solution());

WIMS ’18, June 25–27, 2018, Novi Sad, Serbia Grega Vrbančič, Iztok Fister Jr., and Vili Podgorelec

3.1 Representation of individuals
Individuals in TDLBA and TDLHBA are presented as real-valued
vectors:

x(t)i = (x
(t)
i,0, . . . ,x

(t)
i,n), for i = 0, . . . ,Np − 1, (1)

where each element of the solution is in the interval x (t)i,1 ∈ [0, 1].
Real values are then mapped according to equations 2, 3 and 4

where y1 stands for number of epochs, y2 for batch size and y4 for
learning rate used to train NN. The value y3 is representing the
number of neurons in first hidden layer of our NN topology.

y1 = ⌊x[i] ∗ 100 + 100⌋;y1 ∈ [100, 200] (2)

y2,y3 =

⌊
x[i] ∗ 100

2
+ 10

⌋
;y2,y3 ∈ [10, 60] (3)

y4 =
x[i]

10
∈ [0, 0.1] (4)

3.2 Fitness function
We defined fitness function using the accuracy of classification
calculated on the validation set. Formally we can express fitness
function as presented in equation (5), where acc stands for pre-
viously mentioned accuracy. Because BA and HBA are basically
designed to search for the global minimum, we are converting the
problem of searching maximal accuracy to the problem of searching
for the minimum with the subtraction of the accuracy from value 1.

f (acc) = 1 − acc (5)

3.3 Neural network
For topology of NN, we propose a feed-forward NN with at least
one fully-connected hidden layer. The width of the latter would be
a y3 value from equation (3) in the above subsection. For binary
classification problems, we propose using non-linear activation
function ReLU on hidden layers and sigmoid function on output
layer. Instead of conventional stochastic gradient descent optimizer
we propose ADAM [14] optimizer, which is designed to combine
the advantages of two recently popular methods: AdaGrad [7] and
RMSProp [32].

4 EXPERIMENTS AND RESULTS
4.1 The Phishing Websites dataset
To conduct the experiments of predicting phishing websites with
the proposed approach, the Phishing Websites Data Set [20] from
the UCI Machine Learning repository [17] was used, prepared by
Mohammad et al. [21]. The basic information of this dataset is
presented in Table 1.

There are different approaches to tackle the problem of identi-
fication of phishing websites reported in literature [3]. Typically,
the two most technical methods in fighting phishing attacks are
the blacklist and the heuristic-based [1, 9]. In the blacklist method,
the requested URL is compared with a predefined phishing URLs.
The downside of this method is that it typically doesn’t deal with
all phishing websites since a newly launched fake website takes a

Parameter Value

Number of features 31

Number of instances 11,055

Number of classes 2 classes

Distribution of classes 3,793 phishing websites

7,262 legitimate websites

Table 1: The basic information about the Phishing Websites
dataset

substantial amount of time before being added to the list. In con-
trast to the blacklist approach, the heuristic-based approach can
recognize newly created fake websites in real-time [19].

The heuristic-based approach has been also applied in the case of
preparing the Phishing Websites dataset [21]. The authors defined
an approach for extracting features from the web page itself rather
than user experience. First, the authors examined whether a page
contains any text fields since a phishing web page requires users to
input credentials through those fields [5]. If a page has at least one
text input then they proceeded to extract the other features. After
extracting the features, the authors collected a number of URLs from
the PhishTank data archives [25], which are free community sites
for sharing phishing data, using their tool. Based on the analysis of
each extracted feature’s frequency within the collected addresses,
the importance of a feature was reflected, and finally, the heuristic
rules for determining whether a specific website is a phishing one
or not regarding a specific feature were devised.

There are many features that can possibly distinguish phishing
websites from other (legitimate) types of websites in the research
literature of phishing. In this manner, the constructed features
belong to one of the following groups: Address Bar based features,
Abnormal based features, HTML and JavaScript-based features, and
Domain-based features. Altogether 30 features were constructed.
Some of the most important features are presented in Table 2.

The constructed features, shown in Table 2 can take either a bi-
nary or ternary values, where binary features hold either "phishy"
or "legitimate" status because the existence or lack of the feature
within the website determines the value assigned to it. For ternary
value features, which can also hold the value "suspicious", the exis-
tence of the feature in a specific ratio determines the value assigned
for that feature.

All the features’ values have been determined in accordance
with a set of heuristic rules, devised to best reflect the presence of
potentially phishy websites [3, 21]. For example, let us examine the
feature "Sub-domain and multi sub-domain". A technique used by
phishers to scam users is by adding a sub-domain to the URL so
users may believe they are dealing with an authentic website. In
this manner, the following heuristic rule can be devised:

IF

dots in domain part < 3 =⇒ leдitimate
dots in domain part = 3 =⇒ suspicious

else =⇒ phishy

Parameter setting of deep learning neural network for phishing websites classification WIMS ’18, June 25–27, 2018, Novi Sad, Serbia

Group Features

Address bar based features Using the IP address
Long URL to hide the suspicious part

URL having @ symbol
Adding prefix or suffix to domain
Sub-domain and multi sub-domain

Fake HTTPS and SSL
...

Abnormal based features Request URL
URL of anchor

Server form handler
Abnormal URL

...

HTML and JavaScript based features Redirect page
Hide the link using onMouseOver

Disabling right click
Using pop-up window

...

Domain based features Age of domain
DNS record
Web traffic

...

Table 2: Some of the most important features, used to detect the phishing websites

Similar heuristic rules have been determined for all other features
as well. For more information please see [3, 21].

4.2 Experimental settings
4.2.1 BA and HBA parameters. For initialization parameters of

BA and HBA algorithms, we used values presented in Table 3.
Initialized with given parameters, BA and HBA are used for

searching for optimal values for the number of epochs, batch size,
learning rate and the number of neurons in the first hidden layer
of NN. In our experiment, we used a 20% validation split for the
purpose of calculating accuracy needed for evaluation of fitness
function presented in Section 3.3.

4.2.2 Neural network. For the purpose of the experiment, we
defined feed-forward NN with two fully connected hidden layers
and a fully-connected output layer with a single neuron. The width
(number of neurons) of the first hidden layer is set dynamically,
based on the parameters passed in the initialization phase. The
number of neurons in the second hidden layer is set to 30, the same
as in the input layer which is matching the number of features in
the dataset.

Both hidden layers are using a non-linear activation function
ReLU, while the output layer is using sigmoid. As proposed in
Section 3.3, we used ADAM as the optimizer function.

Parameter BA HBA

Dimension of the problem 4 4

Population size 40 40

Number of generations 100 100

Loudness 0.5 0.5

Pulse rate 0.5 0.5

Min. frequency 0.0 0.0

Max. frequency 2.0 2.0

Lower bound 0.0 0.0

Upper bound 1.0 1.0

F (Scaling factor) 0.5

CR (Crossover probability) 0.5

Table 3: Used parameter values for BA and HBA algorithms

The number of neurons in the first hidden layer of NN for the
experiment for handpicked NN was set to 30.

WIMS ’18, June 25–27, 2018, Novi Sad, Serbia Grega Vrbančič, Iztok Fister Jr., and Vili Podgorelec

4.2.3 Learning parameters. Based on [14] and our previous ex-
perience in machine learning, we handpicked as optimal as possible
learning parameters. For batch size we choose 32, for learning rate
10−3 and for the number of epochs 150.

Performance of NN with these parameters should give us a good
starting point in comparison of performance between conventional
classification methods and our proposed method.

4.3 Results
For the proposed deep learning approach the experiments were
implemented with Python programming language using the fol-
lowing libraries: Keras [6], NumPy [24], and scikit-learn [26]. For
all of the existing classification algorithms, the experiments were
performed using the standard Weka library [33]. All classification
models were used with their default settings.

To objectively evaluate the performance of the proposed classifi-
cation approach, and to compare it with the existing classification
algorithms, we followed an established methodology. The dataset
was divided into train and test sets in a ratio of 90:10 using ten-
fold cross-validation procedure. In this manner, 9 out of 10 folds
were used for training and the last fold for testing purposes. In the
case of swarm intelligence approaches for parameter settings of
deep learning neural network, which are iterative in nature, the
80% of the train set was used in the iterative process of optimizing
parameters, while the remaining 20% of the train set was used as
a validation set for calculating the fitness and thus directing the
evolution. Folds were made by Weka with its stratification method,
which splits set in such way that the distribution of classes remains
the same across all of the folds.

The presented results are minimum, maximum and average as
well as median accuracies of the ten folds achieved by a specific
method on a test set. The standard deviations for each specific
classification algorithm over the ten folds are also reported.

4.4 Neural Network performance
In this experiment, we assessed the performance of our NN with
handpicked training parameters described in sub-sections 4.2.2. and
4.2.3 in comparison to Logistic regression (LR), Naive Bayes (NB),
J48, SimpleCart and Random Tree (RT) classifiers. The experiment
results are presented in a form of box plots (as known as box and
whisker diagram) in Fig. 2. The statistics are showing that our
handpicked NN performs slightly worse, with a minimum accuracy
of 94.4%, maximum accuracy of 96.9% and median of 95.7% than the
best performing classifier RT with a minimum accuracy of 95.5%,
maximum accuracy of 97.1% and the median accuracy of 96.1%.
Also, in comparison with SimpleCart and Random Tree classifier,
our handpicked NN has a higher standard deviation from mean
accuracy value. As we can see, the LR and NB classifiers fall behind
the others noticeably in every performance aspect.

We expect that the mentioned drawbacks in the performance of
NN can be addressedwith the usage of our proposed TDLBA/TDLHBA
parameter setting method.

Figure 2: Comparison of accuracy between our handpicked
NN and other conventional classifiers using 10-fold cross
validation

4.5 Improved Neural Network performance
Utilizing our proposedmethod we conducted another experiment in
which we used the obtained optimal parameter solutions presented
in Table 4 to train our NN.

Parameter NN TDLBA TDLHBA

Number of epoch 150 130 100

Batch size 32 52 10

Learning rate 10−3 0.0043526 0.0017470

Number of neurons 30 35 40

Table 4: Optimal parameter solutions usingTDLBAandTDL-
HBA

In Fig. 3, the performance results of all classification algorithms
are presented, with exception of NB and LR, which performed
significantly worse than all others. Observing mean accuracy as
well as median accuracy presented in Fig. 3, both TDLBA and
TDLHBA did outperform not just our handpicked NN, but also
other tested classifiers. With the average accuracy of 96.5%, TDLBA
gave us slight performance increase in comparison with previously
best-performing classifier RT. Also, looking at the distribution of
each fold’s accuracy for TDLBA/TDLHBA, we can see a noticeable
improvement in the much smaller range between the minimum
and maximum accuracy than any other tested classifier.

Taking a closer look at the comparison of results for handpicked
NN and TDLBA/TDLHBA in Fig. 4, we can see amajor improvement
in all performance accuracy aspects in favor of our two proposed
optimization methods. With the utilization of the proposed meth-
ods, we did not only address all of the performance drawbacks
mentioned in the previous section but also improved the general
accuracy of the model.

Parameter setting of deep learning neural network for phishing websites classification WIMS ’18, June 25–27, 2018, Novi Sad, Serbia

Figure 3: Comparison of accuracy between all classifiers us-
ing 10-fold cross validation

Figure 4: Comparison of accuracy between all NNs using 10-
fold cross validation

4.6 Statistical comparison of methods
To evaluate the statistical significance of the obtained results, we
first applied the Friedman test by calculating the Friedman asymp-
totic significance for various classification algorithms. The test
confirmed (p<0.001) that there are statistically significant differ-
ences between all used classifiers, as was expected already from
observing Fig. 3.

The post-hoc Wilcoxon signed ranks test with Holm-Bonferroni
correction revealed that both Naive Bayes (p=0.005) and Logistic
Regression (p=0.005) classifiers were significantly outperformed
by all other algorithms. On the other hand, NN (with handpicked
parameters) was not significantly different from J48 (p=0.285), Sim-
pleCart (p=0.575) and RT (p=0.169), but performed slightly worse
than them, being better in 4 and worse in 6 out of 10 folds.

When considering the two proposed optimization methods, they
both significantly outperformed the NN with hand-picked parame-
ters: TDLBA (p=0.008) and TDLHBA (p= 0.012), being better in 9 out
of 10 folds. Their mutual comparison revealed that the difference is
not statistically significant; however, the TDLBA performed better
than TDLHBA in 7 out of 10 folds.

The comparison of TDLHBA with J48 (p=0.333), SimpleCart
(p=0.074) and RT (p=0.799) showed no significant difference be-
tween them. On the other hand, the TDLBA turned out to signifi-
cantly outperform SimpleCart (p=0.013), being better in 8 out of 10
folds. Finally, the difference between TDLBA and J48 (p=0.093) and
RT (p=0.333) turned out not to be statistically significant. However,
TDLBA outperformed J48 in 6 out of 10 folds, and RT in 7 out of 10
folds.

5 CONCLUSIONS
In this paper, we presented a novel method utilizing a swarm intel-
ligence based approach to set parameters of deep learning neural
network. The results, obtained from the conducted experiments,
have proven to be very promising, giving us noticeable accuracy per-
formance improvements in the classification of phishing websites
in comparison with conventional classification methods, as well
as with the manually tuned NN. In general, the proposed TDLBA
method showed the best results in classifying phishing websites,
which was also statistically confirmed.

In the future, based on these encouraging results, we would like
to expand our work with the use of different swarm intelligence
algorithms (e.g. Firefly algorithm, Cuckoo search algorithm), to
search for optimal solution of larger number of training parameters
and to self-construct different NN topologies with various depth,
width and types of layers. We would also like to do a more elab-
orated performance comparison of our proposed method, using
various different datasets in comparison with other state of the art
approaches.

ACKNOWLEDGMENTS
The authors acknowledge the financial support from the Slovenian
Research Agency (Research Core Funding No. P2-0057).

REFERENCES
[1] Greg Aaron and Ronnie Manning. [n. d.]. APWG Phishing Reports. APWG. 2014.
[2] Greg Aaron and Rod Rasmussen. 2017. Global Phishing Survey 2015-

2016 Global Phishing Survey: Trends and Domain Name Use in 2016 An
APWG Industry Advisory Global Phishing Survey 2016: Trends and Domain
Name Use. Global Phishing Survey (2017). https://docs.apwg.org/reports/
APWG{_}Global{_}Phishing{_}Report{_}2015-2016.pdf

[3] Neda Abdelhamid, Aladdin Ayesh, and Fadi Thabtah. 2014. Phishing detection
based Associative Classification data mining. , 5948–5959 pages. https://doi.org/
10.1016/j.eswa.2014.03.019

[4] Waleed Ali. 2017. Phishing Website Detection based on Supervised Machine
Learning with Wrapper Features Selection. IJACSA) International Journal of
Advanced Computer Science and Applications 8, 9 (2017), 72–78. www.ijacsa.
thesai.org

[5] Ram B Basnet, Andrew H Sung, and Quingzhong Liu. 2011. Rule-based phishing
attack detection. In International Conference on Security and Management (SAM
2011), Las Vegas, NV.

[6] François Chollet et al. 2015. Keras. https://keras.io.
[7] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization. Journal of Machine Learn-
ing Research 12 (2011), 2121–2159. https://doi.org/10.1109/CDC.2012.6426698
arXiv:arXiv:1103.4296v1

[8] Federal Bureau of Investigation of USA - Internet Crime Complaint Center. 2016.
Internet Crime Report. Technical Report. Federal Bureau of Investigation of USA.
http://www.geoinform.ru/?an=gng2009-all-en

[9] Ian Fette, Norman Sadeh, and Anthony Tomasic. 2007. Learning to detect phishing
emails. In Proceedings of the 16th international conference on World Wide Web.
ACM, 649–656.

[10] Iztok Fister, Dusan Fister, and Xin She Yang. 2013. A hybrid bat algorithm.
Elektrotehniški Vestnik/Electrotechnical Review 80, 1-2 (2013), 1–7. arXiv:1303.6310

https://docs.apwg.org/reports/APWG{_}Global{_}Phishing{_}Report{_}2015-2016.pdf
https://docs.apwg.org/reports/APWG{_}Global{_}Phishing{_}Report{_}2015-2016.pdf
https://doi.org/10.1016/j.eswa.2014.03.019
https://doi.org/10.1016/j.eswa.2014.03.019
www.ijacsa.thesai.org
www.ijacsa.thesai.org
https://keras.io
https://doi.org/10.1109/CDC.2012.6426698
http://arxiv.org/abs/arXiv:1103.4296v1
http://www.geoinform.ru/?an=gng2009-all-en
http://arxiv.org/abs/1303.6310

WIMS ’18, June 25–27, 2018, Novi Sad, Serbia Grega Vrbančič, Iztok Fister Jr., and Vili Podgorelec

[11] Iztok Fister, Ponnuthurai Nagaratnam Suganthan, Iztok Fister, Salahuddin M
Kamal, Fahad M Al-Marzouki, Matjaž Perc, and Damjan Strnad. 2015. Artificial
neural network regression as a local search heuristic for ensemble strategies
in differential evolution. Nonlinear Dynamics 84, 2 (2015), 895–914. https:
//doi.org/10.1007/s11071-015-2537-8

[12] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier
neural networks. AISTATS ’11: Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics 15 (2011), 315–323. https://doi.org/10.1.1.208.
6449 arXiv:1502.03167

[13] R. Gowtham and Ilango Krishnamurthi. 2014. A comprehensive and efficacious
architecture for detecting phishing webpages. Computers and Security 40 (feb
2014), 23–37. https://doi.org/10.1016/j.cose.2013.10.004

[14] Diederik P Kingma and Jimmy Lei Ba. 2015. Adam: A Method for Sto-
chastic Optimization. ICLR (2015). https://doi.org/10.1145/1830483.1830503
arXiv:arXiv:1412.6980v9

[15] David Lacey, Paul Salmon, and Patrick Glancy. 2015. Taking the Bait: A Systems
Analysis of Phishing Attacks. Procedia Manufacturing 3 (2015), 1109–1116. https:
//doi.org/10.1016/j.promfg.2015.07.185

[16] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. , 436–
444 pages. https://doi.org/10.1038/nature14539 arXiv:arXiv:1312.6184v5

[17] M. Lichman. 2013. UCI Machine Learning Repository. Available at
http://archive.ics.uci.edu/ml, Accessed: 2018-01-15.

[18] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E Al-
saadi. 2017. A survey of deep neural network architectures and their applications.
Neurocomputing 234 (2017), 11–26. https://doi.org/10.1016/j.neucom.2016.12.038

[19] Daisuke Miyamoto, Hiroaki Hazeyama, and Youki Kadobayashi. 2008. An eval-
uation of machine learning-based methods for detection of phishing sites. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Vol. 5506 LNCS. Springer, Berlin,
Heidelberg, 539–546. https://doi.org/10.1007/978-3-642-02490-0_66

[20] Rami M Mohammad, Fadi Thabtah, and Lee McCluskey. [n. d.]. Phish-
ing Websites at UCI Machine Learning Repository. Available at
http://archive.ics.uci.edu/ml/datasets/Phishing+Websites, Accessed: 2018-01-17.

[21] Rami M Mohammad, Fadi Thabtah, and Lee McCluskey. 2012. An assessment of
features related to phishing websites using an automated technique. In Internet
Technology And Secured Transactions, 2012 International Conference for. IEEE,
492–497.

[22] Rami M Mohammad, Fadi Thabtah, and Lee McCluskey. 2014. Predicting phish-
ing websites based on self-structuring neural network. Neural Computing and
Applications 25, 2 (2014), 443–458. https://doi.org/10.1007/s00521-013-1490-z

[23] Rami M. Mohammad, Fadi Thabtah, and Lee McCluskey. 2015. Tutorial and
critical analysis of phishing websites methods. , 24 pages. https://doi.org/10.
1016/j.cosrev.2015.04.001

[24] Travis E Oliphant. 2006. A guide to NumPy. Vol. 1. Trelgol Publishing USA.
[25] OpenDNS. [n. d.]. PhishTank data archives. Available at

https://www.phishtank.com/, Accessed: 2018-01-17.
[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[27] Joshua Saxe and Konstantin Berlin. 2017. eXpose: A Character-Level Con-
volutional Neural Network with Embeddings For Detecting Malicious URLs,
File Paths and Registry Keys. CoRR abs/1702.08568 (2017). arXiv:1702.08568
http://arxiv.org/abs/1702.08568

[28] Jürgen Schmidhuber. 2015. Deep Learning in neural networks: An overview.
Neural Networks 61 (2015), 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
arXiv:1404.7828

[29] M. Amaad Ul Haq Tahir, Sohail Asghar, Ayesha Zafar, and Saira Gillani. 2016. A
Hybrid Model to Detect Phishing-Sites Using Supervised Learning Algorithms.
In 2016 International Conference on Computational Science and Computational
Intelligence (CSCI). IEEE, 1126–1133. https://doi.org/10.1109/CSCI.2016.0214

[30] Abdeljaber Fadi Thabtah, T.L. McCluskey, and Rami M Mohammad. 2013. Pre-
dicting Phishing Websites using Neural Network trained with Back-Propagation.
Proceedings of the 2013 World Congress in Computer Science, Computer Engineering,
and Applied Computing. WORLDCOMP 2013 . January (2013), 682–686.

[31] F. Thabtah, R. M.Mohammad, and L. McCluskey. 2016. A dynamic self-structuring
neural network model to combat phishing. In 2016 International Joint Conference
on Neural Networks (IJCNN). 4221–4226. https://doi.org/10.1109/IJCNN.2016.
7727750

[32] Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning 4, 2 (2012), 26–31.

[33] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

[34] Xin She Yang. 2010. A new metaheuristic Bat-inspired Algorithm. Stud-
ies in Computational Intelligence 284 (2010), 65–74. https://doi.org/10.1007/
978-3-642-12538-6_6 arXiv:1004.4170

https://doi.org/10.1007/s11071-015-2537-8
https://doi.org/10.1007/s11071-015-2537-8
https://doi.org/10.1.1.208.6449
https://doi.org/10.1.1.208.6449
http://arxiv.org/abs/1502.03167
https://doi.org/10.1016/j.cose.2013.10.004
https://doi.org/10.1145/1830483.1830503
http://arxiv.org/abs/arXiv:1412.6980v9
https://doi.org/10.1016/j.promfg.2015.07.185
https://doi.org/10.1016/j.promfg.2015.07.185
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/arXiv:1312.6184v5
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1007/978-3-642-02490-0_66
https://doi.org/10.1007/s00521-013-1490-z
https://doi.org/10.1016/j.cosrev.2015.04.001
https://doi.org/10.1016/j.cosrev.2015.04.001
http://arxiv.org/abs/1702.08568
http://arxiv.org/abs/1702.08568
https://doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1404.7828
https://doi.org/10.1109/CSCI.2016.0214
https://doi.org/10.1109/IJCNN.2016.7727750
https://doi.org/10.1109/IJCNN.2016.7727750
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6
http://arxiv.org/abs/1004.4170

	Abstract
	1 Introduction
	2 Methods
	2.1 Swarm Intelligence
	2.2 Deep learning

	3 Proposed method
	3.1 Representation of individuals
	3.2 Fitness function
	3.3 Neural network

	4 Experiments and Results
	4.1 The Phishing Websites dataset
	4.2 Experimental settings
	4.3 Results
	4.4 Neural Network performance
	4.5 Improved Neural Network performance
	4.6 Statistical comparison of methods

	5 Conclusions
	Acknowledgments
	References

