
Swarm and Evolutionary Computation 44 (2019) 273–286

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

A Discrete and Improved Bat Algorithm for solving a medical goods
distribution problem with pharmacological waste collection

Eneko Osaba a,d,*, Xin-She Yang b, Iztok Fister Jr. c, Javier Del Ser a,e,f,
Pedro Lopez-Garcia d, Alejo J. Vazquez-Pardavila d

a TECNALIA Research & Innovation, 48160, Derio, Spain
b School of Science and Technology, Middlesex University, Hendon Campus, London, NW4 4BT, United Kingdom
c Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
d Deusto Institute of Technology (DeustoTech), University of Deusto, Av. Universidades 24, Bilbao 48007, Spain
e University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
f Basque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain

A R T I C L E I N F O

Keywords:
Bat algorithm
Medical distribution
Rich vehicle routing problem
Combinatorial optimization
Traveling Salesman Problem

A B S T R A C T

The work presented in this paper is focused on the resolution of a real-world drugs distribution problem with
pharmacological waste collection. With the aim of properly meeting all the real-world restrictions that comprise
this complex problem, we have modeled it as a multi-attribute or rich vehicle routing problem (RVRP). The
problem has been modeled as a Clustered Vehicle Routing Problem with Pickups and Deliveries, Asymmetric
Variable Costs, Forbidden Roads and Cost Constraints. To the best of authors knowledge, this is the first time
that such a RVRP problem is tackled in the literature. For this reason, a benchmark composed of 24 datasets,
from 60 to 1000 customers, has also been designed. For the developing of this benchmark, we have used real
geographical positions located in Bizkaia, Spain. Furthermore, for the proper dealing of the proposed RVRP, we
have developed a Discrete and Improved Bat Algorithm (DaIBA). The main feature of this adaptation is the use
of the well-known Hamming Distance to calculate the differences between the bats. An effective improvement
has been also contemplated for the proposed DaIBA, which consists on the existence of two different neighbor-
hood structures, which are explored depending on the bat’s distance regarding the best individual of the swarm.
For the experimentation, we have compared the performance of our presented DaIBA with three additional
approaches: an evolutionary algorithm, an evolutionary simulated annealing and a firefly algorithm. Addition-
ally, with the intention of obtaining rigorous conclusions, two different statistical tests have been conducted: the
Friedman’s non-parametric test and the Holm’s post-hoc test. Furthermore, an additional experimentation has
been performed in terms of convergence. Finally, the obtained outcomes conclude that the proposed DaIBA is a
promising technique for addressing the designed problem.

1. Introduction

Transportation and logistics are important issues for the society
these days, both for citizens and the business sector. We are perfectly
aware that public transportation is used by almost all the population,
and that it directly affects the people quality of life. In addition, busi-
ness logistics can also be considered as transportation problem, which
requires optimization techniques to solve. Therefore, this paper will
focus on the logistic problems concerning medical device distribution
and pharmacological waste collection.
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In the business world, the fast advance of technology has made the
logistic increasingly important in this area. Additionally, anyone in the
whole world can be well connected. This situation has led transport
networks to be very demanding, something that was less important in
the past. Nowadays, a competitive logistic network can make the dif-
ference between some companies, and can crucially contribute to their
success.

This work is focused on the proper modeling and treatment of a
real-world logistic problem. Specifically, the real-world situation tack-
led in this paper is related to the distribution of medical goods. In this
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case, we center our attention in a SME1 medical distribution enterprise,
with regional influence. This company has an established logistic phi-
losophy, which needs to be followed when they perform the daily dis-
tribution planning. All the characteristics that integrate this philosophy
are explained in the following section. Finally, despite the object of
this study is a company physically placed on Bizkaia (Spain), the main
objective of this study is to propose a model which can be applied to
every similar company.

Hence, the main objective of this work is to tackle efficiently
this Drugs Distribution System with Pharmacological Waste Collec-
tion (DDSPWC). For reaching this goal properly, we have modeled the
DDSPWC as a Rich Vehicle Routing Problem (RVRP). Currently, this
type of complex problems is catching the attention of the scientific com-
munity, as can be read in several works, such as [1] or [2]. As we can
be found in these surveys, RVRPs are special cases of the conventional
Vehicle Routing Problem (VRP) [3]. These special cases are charac-
terized for having multiple variables and constraints, and a complex
formulation.

The principal reasons for the importance and popularity of these
problems are twofold: the social interest they generate, and their inher-
ent scientific interest. Firstly, RVRPs are usually designed for dealing
with a specific real-world situation related to transport or logistics. This
is the reason why their efficient resolution entails a profit, either busi-
ness or social one. Secondly, most of RVRPs have a great computational
complexity, and their resolution represents a major challenge for the
scientific community.

Specifically, we present in this paper a Clustered Vehicle Routing
Problem with Pickups and Deliveries, Asymmetric Variable Costs, For-
bidden Roads and Cost Constraints (C-VRP-P*C) to tackle the proposed
DDSPWC. As has been mentioned, RVRPs have caught the attention of
the current community. In this sense, [4] and [5] are two examples
of recently published RVRPs. The first of these works is related to the
capillary transport of goods problem. The research project presented in
that work was carried out for an important Spanish distribution com-
pany, and its main goal is to manage their resources in urban areas
by reducing costs caused by inefficiency and ineffectiveness. The RVRP
considered in that study comprises some constraints such as pick up
and deliveries, backhauls, site-dependence, time-windows, capacities
and openness. Authors proposed two different methods for its resolu-
tion: a variable neighborhood search (VSN) and a tabu search (TS). The
second of the mentioned works presents also a VNS for the resolution of
a dynamic RVRP. In that case, several real constraints have been con-
sidered, such as heterogeneous fleet of vehicles, multiple and soft time
windows and customers priorities. Furthermore, it is worth mentioning
that the software developed in that work has been incorporated into the
fleet management system of a company in Spain. An additional exam-
ple of recently developed RVRP is the one proposed in Ref. [6]. In this
paper, the authors present an RVRP to deal with the perishable food
management. The RVRP designed in this case is a heterogeneous fleet
site-dependent VRP with multiple time windows.

Furthermore, in 2016, Mancini presented in Ref. [7] an interesting
RVRP with multiple periods, multiple depots and heterogeneous fleet
is presented. For tackling this challenging problem, the author devel-
oped an adaptive VNS based approach. The experimentation performed
in that paper addresses 9 different datasets composed by 50 and 75
customers, and highlight the quality of the presented method. Besides
that, in Ref. [8], Belchemeri el al. developed a particle swarm optimiza-
tion (PSO) algorithm for solving a real-world based RVRP with hetero-
geneous fleet, time windows and mixed backhauls. In that paper, the
results obtained by the presented approach are compared with a basic
local search, and an ant colony optimization (ACO). For the experi-
mentation, an ad-hoc modification of the well-known Solomon VRPTW
Benchmark is used, with instances composed of 100 nodes. Finally,

1 SME: Small and medium-sized enterprise.

another interesting example was presented in Ref. [9], in which an elec-
tric fleet size and mix VRP was designed, with recharging stations and
time windows. For solving this novel problem, a hybrid iterative local
search was implemented.

There are several appropriate approaches to deal with such com-
plex optimization problems. Anyway, the most successful techniques to
address the resolution of RVRP are heuristics and metaheuristics. In this
paper, our attention focuses on the second of these categories: meta-
heuristics. In line with this, we propose a nature-inspired metaheuristic
for the resolution of the designed C-VRP-P*C.

Lots of metaheuristics have been presented in the literature along
the years [10]. The implementation of new and classical methods, and
their proper application still forms a hot topic in the scientific commu-
nity [11–14]. In fact, many novel approaches have been presented in
the last decade, such as the Firefly Algorithm, proposed by Yang [15],
Charged System Search, presented by Kaveh and Talatahari in 2010
[16], or the Spider Monkey Optimization, proposed by Bansal et al. in
2014 [17]. Another kind of methods that have demonstrated a good
performance applied to RVRPs are the memetic algorithms [18]. Some
examples of this good performance are [19], in which a RVRP with clus-
tered backhauls and 3D loading constraints is tackled, or [20], where
a multiperiod VRP with profit is addressed. Additional works can be
found in Refs. [21,22].

This way, we have highlighted some methods which have been
already used in the literature for solving RVRP problems: VNS, TS,
PSO, ACO, local search methods, and memetic algorithms. Additional
approaches can be found in the current literature to properly addressing
this kind of problems, such as the genetic algorithm [23], or the sim-
ulated annealing [24]. The Large Neighborhood Search has also been
recently used in the literature for solving a RVRP [25]. As can be logical,
each of these methods have their advantages and disadvantages. In this
specific paper, and with the aim of properly addressing the designed
RVRP, we propose a nature-inspired metaheuristic based on the Bat
Algorithm (BA). The BA was firstly presented by Yang in 2010 [26],
and it is based on the echolocation behavior of microbats, which can
find their prey and discriminate different kinds of insects even in com-
plete darkness. As has been highlighted in several studies, such as [27]
or [28], the BA has been applied to different optimization fields and
problems up to now. Furthermore, the fact that many research works
focused on BA are being currently published proves that this approach
is still interesting for the researchers, in different areas such as the con-
tinuous optimization [29], or the thermal engineering [30]. Further-
more, the algorithm itself is also the focus of recent research, such as
the works presented in Refs. [31] and [32], in which the parameter
adaptation of the algorithm is studied.

Focusing on routing problems, several recently published papers
have shown that the BA is a promising technique also in this field. For
example, in Ref. [33], which was published in 2015, an adapted vari-
ant of this algorithms for solving the well-known Capacitated VRP. The
Adapted BA developed in that study allows a large diversity of the pop-
ulation and a balance between global and local search. Furthermore,
in 2017, the same authors presented in Ref. [34] an adaptation of the
same technique for solving the well-known VRP with Time-Windows.
Another interesting work is the one work proposed in Ref. [35] by Zhou
et al., in which the Capacitated VRP is faced. In that paper, a hybrid BA
with path relinking is described. This approach is constructed based
on the framework of the continuous BA, in which the greedy random-
ized adaptive search procedure and path relinking are effectively inte-
grated. Additionally, with the aim of improving the performance of the
technique, the random subsequences and single-point local search are
operated with certain probability.

Besides that, the BA has also been applied to the famous Traveling
Salesman Problem several times in recent years. In Ref. [36], Osaba
et al. presented an improved adaptation of the BA for addressing both
symmetric and asymmetric TSP. The results show that the improved
version of BA could obtain promising results, in comparison with some
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reference techniques, such as an evolutionary simulated annealing, a
genetic algorithm, a distributed genetic algorithm or an imperialist
competitive algorithm. An additional example of this specific applica-
tion is the one presented by Saji and Riffi in 2106 [37]. In that work,
the performance of their discrete version of the BA is compared with
three different meta-heuristics: a discrete particle swarm optimization
(PSO) [38], a genetic simulated annealing ant colony system with PSO
techniques and a discrete cuckoo search [39].

Nevertheless, despite this interest, the BA has never been applied
before to any kind of RVRP. This lack of works is one of the motiva-
tions behind using the BA for our study. There are additional reasons
for the choosing of this technique, such as the growing scientific interest
shown by the community in recent years, or the proper balance between
exploration and exploitation shown by the technique for solving com-
plex problems. Anyway, and most importantly, the good performance
demonstrated since its first proposal, along with its fast execution, its
reduced number of parameters, and its easy implementation are the
crucial reasons which have motivated the using of BA.

With all this, the main contributions and novelties of the work pre-
sented on this paper are twofold. On the one hand, we have used an
RVRP for dealing with the proposed DDSPWC. As will be explained
later, similar problems have been previously presented in the scientific
community, but never using an RVRP as complete as the one proposed
in this study. In this sense, the main originality is not only the applica-
tion of the BA to the medical distribution problem. In fact, the designed
problem itself presents also a novelty, being the first time that an RVRP
with these features is proposed in the literature.

On the other hand, in order to address the proposed problem, we
have developed a discrete and improved version of the classic BA,
named DaIBA. As far as we know, this is the first time that a BA is
applied to such a complex RVRP. Additionally, the proposed technique
is an adaptation of a recently proposed discrete (BA) [36], which has
only been applied for both Symmetric and Asymmetric Traveling Sales-
man Problem. With the intention of proving that the DaIBA is a promis-
ing method for solving the raised C-VRP-P*C, we have compared its
results with the ones obtained by an evolutionary algorithm (EA), an
evolutionary simulated annealing (ESA) [40], and a Firefly Algorithm
(FA) [41].

The structure of this paper is as follows. The following Section
2 is devoted to the problem formulation. In this section, first, we
describe the real-world problem that motivated this study. After that,
we present the proposed RVRP. In Section 3, the designed DaIBA
is deeply described. Furthermore, the experimentation performed is
detailed in Section 4, along with the proposed benchmark. Finally, we
end this paper with the conclusions of the study, and our planned future
work (Section 5).

2. Problem formulation

This section is divided into two different parts. The first one, Section
2.1, is dedicated to the conceptual definition and description of the
problem. The main intention is to contextualize the study and highlight
its real-world application. After that, the designed C-VRP-P*C is deeply
detailed in Section 2.2, in which an overall description of the problem
is depicted, as well as its mathematical formulation.

2.1. Drugs distribution and pharmacological waste collection

As has been discussed in the introduction, the real-world problem
addressed in this paper is related to the distribution of drugs to hospi-
tals, neighborhood health centers and drugstores. Specifically, the prob-
lem arises in a regional pharmaceutical distributor. This distribution
company serves the demand of hospitals, drugstores and health centers
located in several cities and towns. The distribution company offers two
services: delivery of prescription drugs and collection of pharmacolog-
ical waste and expired or deteriorated medicines. The second service

is aimed at collecting spoiled medicines and pharmacological wastes.
These residues, like bio-sanitary waste, cannot be deposited in the usual
trash containers since they must be processed in a special way.

The objective of the work presented in this paper is the design of
an algorithm that plans the distribution and collection routes that min-
imize the operating costs of the distribution company. In addition to
costs, the company’s logistics planning is based on a series of principles.
The first principle is to treat each city as a separate unit. In this sense,
when a vehicle arrives in a city, it must take care of all the requests
(distribution or collection) that the sanitary centers or drugstores of
that location have. Therefore, a vehicle cannot enter a city and town
if it does not have a sufficient capacity to attend all the requests of
that location. The second principle is related to the schedule in which
requests are handled. Requests are only served between 6:00 a.m. and
3:00 p.m. In addition, within this temporary window there is a range
called “peak hours” (in this paper that range is set between 8:00 a.m.
and 10:00 a.m.). The costs of traveling from one place to another are
higher in the “peak hours”. This range tries to simulate the temporary
moments in which the traffic is denser in the cities and towns. Addi-
tionally, all vehicles must respect the rules of circulation. Therefore,
the graph that configures the road map between the different locations
will not be composed entirely of bi-directional links. Forbidden links
will be defined, as if they were real roads. Finally, in order not to elab-
orate extremely long journeys for a single worker, all the routes have a
maximum duration which cannot be exceeded.

Throughout the past few decades drug distribution problems have
been modeled as classic VRP or as a variant to incorporate some con-
straints. For this reason, it is difficult to find works that focus specifi-
cally on vehicle routing for the drug distribution sector. More recently,
with the rise of home health care systems, papers that address route
planning for drug delivery can be found. In Ref. [42], Liu et al. proposed
a metaheuristic based on a Genetic Algorithm and a Tabu Search for
home health care logistics. They model the problem as a VRPTW with
delivery and pickup. The problem addressed has two types of delivery
(from depot to patient and from hospital to patient) and two types of
pickup (from patient to depot and from patient to medical lab). Authors
test their new algorithm with instances derived from existing VRPTW
benchmarks. Other work, also in the context of home health care, can
be found in Ref. [43]. In this case, the problem used as reference is
a Periodic Vehicle Routing Problem with Time Windows (PVRPTW).
The problem involves 3 types of patient demands: transportation of
drugs/medical devices between the depot and patients’ homes, deliv-
ery of special drugs from the hospital to patients, and delivery of blood
samples from patients to the medical lab. To solve the problem a meta-
heuristic based on the classical Tabu Search is defined.

The scope of application presented in the present work is novel. In
addition, the problem of routing modeled also presents original aspects
with respect to other problems of routing applied to problems of dis-
tribution in the sanitary field. In addition, as we will see in the rest
of the paper, the RVRP proposed in this work has a great number of
constraints, making easier its application to the real world.

2.2. Clustered vehicle routing problem with pickups and deliveries,
asymmetric variable costs, Forbidden Roads and Cost Constraints

As has been pointed in the introduction, the real-world situation
faced in this paper has been modeled as a RVRP. Now, in this section,
we describe in depth the presented RVRP problem. First, in Section
2.2.1, we detail the basic characteristics of the problem. Then, in
Section 2.2.2, the mathematical formulation is represented.

2.2.1. Overall description of the proposed problem
The proposed RVRP has been modeled taking into account each and

every condition mentioned in Section 2.1. Furthermore, it should be
borne in mind that we have considered some additional restrictions in
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order to develop a model closer to real-world conditions. Hence, the
proposed RVRP has the following general features.

1. Clustered: This feature means that the clients placed in the environ-
ment are grouped in several clusters. In this sense, every cluster cor-
responds to a city. Additionally, if any vehicle enters a city, it must
meet the demand of every customer placed here. In other words, a
vehicle is not allowed to enter a cluster if it cannot meet the demand
of all the clients belonging to this city. This same feature has been
used studied in several papers of the literature [44,45].

2. Pickup and Delivery: This feature has been use in several studies
previously [46]; [47]. This characteristic contemplates two differ-
ent kind of nodes: the delivery nodes and the pickup nodes. On the
one hand, delivery nodes are those points where medical supplies are
delivered. On the other hand, in pickup nodes the used medical stuff
is collected, with the aim of taking them back to the warehouse. It
is important to mention that this feature has a simultaneous nature.
In this way, a drugstore or sanitary center can ask for both delivery
and collection of material. For this reason, delivery-pickup nodes can
also be found. Finally, it is assumed that all clients request the deliv-
ery of material. Therefore, drugstores or health centers demanding
only the pickup of material are not present in our scenario.

3. Asymmetric Variable Travel Times: In real logistic problems, the travel
between two different points does not always take the same time, or
the same cost. In almost all the cases, this cost is under the influence
of some external variables. With the aim of creating a more realistic
model, we have represented this situation in the problem that we
have proposed in this study. To this end, we have fixed a working-
day between 6:00 a.m. and 3:00 p.m. Within this schedule, we have
set two time-periods: “peak hours” and “off-peak hours”. The first
period is from 8:00 a.m. to 10:00 a.m. All travels carried out at
this time window will imply higher costs. On the other hand, the
same trips will take less time if they are conducted in the “off-peak”
period. Additionally, all the traveling costs are asymmetric, meaning
that the effort of traveling from one node i to another node j implies
different costs comparing with the reverse trip. This specific feature
is appreciated in real-world applications, and it has been previously
used on this kind of problem [48,49].

4. Forbidden Roads: In real-world situations, it is quite common to find
roads in which the traffic is allowed only in one direction. Further-
more, we can also find pedestrian streets, where vehicles are pro-
hibited to go through. With the intention of recreating this kind of
paths, the proposed C-VRP-P*C has certain arcs (i, j) which are not
allowed to be used in the final solution.

5. Cost-Constrained: The last characteristic is related with the maxi-
mum cost that a route can afford. This constraint, as can be eas-
ily deduced, guarantees that the total cost of the arcs in a single
route does not exceed a maximum route cost. This feature ensures
the avoidance of long routes, giving priority to a more distributed
planning between the fleet of vehicles. This same characteristic has
been referenced many times in the literature [50].

With all these features, the proposed C-VRP-P*C is an RVRP, whose
main objective is to find a group of routes, taking into account the
two different types of clients, trying to minimize the total traveling
costs, not going through forbidden roads, and respecting the restric-
tions imposed by the capacity of the vehicles (C), the maximum allowed
cost per route and the clusters. We show in Fig. 1 a possible 15-noded
dataset of the presented problem. We also show a feasible solution to
this dataset in the same figure.

2.2.2. Mathematical formulation of the presented problem
The proposed C-VRP-P*C can be represented as a complete graph

G = (V, A), where V = {v0, v1, …, vn} is the set of vertex which depicts
the drugstores and sanitary centers that comprise the system. Further-
more, A = {(vi, vj): vi, vj ∈ V, i≠ j} is the set of arcs which represents

the interconnections between drugstores, hospitals and health centers.
Each arc of the system has associated a cij cost. As we have mentioned
above, the presented problem has asymmetric costs, for this reason, the
cost of traveling from i to j is always different from the cost of traveling
from j to i. In a formal way, cij ≠ cji. Furthermore, in order to contem-
plate forbidden arcs, we have fixed as infinite the cost of these paths.
This way, we can ensure that these arcs will not appear in the final
solution. Additionally, each route cannot exceed a maximum cost of D.

Additionally, the vertex v0 represents the depot, and the rest are
the visiting drugstores or sanitary centers. Besides this, V is divided
into cl+1 mutually exclusive non-empty subsets, CL = {V0, V1, …, Vcl},
each one for each cluster. These subsets are subject to these two condi-
tions:

Vx ∩ Vy = ∅, x, y ∈ 0,1,… , cl, x ≠ y (1)

V = V0 ∪ V1 ∪…∪ Vcl (2)

It should be borne in mind that V0 contains only v0. The remaining n
hospitals, health centers and drugstores are distributed into cl different
clusters. Furthermore, client i has two types of demands: one of them
associated with the delivery of supplies, di > 0, and the other with the
pick-ups pi ≥ 0.

Before showing the mathematical formulation of the proposed C-
VRP-P*C, it should be highlighted that yij represents the demand
picked-up in clients routed up to node i (including node i), and trans-
ported in the arc (i, j). Besides this, the total number of routes has been
represented as k. Additionally, the parameter zij depicts the demand
to be delivered to customers scheduled after node i and transported in
arc (i, j) [51]. Furthermore, the binary variable xr

ij is 1 if the vehicle
r uses the arc (i, j), and 0 otherwise. Finally, wr

s is a binary variable,
which takes the value of 1 if the mobile unit r enters the cluster s, and
0 in other case. With all this information, the presented C-VRP-P*C can
be mathematically formulated in the following way, where the main
problem is now to minimize:

n∑
i=0

n∑
j=0

k∑
r=1

cijxr
ij (3)

subject to:

n∑
j=0

k∑
r=1

xr
ij = 1, i = k,… , n; j ≠ i, (4)

n∑
i=0

k∑
r=1

xr
ij = 1, j = 0,… , n; i ≠ j, (5)

n∑
i=0

k∑
r=1

xr
i0 = k, (6)

n∑
j=0

k∑
r=1

xr
0j = k, (7)

n∑
j=0

xr
ij −

n∑
l=0

xr
li = 0, i = 0,… , n; r = 1… k, (8)

n∑
i=0

xr
ij −

n∑
l=0

xr
jl = 0, j = 0,… , n; r = 1… k, (9)

n∑
i=0

k∑
r=1

dijxr
ij <∞, j = 0,… , n; i ≠ j, (10)

n∑
j=0

k∑
r=1

dijxr
ij <∞, i = 0,… , n; j ≠ i, (11)

k∑
r=1

wk
s = 1 s = 1,… , c. (12)
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Fig. 1. Possible C-VRP-P*C dataset composed of 15 nodes, and one
feasible solution. Gray arcs represent forbidden paths.

n∑
i=0

zji −
n∑

i=0
zij = dj, j = 0,… , n, (13)

n∑
i=0

yji −
n∑

i=0
yij = pj, j = 0,… , n, (14)

yij + zij ≤ Q
k∑

r=1
xr

ij, i, j = 0,… , n, (15)

n∑
j=0

k∑
r=1

cij < D, i = 0,… , n; j ≠ i, (16)

where

yij ≥ 0, i, j = 0,… , n, (17)

zij ≥ 0, i, j = 0,… , n. (18)

wr
s ∈ {0,1}, r = 1,… , k; s = 1,… , c, (19)

xr
ij ∈ {0,1}, i, j = 0,… , n; i ≠ j; r = 1… k, (20)

The first formula depicts the objective function, which must be min-
imized, and which is the sum of all the costs associated with the routes
that compose the solution. Conditions (4) and (5) guarantee that all the
drugstores and sanitary centers are visited exactly once. Additionally,
Equations (6) and (7) assure that the total amount of vehicles leaving
the depot, and the number of vehicles that return to it is the same. Fur-
thermore, the proper flow of each route is ensured by restrictions (8)
and (9), avoiding the generation of subloops.

On the other hand, formulas (10) and (11) guarantee that every trip
between two different nodes has not an infinite cost. In this way, we
ensure that forbidden paths will not form part of the final solution.
Moreover, function (12) assures that only one vehicle enters every clus-
ter. This constraint, along with the above described (4) and (5) ensures
that all the customers belonging the same cluster are visited by the same
mobile unit.

In addition, constraints (13) and (14) guarantee that the flows for
the delivery and the pick-ups are properly conducted. These clauses
ensure that both demands are correctly satisfied for every drugstore

and sanitary center. Besides that, formula (15) assures that the total
capacity of any vehicle is always respected. This same restriction also
represents that both delivery and collection demands will only be trans-
ported using arcs included in the solution [51]. Furthermore, constraint
(16) guarantees that the total cost of each route does not exceed the
fixed maximum. Finally, formulas (17), (18), (19) and (20) represent
the domains of the variables yij, zij, wr

s and xr
ij.

It is interesting to highlight that all the constraints inherent to the
problem make the generating of feasible solutions a very complex task.
This complexity makes impossible to directly apply most of the opera-
tors used for solving the common VRP. For this reason, the developing
of appropriate functions has been one of the main difficulties for its
solving. On the other hand, it is also noteworthy that all the constraints
reduce the size of the search space which comprises all the feasible
solutions, but increments the probability of falling into local optima. In
order to avoid this fact, a simple but effective improvement has been
implemented in the proposed DaIBA, which help to enhance its explo-
ration ability. This mechanism, which endows each bat with a certain
intelligence for performing its movements, is explained in the following
Section 3.2.

3. Bat algorithm

As we have mentioned in the introduction of this work, a Discrete
and Improved Bat Algorithm (DaIBA) is presented in this paper to face
the designed C-VRP-P*C. In the present section, we introduce first the
classic version of the BA (Section 3.1). After that, we describe in detail
in Section 3.2 the proposed DaIBA.

3.1. Classic Bat Algorithm

As it has been mentioned in previous sections, the BA is a nature-
inspired metaheuristic based on the echolocation system of bats. In the
nature, bats emit ultrasonic pulses to the surrounding environment with
navigation and hunting purposes. After the emission of these pulses,
bats listen to the echoes, and based on them they can locate themselves
and also identify and locate preys and obstacles. Besides that, each
bat is able to find the most “nutritious” areas performing an individ-
ual search, or moving towards a “nutritious” location previously found
by any other component of the swarm.
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It is important to mention that some rules have to be previously
established with the aim of making an appropriate adaptation [26]:

1. All bats use echolocation to detect the distance, and they have one
“magic ability” that permit them to distinguish between an obstacle
and a prey.

2. All bats fly randomly with a velocity vi at position xi with a fixed
frequency fmin, varying wavelength 𝜆 and loudness Ai to search for
a prey. In this idealized rule, it is assumed that every bat can adjust
in an automatic way the frequency (or wavelength) of the emitted
pulses, and the rate of these pulses emission r ∈ [0, 1]. This auto-
matic adjustment depends on the proximity of the targeted prey.

3. In the real world, the bats emissions loudness can vary in many
different ways. Nevertheless, we assume that this loudness can vary
from a large positive A0 to a minimum constant value Amin.

We show the pseudocode of the classic BA in Algorithm 1. If we
analyze this pseudocode, we can see that lines 1–6 correspond to the
initialization process. Initially, both objective function and initial pop-
ulation are defined. In this sense, every bat of the population represents
one possible solution to the faced problem. After this, every parameter
related to each bat is initialized and defined. These parameters are the
frequency f i, velocity vi, loudness Ai and pulse rate ri.

After these initialization steps, the method begins its main phase.
For each generation, every bat of the population moves by updating its
position and velocity. For these movements, the following equations are
used:

fi = fmin + (fmax − fmin )𝛽 (21)

vt
i = vt−1

i + [xt
i − x∗]fi (22)

xt
i = xt−1

i + vt
i (23)

where the parameter 𝛽 is a randomly generated number in the [0,1]
interval. Furthermore, x* represents the current best solution in the
swarm, and xt

i and vt
i denote position and velocity of a bat i at time step

t. Finally, the results of Equation (21) are used to control the pace and
range of bats movement. Additionally, for the local search part, if one
solution is selected among the best ones, a new solution for each bat is
generated using a random walk.

xnew = xold + 𝜖At (24)

where 𝜖 is a randomly generated number within the interval [-1,1],
and At is the average loudness of the swarm at time step t. Finally,
the loudness Ai and the rate ri of each bat are updated whether the
conditions shown in the line 14 of Algorithm 1 are met. This update is
carried out following these formulas:

At+1
i = 𝛼At

i (25)

rt+1
i = r0

i [1 − exp(−𝛾 t)] (26)

where 𝛼 and 𝛾 are constants. Thereby, for any 0 < 𝛼 < 1 and 𝛾 > 0 we
have

At
i → 0, rt

i → r0
i , as t → ∞ (27)

In many studies, 𝛼 = 𝛾 is used in order to simplify the implemen-
tation of the technique. In the present work, we use 𝛼 = 𝛾 = 0.98. We
have chosen this value after an empirical process using a [0.90, 0.99]
range.

3.2. The proposed Discrete and Improved Bat Algorithm

Before starting with the deep description of our proposed DaIBA, it
should be highlighted that the original version of the BA was developed
primarily for addressing continuous optimization problems. Therefore,
the classic BA cannot be directly applied to solve the presented C-VRP-
P*C. For this reason, we have performed some modification to the orig-
inal BA with the aim of preparing it for facing the designed C-VRP-
P*C.

In the proposed DaIBA, every bat in the swarm represents a feasi-
ble solution for the C-VRP-P*C. Besides that, as has been mentioned in
Section 2.2.2, the objective function is the sum of all the costs asso-
ciated with the routes that composes the solution. In this sense, the
C-VRP-P*C is a minimization problem, in which the bats with the lower
objective function value are the best ones.

Additionally, for the solution encoding, we have used the permu-
tation codification. This means that every solution is represented as
a unique permutation of numbers, depicting the routes that comprise
the solution. Additionally, routes in the same solution are separated by
a zero in order to distinguish them. Next, an example of a 20-noded
fictitious dataset is represented, composed by four clusters and two dif-
ferent routes. For this example, a horizontal bar has been used with the
intention of visually distinguishing the clusters within the same route.

x1 ∶ {10,1,12,3,14 | 5,16,7,8,9,0,11,13,2,6,4,19 | 18,17,15,20},

In relation to the basic parameters of the classic BA, the philosophy
of ri and Ai has remained exactly in the same form. Additionally, with
the intention of simplifying the complexity of the algorithm, the param-
eter f i (“frequency”) has not been taken into account in our DaIBA.
Finally, the “velocity”, vi, has been modified. In the continuous version
of the BA, this parameter is calculated as has been shown in Equation
(22).

Analyzing this formula, it can be deduced that the velocity of a bat
i at time step t relies on the vi of the bat i in the previous time step,
the f i parameter, and the difference between i and the best bat in the
swarm. As can be easily understood, the parameter vi cannot be used
in the same way for solving a discrete problem as our proposed C-VRP-
P*C. With the objective of adapting our DaIBA as accurately as possible,
we relate vi with the distance between the bat i and the best bat of the
swarm. We consider that this approach emulates faithfully the concepts
of the classic BA. For this reason, we have adapted vi using the well-
known Hamming Distance in the following way:

vt
i = Random[1,HammingDistance(xt

i , x∗)] (28)

In other words, the vi of a bat i at time step t is a random num-
ber, which follows a discrete uniform distribution between 1 and the
difference between this i and the best bat of the swarm. This differ-
ence is represented by the Hamming Distance, which is the number of
non-corresponding elements in the sequence. It should be pointed that
despite the Hamming Distance have been previously used for measur-
ing this kind of distances [36,52], it is still few researches the ones that
have adopted it. This fact enhances the innovation factor to our method.

In the proposed problem, the comparison between two different bats
is performed cluster by cluster. For instance, taking two random bats,
and one random cluster c composed of 10 nodes:

x1(cluster − c) ∶ {10,1,2,3,4,5,6,7,8,9},

x2(cluster − c) ∶ {10,9,7,8,4,5,6,1,3,2},

the Hamming Distance between x1 and x2 for the cluster c is 6. This
comparison is also made for every cluster of the solution. Therefore,
the distance between two bats is the sum of all the distances for every
cluster.

Additionally, regarding the generation of new solutions, in the clas-
sic BA the movement of the bats is conducted using Equation (23):

xt
i = xt−1

i + vt
i
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Algorithm 1 Pseudocode of the basic BA.

It can be deduced from this formula that the position of a bat i at
time step t depends on the vi of the bat i and its previous position at time
step t − 1. Anyway, this equation cannot be applied directly the pro-
posed C-VRP-P*C. For this reason, a modification has been proposed.
Thereby, the movement of a bat i is determined by

xt
i ← InsertionFunction(xt−1

i , vt
i ) (29)

Namely, at every generation, every bat examines a vi number of its
neighbors, and it selects the best one as its current movement. In other
words, the bat i conducts a vi number of InsertionFunction executions,
and it chooses the best one. In this sense, we have used the Insertion-
Function as movement function. This function selects and extracts one
random node from a random route. Then, this node is re-inserted in a
random position inside its cluster. This function takes into account the
capacity constraint, in order not to create infeasible solutions. Next, a
simple example of a feasible InstertionFunction operation is shown for a
10-noded cluster. In this case, the node 9 has been randomly selected
for being extracted and re-inserted in a random position.

xi(cluster − c) ≔ (1,9,2,4,3,10,5,8,6,7) → x′i (cluster − c)

≔ (1,2,4,3,10,5,8,6,7) → x′i (cluster − c)

≔ (1,2,4,3,9,10,5,8,6,7)

In addition to the InsertionFunction, we have also used the Exchange-
Function as will be described later. In this operator, two random nodes
are selected from a randomly selected cluster, and they exchange their
position. The following example depicts a possible ExchangeFunction
operation for the same 10-noded cluster shown before. In this case,
the nodes 1 and 4 of the cluster have been randomly selected to be
exchanged.

xi(cluster − c) ≔ (1,9,2,4,3,0,5,8,6,7) → x′i (cluster − c)

≔ (∗,9,2,∗,3,0,5,8,6,7) → x′i (cluster − c)

≔ (4,9,2,1,3,0,5,8,6,7)

It is important to highlight that these operators have been used due
to their adequacy for dealing with the high demanding constraint of the
problem, generating feasible solutions in every execution and helping to
the improvement of the swarm. Furthermore, regarding the local search
procedure represented in lines 10–12 of Algorithm 1, whether rand > ri,
one solution is randomly chosen among the best ones (in our performed
experiments, one bat among the 10 best ones), and a local solution

is generated around this one. To generate this new solution, the best
neighbor of the selected bat is chosen using also the InsertionFunction.

Besides that, we also provide to our proposed method a simple but
effective improvement in its structure. This innovative improvement is
related with the movement behavior of the bats, and it has been applied
in order to avoid the facility of falling into local optima. In most of BA
versions, all the bats perform their movement using the same pattern
throughout the entire execution. In the proposed DaIBA, some type of
intelligence has been provided to all the bats of the swarm. In this way,
each bat moves in a different way depending on its position regarding
the best bat of the population.

Thereby, when a bat i is prepared to perform a movement, it exam-
ines its vt

i . If this parameter is high (greater than n/2, where n is the
number of nodes of the problem dataset), it can be assumed that it is
far from the best individual of the swarm. Therefore, it can be con-
cluded that it needs a wide move. Otherwise, whether vt

i < n/2, we can
think that the bat is in a promising point of the space of solutions. For
this reason, this bat will perform a narrow move. In our DaIBA, the Inser-
tionFunction has been used for narrow moves, and the ExchangeFunction
for wide moves.

This simple modification allows the bats to crawl the space of solu-
tions using different neighborhood structures along the execution. This
fact considerably enhances the exploration capacity of the algorithm,
leading to an improvement in the results quality, and decreasing the
probability of falling into local optima. The advantages of this mecha-
nism have been tested in previous studies [36]. Finally, the pseudocode
of the proposed DaIBA is depicted in Algorithm 2. Furthermore, in order
to enhance the understandability of the method, its flowchart is shown
in Fig. 2.

4. Experimentation

The experimentation performed in this study is detailed in this
section. First, we detail in Section 4.1 the designed benchmark for
the developed C-VRP-P*C. Then, in Section 4.2, we present the out-
comes get by the proposed DaIBA for the above mentioned benchmark.
It should be highlighted that we have compared these obtained results
with the ones obtained by the EA and the ESA. This comparison has
been made in Section 4.3 with the aim of proving that our DaIBA is a
promising method for facing routing problems. Finally, we have con-
ducted two different statistical tests in Section 4.4.
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Fig. 2. Flowchart of the proposed DaIBA.

Algorithm 2 Pseudocode of the proposed DaIBA. n = number of nodes
of the dataset.

4.1. The benchmark proposed for the C-VRP-P*C

The problem proposed in this paper for solving the medical mate-
rial distribution problem has never been faced before in the scientific
community. For this reason, it is not possible to find a benchmark in the
literature for the C-VRP-P*C. In this sense, and following the good prac-
tices described in Ref. [53], a benchmark composed of 24 instances has
been proposed for this study. These instances are composed of 60–1000
nodes. As we have explained before, all the nodes are placed in the
province of Bizkaia, in The Basque Country, Spain.

We have fixed the maximum number of clusters in 12, being also
instances with 6 and 9 of them. In Fig. 3, a map with the geographical
locations of the central depot, the clusters and all the drugstores and

sanitary centers is represented. This map has been made using Open
Street Maps technology, via uMap tool.2 Furthermore, this map rep-
resents the 120 real nodes existing on the designed environment. In
addition to these 120 nodes, additional fictitious ones have been placed
in further synthetic datasets, in order to prove the performance of the
algorithm in larger instances. These four cases are the ones composed
by 200, 500 and 1000 modes.

Clusters have been built sequentially. In other words, clients 1 to
10 compose the first cluster, clients 11 to 20 the second one, and so
on. For the fictitious additional nodes that compose the large instances,

2 http://umap.openstreetmap.fr.
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Fig. 3. Geographical locations of the real nodes
in Bizkaia. Source: Open Street Maps, via uMap,
accessed September 2017.

they have been placed sequentially in the already existing nodes. This
means that node 121, 133, 145 and so on have been place in cluster
one, as well as 122, 134, 146 and so on in cluster two. This same trend
has been applied for all the cluster and nodes. It should be born in mind
that all clusters have the same size, in terms of number of nodes (except
for larger instances, in which some of the clusters have one more node).
Additionally, as has been previously mentioned, each node has two dif-
ferent demands assigned: deliveries (di), and pickups (pi). The following
method has been followed for the setting of these demands, taking into
account that d0 = 0 and p0 = 0, since v0 is considered the depot:

di = 5, pi = 0, ∀i ∈ {1,5,9,… ,997}, (30)

di = 5, pi = 5, ∀i ∈ {2,6,10,… ,998}, (31)

di = 10, pi = 0, ∀i ∈ {3,7,11,… ,999}, (32)

di = 10, pi = 5, ∀i ∈ {4,8,12,… ,1000}, (33)

Besides that, the traveling cost from any drugstore or sanitary center i to
other client j have been established following the procedure represented
in Algorithm 3. These costs are assigned for the “off-peak” period, and
they are incremented when they are conducted on the “peak” period.
These incremented costs are assigned following the method represented
in Algorithm 4. It is interesting to mention that these two methods
assure the asymmetry characteristic of the problem. Additionally, it is
also interesting to point that the trip time between two customers is the
same as its traveling cost (in seconds).

At last, depending on the instance, some trips of every cluster have
been chosen to be forbidden.

In order to facilitate the understanding of this benchmark, we have
summarized in Table 1 the characteristics of all the 24 developed
instances. Additionally, some clarifications should be made to correctly
understand this table. DaIBA_RVRP_60_1_1 and DaIBA_RVRP_60_1_2

are made up by six clusters, which are {1, 3, 5, 7, 9, 11}.
Furthermore, DaIBA_RVRP_60_2_1 and DaIBA_RVRP_60_2_2 are com-
posed of clusters {2, 4, 6, 8, 10, 12}. On the other hand, each
cluster in DaIBA_RVRP_60_1_3 and DaIBA_RVRP_60_1_4 is composed
of the first five drugstores, hospitals or health centers, while in
DaIBA_RVRP_60_2_3 and DaIBA_RVRP_60_2_4 clusters are comprised by
the last five nodes. Finally, to create all DaIBA_RVRP_9X_X instances,
the first 9 clusters, or the first 8 customers (depending on the case)
have been chosen.

Following the good practices shown in Ref. [53], and with the inten-
tion of enhancing the replication of this whole experimentation, the
benchmark developed for C-VRP-P*C is available under request to the
corresponding author of this paper.

4.2. Results

First of all, it is interesting to mention that all the tests conducted in
this work have been run on an Intel Xeon E5 – 2650 v3 computer, with
2.30 GHz and a RAM of 32 GB. Furthermore, we have utilized all the
instances described in Section 3 for the experimentation, running each
of them 30 times. As has been mentioned in the introduction of this
paper, we have compared the results obtained by the proposed DaIBA
with the following three techniques:

• Evolutionary Simulated Annealing (ESA): SA is one of the most used
local search method in the literature, and is based on the physical
principles explaining the metal cooling process. For the sake of fair-
ness, an evolutionary version of the SA is used (ESA) [40] so as to
consider a population-based method roughly similar to the rest of
considered solvers. For the developed ESA, two different successor
functions have been used, which means that every individual has its
own randomly assigned successor function.

• Evolutionary Algorithm (EA): The EA developed for this study is a
mutation based evolutionary algorithm which bases the movement
of its individuals in different mutation operators. Following the
same procedure of the above described ESA, two different mutation
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Algorithm 3 Method for the assignment of travel costs for “off-peak”
period.

Algorithm 4 Method for the assignment of travel costs for “peak”
period.

operators have been used for this technique. In this sense, and before
each mutation is applied, the operator that will be used is randomly
selected. Similar algorithms have been employed in previously pub-
lished papers, such as [36,54] or [55], which have inspired us to
using this method for the comparison.

• Firefly Algorithm: FA was proposed in Ref. [41], and it is based on the
flashing behavior of fireflies, which acts as a signal system to attract
other fireflies. This meta-heuristic optimization algorithm has been
also applied to a wide range of optimization fields and problems
since its proposal, with extensive surveys [56] evincing the momen-
tum gained by this solver within the community. For this research,
a discrete version of the FA has been developed [52].

We have chosen these three techniques for the comparison since all
of them are famous methods, which have been widely used for success-
fully solving different kind of routing problems. In this way, if we prove
that the DaIBA can perform better than these methods, we can conclude
that it is a promising meta-heuristic for solving the proposed problem.
Finally, all these approaches have three similarities: all techniques use
short-step functions for the movement of their population individuals,
they are easy and intuitive to implement, and they are easily adaptable
to solve new problems.

It should be highlighted that we have used similar parameters and
the same operators for all the implemented algorithms. Our purpose is
to analyze which technique gets better outcomes using similar oper-
ators the same number of times. Besides that, and with the aim of

Table 1
Characteristics of the developed benchmark for the C-VRP-P*C. Forbidden trips represents the quantity of forbidden
trips for each cluster.

Instance Nodes Clusters Vehic. capacity Max. Cost Forbidden

DaIBA_RVRP_60_1_1 60 6 350 35k 6
DaIBA_RVRP_60_1_2 60 6 200 35k 12
DaIBA_RVRP_60_1_3 60 12 350 35k 6
DaIBA_RVRP_60_1_4 60 12 200 35k 12
DaIBA_RVRP_60_2_1 60 6 350 35k 6
DaIBA_RVRP_60_2_2 60 6 200 35k 12
DaIBA_RVRP_60_2_3 60 12 350 35k 6
DaIBA_RVRP_60_2_4 60 12 200 35k 12
DaIBA_RVRP_90_1 90 9 350 40k 6
DaIBA_RVRP_90_2 90 9 200 40k 12
DaIBA_RVRP_96_1 96 12 350 40k 6
DaIBA_RVRP_96_2 96 12 200 40k 12
DaIBA_RVRP_120_1 120 12 200 40k 6
DaIBA_RVRP_120_2 120 12 250 40k 12
DaIBA_RVRP_120_3 120 12 350 40k 18
DaIBA_RVRP_120_4 120 12 400 40k 24
DaIBA_RVRP_200_1 200 12 300 50k 10
DaIBA_RVRP_200_2 200 12 400 50k 20
DaIBA_RVRP_200_3 200 12 500 50k 30
DaIBA_RVRP_200_4 200 12 600 50k 40
DaIBA_RVRP_500_1 500 12 800 100k 30
DaIBA_RVRP_500_2 500 12 900 100k 40
DaIBA_RVRP_1000_1 1000 12 1000 150k 30
DaIBA_RVRP_1000_2 1000 12 1200 150k 40
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Table 2
Parametrization of all the methods. − sup Δf represents the difference in the objective function of the best and the worse individuals of the initial population, and p = 0.95.
n = number of nodes of the instance.

ESA EA FA DaIBA

Parameter Value Parameter Value Parameter Value Parameter Value

Population size 100 Population size 100 Population size 100 Population size 100
Successor Functions Insertion Function

& Exchange function
Mutation functions Insertion Function

& Exchange function
Movement Function Insertion Function

& Exchange function
Movement Function Insertion Function

& Exchange function
Temperature − sup Δf/ ln(p) Mutation prob. 1.0 𝛾 0.95 𝛼 & 𝛾 0.98
Cooling constant 0.95 Survivor func. 70% Elitist - 30%

Random
Threshold for
movement selection

n/2 Threshold for
movement selection

n/2

Initial A0
i Random number in

[0.7,1.0]
Initial r0

i Random number in
[0.1,0.4]

making easier the replicability of this study, we show in Table 2 the
parametrization used for all the three meta-heuristics. For the develop-
ment and parameterization of the FA, the guidelines given in Ref. [57]
have been followed. Furthermore, the same population size and same
movement operators have been used for both methods. Besides that,
the Hamming Distance function has also been used for the distance
calculation.

All the individuals are generated randomly. Furthermore, regarding
the termination criterion, each meta-heuristic ends its execution when
there are n +∑n

k=1 k iterations with no improvements in the best solu-
tion, where n is the problem size. It is interesting to remember that the
parameters used for the DaIBA have been described in Section 3.2.

The results get by the DaIBA, ESA, EA and FA for the proposed
C-VRP-P*C are represented in Table 3. In addition, we have depicted
in Table 4 the best results found for each problem instance. We have
shown also in this table the size of the fleet needed to carry out every
solution, and the method which has obtained each of these results.

4.3. Analysis and discussion

If we analyze the results shown in Table 3, the main conclusion we
could mention is that the proposed DaIBA performs better in terms of
results quality. More concretely, DaIBA obtains better results than the

ESA in the 91.6% of the cases (22 out of 24). On the other hand, it
performs better than the EA in 95.8% of the instances (23 out of 24).
Finally, the DaIBA outperforms the FA in 18 out of 24 datasets. These
outcomes are coherent with the ones that we show in Table 4. In this
table, we can see how DaIBA obtained the best solution in the 70% of
the instances (17 out of 24).

Regarding this Table 4, we have depicted in Fig. 4 the partial rep-
resentation of the best solution found by the DaIBA in for the case
DaIBA_RVRP_120_2. It should be highlighted that we have represented
only partial solutions with the aim of facilitating the visibility of the
reader. This way, this solution is depicted at cluster-level, showing also
several clusters in detail.

In terms of computational effort, we can see in Table 3 how our
proposal, EA and FA present similar runtimes. Meanwhile, ESA shows
a better performance in this aspect, needing less time that its competi-
tors. Analyzing this fact along with the quality of the obtained results,
we can conclude that the DaIBA shows a better exploitation capacity
than the EA and FA, because it reaches better outcomes in a similar
time. On the other hand, we can say that the DaIBA has shown a better
exploration capacity than the ESA, since it obtains better results need-
ing more computational time.

Table 3
Results of DaIBA, ESA, EA and FA for the proposed C-VRP-P*C.

Instance DaIBA ESA EA FA

Name Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time Avg. S. dev. Time

DaIBA_RVRP_60_1_1 55761.4 301.4 51.8 56175.5 488.6 49.8 55943.7 512.4 52.7 55894.7 482.0 50.7
DaIBA_RVRP_60_1_2 60138.0 267.7 53.0 60861.4 428.7 52.7 60764.4 485.6 53.8 60417.1 376.1 52.8
DaIBA_RVRP_60_1_3 69435.1 864.0 52.7 70133.1 998.9 51.8 69683.1 1001.2 52.1 69617.8 913.7 53.0
DaIBA_RVRP_60_1_4 76616.8 909.1 52.9 77002.1 1271.6 52.6 76903.3 1250.4 54.0 77132.4 1042.3 53.1
DaIBA_RVRP_60_2_1 53615.5 513.4 54.4 53843.7 776.4 53.4 53973.1 845.1 54.7 53571.1 673.0 54.8
DaIBA_RVRP_60_2_2 59005.9 700.9 52.6 59342.8 986.4 52.0 59444.8 1071.0 53.4 59384.5 974.5 52.9
DaIBA_RVRP_60_2_3 67438.0 1121.8 51.9 68110.3 1227.5 50.8 67866.0 1202.0 51.8 67618.8 1274.6 53.4
DaIBA_RVRP_60_2_4 81762.3 1077.4 52.7 81939.9 1364.4 50.1 81698.4 1419.1 52.0 81758.4 1202.8 54.6
DaIBA_RVRP_90_1 83137.8 1342.9 93.4 82989.4 1645.7 90.7 83325.0 1732.6 91.7 83302.9 1541.4 95.7
DaIBA_RVRP_90_2 86110.0 1417.0 97.8 86031.2 1794.0 96.4 86170.7 1833.8 97.0 86201.7 1671.8 98.0
DaIBA_RVRP_96_1 86734.4 1437.4 96.1 86843.7 1869.9 95.1 86900.1 2013.4 96.2 86868.1 1645.5 96.4
DaIBA_RVRP_96_2 90114.1 1701.3 96.9 90878.0 2113.1 94.0 90437.7 2275.0 96.7 90346.4 2120.1 98.0
DaIBA_RVRP_120_1 109135.9 2001.7 184.4 109961.7 2597.7 180.3 109073.1 2734.5 182.0 109008.2 2399.8 188.0
DaIBA_RVRP_120_2 107332.0 1982.0 189.0 108039.6 2466.1 186.2 107834.8 2406.0 188.7 107564.5 2374.2 190.4
DaIBA_RVRP_120_3 102272.8 2043.1 180.6 102844.3 2509.4 177.9 102866.1 2847.2 177.5 102611.3 2444.5 182.9
DaIBA_RVRP_120_4 98131.7 2131.8 182.1 98747.6 2685.6 176.4 98441.0 2797.8 178.8 98311.7 2294.8 179.0
DaIBA_RVRP_200_1 153176.4 2400.3 263.7 153516.7 3281.9 259.7 153436.4 3127.4 261.8 153364.7 2700.9 272.9
DaIBA_RVRP_200_2 151371.4 2315.1 256.4 152283.1 3184.9 258.4 152301.7 3274.6 262.0 151355.6 2755.4 260.7
DaIBA_RVRP_200_3 150735.6 2571.1 260.7 151300.3 3201.7 255.7 151539.7 2847.2 258.5 150655.1 3004.5 261.0
DaIBA_RVRP_200_4 147390.1 2643.8 252.0 147905.7 3105.1 250.8 148001.7 2797.8 178.8 147644.0 2858.8 255.4
DaIBA_RVRP_500_1 200253.8 3800.3 334.5 200635.7 4002.8 340.0 200986.1 4167.6 333.0 200734.9 3887.3 338.4
DaIBA_RVRP_500_2 196760.4 3311.4 328.5 197012.5 3454.8 332.1 197090.2 3557.0 325.7 196706.4 3302.0 335.8
DaIBA_RVRP_1000_1 277340.5 4741.4 410.4 277943.3 5130.6 408.3 277830.5 5069.5 403.1 277661.3 4858.0 415.6
DaIBA_RVRP_1000_2 276161.0 4641.5 421.9 276601.6 4966.8 419.4 276711.3 4904.0 417.3 276783.8 4883.6 428.5

The best value is bolded in order to facilitate the visualization of the table.
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Table 4
Best solutions found for each instance of the proposed benchmark.

Name Best Result Vehicles Method

DaIBA_RVRP_60_1_1 55381.71 2 DaIBA
DaIBA_RVRP_60_1_2 59837.12 3 DaIBA
DaIBA_RVRP_60_1_3 68716.43 2 DaIBA
DaIBA_RVRP_60_1_4 74816.11 3 DaIBA
DaIBA_RVRP_60_2_1 53048.08 2 DaIBA
DaIBA_RVRP_60_2_2 58200.78 3 DaIBA
DaIBA_RVRP_60_2_3 65876.55 2 DaIBA
DaIBA_RVRP_60_2_4 78434.97 3 EA
DaIBA_RVRP_90_1 80038.61 3 FA
DaIBA_RVRP_90_2 84442.16 4 ESA
DaIBA_RVRP_96_1 84973.01 3 DaIBA
DaIBA_RVRP_96_2 87738.90 4 DaIBA
DaIBA_RVRP_120_1 105882.18 5 DaIBA
DaIBA_RVRP_120_2 104363.12 4 DaIBA
DaIBA_RVRP_120_3 98139.38 3 DaIBA
DaIBA_RVRP_120_4 94391.90 4 EA
DaIBA_RVRP_200_1 151234.24 8 DaIBA
DaIBA_RVRP_200_2 148412.75 7 FA
DaIBA_RVRP_200_3 147527.18 7 FA
DaIBA_RVRP_200_4 145001.60 6 DaIBA
DaIBA_RVRP_500_1 197683.19 10 DaIBA
DaIBA_RVRP_500_2 194039.06 9 FA
DaIBA_RVRP_1000_3 273167.61 12 DaIBA
DaIBA_RVRP_1000_4 272500.43 11 DaIBA

Finally, an additional factor that should be mentioned is the robust-
ness of the DaIBA. In this sense, we can observe in Table 3 that the
standard deviation shown by our proposed method is lower than the
ones presented by the other alternatives in all of the cases, meaning
that the solutions provided by our technique are more stable. Logically,
this is an important characteristic for a metaheuristic, giving reliability
to the algorithm. This fact is specially appreciated in real environments.

4.4. Statistical analysis of the results

In addition to the above shown outcomes, and following the guide-
lines given in Ref. [58], we have performed two statistical tests with
the obtained results. It should be highlighted that we have used the
obtained averages to perform both tests.

First, we have used the Friedman’s non-parametric test, in order to
check whether there are significant differences among all the meth-
ods. The results of this test can be seen in Table 5. In this sense, the
obtained Friedman statistic has been 30.45. Considering that the con-
fidence interval has been stated at the 99%, the critical point in a 𝜒2

Table 5
Average rankings obtained using the
Friedman’s test.

Algorithm Average Ranking

DaIBA 1.4583
ESA 3.000
EA 3.3333
FA 2.2083

Table 6
Results obtained using the Holm’s post-hoc procedure.
DaIBA used as control algorithm.

Algorithm Unadjusted p Adjusted p

ESA 0. 0.000001
EA 0.000035 0.00007
FA 0.044171 0.044171

distribution with 3◦ of freedom is 11.345. Since 32.3 > 11.345, we can
say that there are significant differences among the obtained results,
being DaIBA the one with the lower rank. Finally, regarding this Fried-
man’s test, the resulting p-value has been 0.000001.

After obtaining the above described results, and with the aim of
evaluating the statistical significance of the better performance of
DaIBA, we have carried out the Holm’s post-hoc test. Logically, we have
taken the DaIBA as control algorithm. The unadjusted and adjusted p-
values obtained through the application of Holm’s post-hoc procedure
are shown in Table 6. Analyzing these results, and taking into account
that all the p-values are lower than 0.05, we can definitely conclude
that the DaIBA is significantly better than ESA, EA and FA at a 95%
confidence level.

Additionally, and in order to perform a more thoughtful analysis
of the DaIBAs performance, we have conducted an additional experi-
mentation using a fixed number of function evaluations as termination
criterion. Furthermore, for this new experimentation, the convergence
has also been analyzed, showing the average of evaluations needed
to reach the best solution of each run. For this comparison, the FA
has been used since (as can be seen in Tables 5 and 6) it is the best
method among the rest of the alternatives. These results have been
summarized in Table 7. In this sense, it should be highlighted that
the maximum number of function evaluations has been fixed in n *
Pop, being n the size of the problem, and Pop the population of each
algorithm.

Fig. 4. Partial representation of the best solution found
by the DaIBA for the instance DaIBA_RVRP_120_2. Source:
Open Street Maps, via uMap, accessed March 2017.
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Table 7
Results and convergence of DaIBA, and FA with a maximum of n ∗ Pop function evaluation.

Instance DaIBA FA

Name Max eval. Avg. Conv. Avg. Conv.

DaIBA_RVRP_60_1_1 6k 55823.1 5.63k 55986.8 5.73k
DaIBA_RVRP_60_1_2 6k 60226.5 5.34k 60627.1 5.50k
DaIBA_RVRP_60_1_3 6k 69535.7 4.61k 69692.0 5.12k
DaIBA_RVRP_60_1_4 6k 76657.5 4.12k 77222.0 4.57k
DaIBA_RVRP_60_2_1 6k 53678.0 5.71k 53642.7 5.64k
DaIBA_RVRP_60_2_2 6k 59027.7 5.48k 59506.6 5.37k
DaIBA_RVRP_60_2_3 6k 67497.2 4.98k 67690.0 5.25k
DaIBA_RVRP_60_2_4 6k 81802.0 4.48k 81758.4 4.76k
DaIBA_RVRP_90_1 9k 83156.5 8.69k 83298.8 8.64k
DaIBA_RVRP_90_2 9k 86188.7 8.32k 86300.4 8.58k
DaIBA_RVRP_96_1 9.6k 86803.0 9.30k 86921.1 9.34k
DaIBA_RVRP_96_2 9.6k 90178.5 9.11k 90431.0 9.28k
DaIBA_RVRP_120_1 12k 109194.2 10.94k 109099.9 11.13k
DaIBA_RVRP_120_2 12k 107403.3 10.87k 107608.8 10.81k
DaIBA_RVRP_120_3 12k 102308.9 10.12k 102688.0 10.76k
DaIBA_RVRP_120_4 12k 98140.4 9.70k 98370.4 10.22k
DaIBA_RVRP_200_1 20k 153222.3 19.42k 153410.8 19.34k
DaIBA_RVRP_200_2 20k 151397.8 19.04k 151392.0 19.42k
DaIBA_RVRP_200_3 20k 150801.7 18.59k 150744.9 18.99k
DaIBA_RVRP_200_4 20k 147422.9 18.74k 147789.8 18.60k
DaIBA_RVRP_500_1 50k 200297.1 48.52k 200783.7 48.43k
DaIBA_RVRP_500_2 50k 196782.3 48.41k 196737.9 48.67k
DaIBA_RVRP_1000_3 100k 277386.7 98.04k 277671.3 98.42k
DaIBA_RVRP_1000_4 100k 276183.4 99.01k 276790.7 98.94k

The best value is bolded in order to facilitate the visualization of the table.

These results are also coherent with the ones presented in the pre-
vious sections. This way, DaIBA reaches better outcomes in the 75%
of the datasets (18 out of 24). Additionally, in terms of convergence,
the DaIBA also presents a better behavior, reaching the returned results
needing less evaluations in the 66.6% of the datasets.

Furthermore, to prove the significance of these second experimenta-
tion, the Wilcoxon Signed-Rank test has been applied. The confidence
interval has been stated at the 99% also for these tests. In this sense,
regarding the difference in the results quality, the obtained Z-value
is −3.6143, with a p-value of 0.0003. These results support the sig-
nificance of the difference at 99% confidence level. Besides that, the
obtained W-value has been 23.5. The critical value of W for N = 24 at
p 0.01 is 61. Therefore, the result is significant at this confidence level.
In relation to the convergence behavior, the obtained Z-value has been
−2.6857, with a p-value of 0.00714. Finally, the W-value get has been
56. These results also support the significance between the difference
at the 99% confidence level.

5. Conclusions and future work

In the present paper, a medical goods distribution system with phar-
macological waste collection was described and solved. This system has
been modeled as a rich vehicle routing problem, concretely, as a clus-
tered vehicle routing problem with pickups and deliveries, asymmetric
variable costs and forbidden paths. As far as authors know, this is the
first time that this specific problem is addressed in the scientific commu-
nity. For this reason, a benchmark composed of 24 different instances
has been developed, using real-world geographical locations of drug-
stores, hospitals and health centers. With the aim of tackling such a
complex problem, a discrete and improved Bat Algorithm has been pro-
posed. In line with this, this real-world use case can be considered as
the first application of the Bat Algorithm to any rich vehicle routing
problem. In order to prove the quality of the presented DaIBA, we have
compared its performance with three other famous approaches: an evo-
lutionary simulated annealing, an evolutionary algorithm and a firefly
algorithm.

We have planned to extend the application of the proposed DaIBA to
other real-world problems. Furthermore, a wider comparison with addi-

tional nature-inspired methods will be performed. At this stage, some
of the techniques that we have planned to use in this future compari-
son are the Cuckoo Search, the Imperialist Competitive Algorithm, and
the Harmony Search. Finally, we will investigate diverse improvements
in the algorithm so as to see if the results shown in this work for the
C-VRP-P*C can be improved. In this sense, we have planned the devel-
opment of different heuristic operators for their use in the movement
performed by the bats.
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