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ABSTRACT
The Harmony Search (HS) Algorithm is one of the efficient
nature-inspired optimization algorithms which exhibits in-
teresting search capability within less computational over-
head. However, empirical studies showed that the main
problem of this kind of algorithms is the proper setting of the
associated parameters. HS associated with a few parameters
and to find out the proper combination of the parameter val-
ues is time consuming. That’s why a parameterless variant
has been proposed here, which does not need the tuning
over control parameters. The effect of different population
size and stopping criterion has been considered in the ex-
periment. The efficiency of the proposed HS is measured in
Shannon’s entropy based image multi-thresholding field.

Keywords
Harmony Search, Control parameters, multi-thresholding,
optimization.

1. INTRODUCTION
Recently, several nature-inspired optimization algorithms have
been developed which mimic the behavior of natural and bio-
logical systems [5]. These algorithms are very powerful and
effective for solving the real world optimization problems
within a reasonable time [12]. In this study, the Harmony
Search (HS) Algorithm [8] has been taken into consideration,
and its extension to a parameterless variant. HS proves its
effective performance in different optimization fields. But,
the efficiency of the original HS depends on the proper tun-
ing of the associated three control parameters. The proper
setting of the values of these three parameters is very dif-
ficult for different kinds of problems. In order to overcome
that problem, one parameterless variant of HS (PLHS) is de-
veloped here. In literature, parameterless variants of some
algorithms, such as the Bat Algorithm (BA) [4, 3], Genetic
Algorithm [7] and Differential Evolution (DE) [6], have been

developed and proved their significant performance over a
mathematical optimization field. One parameterless vari-
ant of HS is reported in literature where the associated pa-
rameters initialized by constant values, including population
size [11]. In [11], an experiment with population size and
stopping criterion was not performed. In our research paper,
these experiments have been performed, inspired by method-
ologies the same as in [4, 3]. The proposed PLHS has been
employed in a multi-thresholding based image segmentation
domain, which is one of the significant pre-processing steps
in computer vision application. Shannon entropy is used
here as an objective function that maximizes the entropy of
different regions in the image. Therefore, the organization
of this paper is as follows. Section 2 presents the discussion
about the HS and the associated control parameters. In sec-
tion 3, a parameterless variant of HS has been presented and
Shannon entropy based multi-thresholding is also explained.
Experimental results are discussed in section 4. The paper
is concluded in section 5.

2. HARMONY SEARCH (HS) ALGORITHM
In the Harmony Search (HS) Algorithm [8], the individ-
ual algorithms are called a ”harmony” and they are repre-
sented by a real vector whose dimension is n. Let Xi =
{xi(1), xi(2), . . . , xi(n)} represent ith randomly generated
harmony vector: xi(j) = l(j)+(u(j)−l(j))×rand(0, 1) for j =
1, 2, . . . , n and i = 1, 2.., HMS, where l(j) and u(j) denotes
the upper bound and lower bound of the search space respec-
tively and rand(0,1) is a uniform random number between
0 and 1. The HM memory is filled by the HMS harmony
vector as follows:

HM =


X1

X2

...
XHMS

 (1)

2.1 Control Parameters in the HS Algorithm
The values of the control parameters affect the efficiency
of the algorithm under experiment significantly.To control
these parameters is the same as the controlling the explo-
ration and exploitation efficiency of the considered algo-
rithm. Therefore, the parameter tuning and control become
an essential area in the nature-inspired optimization algo-
rithms based research field. But, the setting of the control
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Algorithm 1 Harmony Search.

1: Set the parameters HMS, HMCR, PAR, BW and
2: NI or MAX FE, which are discussed in sections 2.1 and 3.
3: Initialize the HM and calculate the objective function value
4: of each harmony vector.
5: Improvise a New Harmony Xnewas follows:
6: for j = 1 to n do
7: if r1 < HMCR then
8: xnew = xa(j) where a ∈ (1,2, . . . ,HMS)
9: if r2 < PAR then

10: xnew = xnew(j)± r3 ×BW
11: where r1, r2, r3 ∈ rand(0,1)
12: end if
13: if xnew(j) < l(j) then
14: xnew(j) = l(j)
15: end if
16: if xnew(j) > u(j) then
17: xnew(j) = u(j)
18: end if
19: else
20: xnew(j) = l(j) + r× (u(j)− l(j), where
21: r ∈ rand(0,1)
22: end if
23: end for
24: Update the HM as Xw = Xnew if f(Xnew) < f(Xw),
25: where f(·) represents objective function value.
26: If stopping criterion is completed, the best harmony
27: vector Xb in the HM is returned; Otherwise go back to line 6.

parameters depends crucially on the type of problems. HS
is guided by five parameters which are as follows:

a. Population size or Harmony Memory size (HM)

b. Harmony-Memory Consideration Rate (HMCR)

c. Pitch Adjusting Rate (PAR)

d. Distance Bandwidth (BW)

e. Number of iterations (NI)

In order to evade the tuning process, a parameterless variant
of the HS has been proposed which will be introduced in the
next section.

3. DESIGN OF A PARAMETERLESS HAR-
MONY SEARCH ALGORITHM

The performance of HS is influenced strongly by the values
assigned to parameters, i.e. HM, HMCR, PAR, BW and NI.
In order to develop a new parameterless HS (PLHS), the in-
fluence of these algorithm dependent parameters was stud-
ied, which demonstrates that some algorithm parameters
such as, in this case, Number of Iterations (NI) could be set
wisely, while the optimal setting of other parameters are not
so easy. In the memory consideration step (i.e. line no. 7),
depending on the HMCR new solution, (xnew(j)) is gener-
ated by selecting randomly from a value in the current exist-
ing HM i.e. from the set of {x1(j), x2(j), . . . , xHMS(j)}. For
this operation, one random number r1 is generated within
the range of [0,1] from uniform distribution. If r1 is less

Table 1: Parameters’ Setting

Alg. NI HMCR PAR BW HM
HS 5000 0.75 0.5 0.5 100

PLHS 5000 0.8 0.5 0.55 [10, 1280]

than HMCR, the decision variable xnew(j) is generated from
memory consideration, otherwise, it is generated from ran-
dom initialization between [l(j), u(j)] (i.e. line no 20), which
are the search boundaries. Therefore, HMCR controls the
global search or exploration capability of the HS. Equation
no. (2) represents the action of HMCR. Every component
which is obtained by memory consideration is checked fur-
ther to determine whether it should be pitch adjusted or not.
The Pitch Adjustment Rate (PAR) is defined as assignment
of the frequency adjustment and the bandwidth factor (BW)
to control the local search of the HM. The pitch-adjustment
decision is calculated by equation no. (3).

xnew(j) =


xi(j) ∈ {x1(j), x2(j), . . . , xHMS(j)}
with probability HMCR,

l(j) + (u(j)− l(j)× rand(0, 1)

with probability 1-HMCR.

(2)

xnew(j) =


xnew(j) = xnew(j) = xnew(j)± rand(0, 1)×BW
with - probability PAR,

xnew(j)

with probability (1-PAR).

(3)

Finding the Stopping Criterion is very crucial for different
optimization algorithms. In the experiments, two Stopping
Criteria (SC) have been considered, which are as follows:

1st Stopping Criterion (SC1): First is the number of
times in which the best fitness values remain unchanged.
Therefore, if the fitness value for the best harmony remains
the same in 10% of the total Number of Iterations (NI), then
the HS is stopped.
2nd Stopping Criterion (SC2): The other Stopping Cri-
terion is the number of Fitness Evaluations (FEs), and the
maximum number of FEs (i.e. MAX FE) has been taken
as 10,000.

The values of the parameters of the traditional HS are same
as [8], but the parameters’ values of the proposed PLHS are
set from the experience that is given as Table 1.

The population size is also a crucial parameter in HS. It
is also reported that an appropriate population size (i.e.
HM) is significant to both run-time efficiency and effective-
ness [10, 1]. A lower population size may suffer from lack of
diversity, whereas the higher population size may affect the
convergence speed. In traditional HS, it is set as 100, but,
in PLHS, it is varied in the interval HM ∈ [10, 1280] such
that each population size is multiplied by two in each run
starting with HM=10. Therefore, eight instances of PLHS
have been executed (i.e. PL-1, . . ., PL-8) and the best one
is considered by the user.
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3.1 Multi-Level Shannon Entropy
Let P = (p1, p2, p3, . . . , pn) inδn, where δn{(p1, p2, . . . , pn) |
pi ≥ 0, i = 1, 2, . . . , n, n ≥ 2,

∑n
i=1 pi = 1} is a set of

discrete finite n-ary probability distributions. Then entropy
of the total image can be defined as [9]:

H(P ) = −
n∑

i=1

pilog2pi (4)

I denotes an 8 bit gray level digital image of dimension
M × N . P is the normalized histogram for image with
L = 256 gray levels. Now, if there are n − 1 thresholds (t),
partitioning the normalized histogram into n classes, then
the entropy for each class may be computed as:

H1(t) = −
t1∑
i=0

pi
P1
ln
pi
P1
,

H2(t) = −
t2∑

i=t1+1

pi
P2
ln
pi
P2
,

Hn(t) = −
L−1∑

i=tn−1+1

pi
Pn

ln
pi
Pn

,

(5)

where

P1(t) =

t1∑
i=0

pi, P2(t) =

t2∑
i=t1+1

pi, . . . , Pn(t) =

L−1∑
i=tn−1+1

pi,

(6)
and for ease of computation, two dummy thresholds t0 = 0,
and tn = L− 1 are introduced with t0 < t1 < . . . < tn−1 <
tn. Then the optimum threshold value can be found by:

ϕ(t1, t2, . . . , tn) = Arg max([H1(t) +H2(t) + . . .+Hn(t)])
(7)

4. EXPERIMENTAL RESULTS
The experiment has been performed over 50 benchmark im-
ages with MatlabR2009b with Windows-7 OS, x32-based
PC, Intel(R) Pentium (R)-CPU, 2.20 GHz with 2 GB RAM.
The purpose of our experiment is to prove how much the
efficiency of the HS is affected by employing different pop-
ulation sizes (i.e. HM) and stopping criteria. In line with
this, the traditional HA with 100 numbers of individuals is
also compared with these eight PLHS. The traditional HS
and PLHSs are run to solve the Shannon’s entropy based
multi-thresholding problem where optimal threshold values
are found by solving equation no. 7. Both HS and PLHSs
are stochastic in nature, and that’s why each algorithm is
run 30 times for each image. The number of thresholds used
in this experiment is 2, 3, 4 and 5-level thresholding. The ef-
ficiency and consistency of the algorithms are evaluated and
compared in terms of Computational Time (CT), Mean Fit-
ness value (Fitm) and Standard Deviation (Fitstd) for each
problem. On the other hand, the image quality assessment
metric, known as Peak-Signal to Noise Ratio (PSNR) [2] is
computed to assess the similarity of the segmented image
against the original image. It is actually a distortion met-
ric,which depends crucially on Mean-Squared Error (MSE),

Table 2: Comparison and ranking based on Computational
Time (CT), Mean Fitness value (Fitm), Standard Deviation
(Fitstd) and PSNR for 2-level multi-thresholding.

Alg. CT Fitm Fitstd PSNR
HS 1.92 (5) 18.8027 (1) 0 (1) 14.60 (1)
PL-1 1.90 (4) 18.8027 (1) 0 (1) 14.60 (1)
PL-2 2.22 (8) 18.8027 (1) 0 (1) 14.60 (1)
PL-3 2.31 (9) 18.8027 (1) 0 (1) 14.60 (1)
PL-4 1.73 (3) 18.8027 (1) 0 (1) 14.60 (1)
PL-5 2.14 (7) 18.8027 (1) 0 (1) 14.60 (1)
PL-6 2.10 (6) 18.8010 (7) 1.1024e-13 (9) 14.38 (7)
PL-7 1.68 (2) 18.7820 (9) 1.0669e-13 (8) 14.31 (9)
PL-8 1.02 (1) 18.7985 (8) 5.3334e-16 (7) 14.38 (7)

which is defined as:

MSE(f,G) =

∑N−1
i=0

∑M−1
j=0 [f(i, j)−G(i, j)]2

M ×N , (8)

where f and G and are the inputs and output image respec-
tively. M and N are the numbers of rows and columns of
the image. The PSNR is calculated as follows:

PSNR(f,G) = 10log10
(L− 1)2

MSE(f,G)
. (9)

Greater values of PSNR represent better segmentation.

4.1 Result section for 1st Stopping Criterion
(SC1)

Tables numbers 2 to 5 represent the experimental results
using the first Stopping Criterion (SC1), and the Tables
demonstrate clearly that population size has a great impact
over the performance of the HS. According to the Mean Fit-
ness value (Fitm) and Standard Deviation (Fitstd), less pop-
ulation size produces better output, and that’s why PLHS
with HM=10 outperforms others. But in terms of compu-
tational time, PLHSs with larger population size are better,
but they fail to produce the best solution in terms of the ob-
jective function. Therefore, it could be said that the larger
population performs premature convergence of the HS. Sta-
bility (i.e. Fitstd) also decreases when the size of the popu-
lation increases. But, experimental study also indicates that
when the number of threshold levels increases, stability of
the PLHS with lower population size also decreases, but the
values of the Fitstd remains same for PLHS with larger pop-
ulation size. Therefore, larger population size may help to
solve the more complex problems. To get an average perfor-
mance of HS and PLHSs over different threshold levels, the
sum of the algorithms’ rankings of each problem has been
presented in Table 10, and general ranking is also done based
on the sum of the rankings. Table 10 also demonstrates that
PLHS with HM=10 and 20 are the best variants in terms of
Fitm and PLHS with HM=10 is the best variant depending
on Fitstd and PSNR. But, PLHS with HM=1280 is the best
when considering the Computational Time (CT). It could be
concluded that the average performance of the traditional
HS is good as it gets middle ranks in Table 10 by consider-
ing all efficiency assessment metrics. Fig. 1 represents the
thresholded images and histograms for PL-1, whereas Fig.
2 represents the convergence curves of PL-1 (HM=10) for 2,
3, 4 and 5 level thresholdings of Fig. 1(j).
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Table 3: Comparison and ranking based on Computational
Time (CT), Mean Fitness value (Fitm), Standard Deviation
(Fitstd) and PSNR for 3-level multi-thresholding.

Alg. CT Fitm Fitstd PSNR
HS 2.33 (5) 23.4286 (1) 0 (1) 16.88 (2)
PL-1 2.17 (4) 23.4286 (1) 0 (1) 16.88 (2)
PL-2 2.58 (7) 23.4286 (1) 0 (1) 16.88 (2)
PL-3 2.49 (6) 23.4286 (1) 0 (1) 16.88 (2)
PL-4 2.97 (8) 23.4286 (1) 0 (1) 16.88 (2)
PL-5 3.01 (9) 23.4286 (1) 0 (1) 16.88 (2)
PL-6 1.70 (3) 23.4065 (7) 1.0092e-14 (8) 16.92 (1)
PL-7 1.15 (2) 23.4011 (8) 1.0262e-15 (7) 16.80 (9)
PL-8 1.06 (1) 23.3893 (9) 2.0334e-14 (9) 16.84 (8)

Table 4: Comparison and ranking based on Computational
Time (CT), Mean Fitness value (Fitm), Standard Deviation
(Fitstd) and PSNR for 4-level multi-thresholding.

Alg. CT Fitm Fitstd PSNR
HS 4.57 (5) 27.7252 (6) 2.0021e-15 (5) 19.03 (4)
PL-1 6.45 (9) 27.7275 (1) 0 (1) 19.05 (1)
PL-2 6.07 (8) 27.7275 (1) 0 (1) 19.05 (1)
PL-3 5.68 (6) 27.7275 (1) 0 (1) 19.05 (1)
PL-4 4.51 (4) 27.7272 (4) 2.0001e-15 (4) 19.02 (5)
PL-5 4.89 (7) 27.7256 (5) 1.0121e-14 (8) 18.88 (6)
PL-6 1.98 (3) 27.6518 (9) 1.0093e-14 (7) 18.61 (9)
PL-7 1.35 (2) 27.6692 (7) 1.0342e-14 (9) 18.80 (7)
PL-8 1.16 (1) 27.6687 (8) 2.0302e-15 (6) 18.78 (8)

Table 5: Comparison and ranking based on Computational
Time (CT), Mean Fitness value (Fitm), Standard Deviation
(Fitstd) and PSNR for 5-level multi-thresholding.

Alg. CT Fitm Fitstd PSNR
HS 5.07 (6) 31.6959 (4) 3.0225e-13 (5) 20.33 (4)
PL-1 8.23 (9) 31.6975 (1) 2.0543e-14 (1) 20.40 (1)
PL-2 7.89 (8) 31.6975 (1) 2.0888e-14 (2) 20.38 (2)
PL-3 6.03 (7) 31.6959 (4) 2.0786e-13 (4) 20.34 (3)
PL-4 4.97 (5) 31.6961 (3) 2.0031e-12 (8) 20.32 (5)
PL-5 4.94 (4) 31.6804 (6) 1.9021e-12 (7) 20.16 (6)
PL-6 2.78 (3) 31.6260 (7) 1.8763e-12 (6) 20.14 (7)
PL-7 1.75 (2) 31.5988 (9) 2.0042e-12 (9) 20.10 (8)
PL-8 1.18 (1) 31.6055 (8) 1.0030e-13 (3) 20.11 (9)

Table 6: Comparison and ranking based on Computational
Time (CT), Mean Fitness value (Fitm), Standard Deviation
(Fitstd) and PSNR for 2-level multi-thresholding.

Alg. CT Fitm Fitstd PSNR
PL-1 19.06 (6) 18.8027 (1) 0 (1) 14.60 (1)
PL-2 19.58 (8) 18.8027 (1) 0 (1) 14.60 (1)
PL-3 18.94 (3) 18.8027 (1) 0 (1) 14.60 (1)
PL-4 18.85 (2) 18.8027 (1) 0 (1) 14.60 (1)
PL-5 18.43 (1) 18.8027 (1) 0 (1) 14.60 (1)
PL-6 19.07 (7) 18.8027 (1) 0 (1) 14.60 (1)
PL-7 19.04 (5) 18.8027 (1) 0 (1) 14.60 (1)
PL-8 19.03 (4) 18.8027 (1) 0 (1) 14.60 (1)

Table 7: Comparison and ranking based on Computational
Time (CT), Mean Fitness value (Fitm), Standard Deviation
(Fitstd) and PSNR for 3-level multi-thresholding.

Alg. CT Fitm Fitstd PSNR
PL-1 20.70 (7) 23.4286 (1) 0 (1) 16.88 (1)
PL-2 20.31 (4) 23.4286 (1) 0 (1) 16.88 (1)
PL-3 20.86 (8) 23.4286 (1) 0 (1) 16.88 (1)
PL-4 20.47 (5) 23.4286 (1) 0 (1) 16.88 (1)
PL-5 20.63 (6) 23.4286 (1) 0 (1) 16.88 (1)
PL-6 19.08 (3) 23.4286 (1) 0 (1) 16.88 (1)
PL-7 19.04 (2) 23.4286 (1) 0 (1) 16.88 (1)
PL-8 19.03 (1) 23.4286 (1) 0 (1) 16.88 (1)

4.2 Result section for 2nd Stopping Criterion
(SC2)

Tables 6- 9 demonstrate the results of the PLHSs using
MAX FE as the stopping criterion. From the analysis of
the experimental results, it can be said easily that, when
population size resides within 40 and 160, then the HS gives
the best result i.e. PL-3, 4 and 5 are the best among all
the PLHSs. According to Fitm and Fitstd, PL-1, PL-2 and
PL-3 are better than others. Large population size (i.e. 360,
640, 1280) are efficient in terms of CT only. Stability (Fitstd)
and Fitm decreases when population size resides within [360,
1280]. MAX FE based Stopping Criterion helps to reduce
the stability issue compared to the NI based Stopping Crite-
rion, which could be verified easily from the values of the cor-
responding tables. But, MAX FE increases the CT rapidly.
In Table 10, average efficiency has been computed by sum-
ming the ranking over different levels of thresholding and
again, ranking is done based on the total ranking. PL-1
gives the best average result by considering , and PSNR,
whereas, PL-8 takes less time to converge compare to oth-
ers. But the convergence may be premature convergence
according to the values of . Fig. 3 represents the conver-
gence curves of PL-1 using the MAX FE based Stopping
Criterion.

5. CONCLUSION
Efficiency of the population-based nature-inspired optimiza-
tion algorithms are significantly depends on the proper tun-
ing of algorithm’s control parameters. But finding the proper
combination of the values of these parameters is very tedious
work and problem specific. In order to overcome that one
parameterless variant of HS (PLHS) has been developed.
The most of the parameters are set from the experimen-
tal study. But the population size has been varied in the
interval ∈ [10, 1280] to evaluate the effect of the different
population size over the efficiency of the HS. Two stopping
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Table 8: Comparison and ranking based on Computational
Time (CT), Mean Fitness value (Fitm), Standard Deviation
((Fitstd) and PSNR for 4-level multi-thresholding.

Alg. CT Fitm Fitstd PSNR
PL-1 21.22 (7) 27.7275(1) 0 (1) 19.05 (1)
PL-2 21.41 (8) 27.7275(1) 0 (1) 19.05 (1)
PL-3 21.02 (5) 27.7275(1) 0 (1) 19.05 (1)
PL-4 20.82 (4) 27.7275(1) 0 (1) 19.05 (1)
PL-5 21.04 (6) 27.7256(6) 2.0100e-12 (6) 18.85 (6)
PL-6 20.56 (3) 27.7259(5) 2.0093e-12 (5) 18.87 (5)
PL-7 20.54 (2) 27.7239(7) 3.0303e-12 (7) 18.83 (7)
PL-8 19.91 (1) 27.7194(8) 1.0001e-11 (8) 18.83 (7)

Table 9: Comparison and ranking based on Computational
Time (CT), Mean Fitness value (Fitm), Standard Deviation
(Fitstd) and PSNR for 5-level multi-thresholding.

Alg. CT Fitm Fitstd PSNR
PL-1 21.93 (7) 31.6975 (1) 0 (1) 20.40 (1)
PL-2 20.88 (2) 31.6975 (1) 0 (1) 20.40 (1)
PL-3 21.73 (6) 31.6959 (3) 2.1044e-15 (3) 20.34 (3)
PL-4 21.55 (5) 31.6957 (4) 1.0030e-13 (5) 20.34 (3)
PL-5 21.46 (4) 31.6952 (5) 1.9001e-13 (7) 20.29 (5)
PL-6 21.02 (3) 31.6937 (6) 1.7703e-13 (6) 20.24 (6)
PL-7 21.94 (8) 31.6930 (7) 2.0030e-13 (8) 20.23 (7)
PL-8 20.45 (1) 31.6862 (8) 2.0011e-14 (4) 20.20 (8)

criteria have been used here for analysis the efficiency of
the PLHSs. Analysis of the experimental results prove that
PLHSs with lower population size are better for maximiz-
ing the Shannon’s entropy based objective function with less
standard deviation but with more computational time when
Iteration based stopping criterion is used. Larger popula-
tion size helps to reduce the computational time, but may
performs premature convergence. In the case of MAX FE
based stopping criterion, HS with population size ∈ [40,
160] gives best and consistent output. Here large popu-
lation size also affect the stability issue. But, MAX FE
based stopping condition assists to reduce the stability issue
with large computational time compare to iteration based
termination condition. Therefore, development of robust
adaptive nature-inspired optimization algorithms algorithms
where all parameters including population size and stopping
criterion for a set of problems are automatically adapted is
still a big problem in this optimization field. In the future,
an extensive study and systematic analysis of the parame-
ters of different nature-inspired optimization algorithms are
needed over a different set of problems.
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Figure 1: Results of PL-1 using SC1. (a) & (j) Original image; (b), (c) & (k), (l) are the result of 2-level thresholding; (d),
(e) & (m), (n) are the result of 3-level thresholding; (f), (g) & (o), (p) are the result of 4-level thresholding; (h), (i) & (q), (r)
are the result of 5-level thresholding. (Red lines point the thrershold values).
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Table 10: The sum of ranking of each algorithm based on CT, Fitm, Fitstd, PSNR and general ranking based on the total
ranking.

Algo.
CT(SC1) CT(SC2) Fitm(SC1) Fitm(SC2) Fitstd(SC1) Fitstd(SC2) PSNR(SC1) PSNR(SC2)

T.R G.R T.R G.R T.R G.R T.R G.R T.R G.R T.R G.R T.R G.R T.R G.R
HS 21 5 - - 12 5 - - 12 4 - - 11 4 - -

PL-1 26 6 27 8 4 1 4 1 4 1 4 1 5 1 4 1
PL-2 31 9 22 6 4 1 4 1 5 2 4 1 6 2 4 1
PL-3 28 8 22 6 7 3 6 3 7 3 6 3 7 3 6 3
PL-4 20 4 16 3 9 4 7 4 14 5 8 4 13 5 6 3
PL-5 27 7 17 4 13 6 13 5 17 6 15 7 15 6 13 5
PL-6 15 3 16 2 30 7 13 5 30 8 13 5 24 7 13 5
PL-7 8 2 17 4 33 8 16 7 33 9 17 8 33 9 16 7
PL-8 4 1 7 1 33 8 18 8 25 7 14 6 32 8 17 8

(a) (b)

(c) (d)

Figure 2: Convergence curves of PL-1 (HM-10) for Fig. 1(j) using SC1 (a) for 2-level thresholding (b) for 3-level thresholding
(c) for 4-level thresholding (d) for 5-level thresholding.
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Figure 3: Convergence curves of PL-1 (HM-10) for Fig. 1(j) using SC1 (a) for 2-level thresholding (b) for 3-level thresholding
(c) for 4-level thresholding (d) for 5-level thresholding.

StuCoSReC Proceedings of the 2017 4th Student Computer Science Research Conference
Ljubljana, Slovenia, 11 October 12


