
A study of Chaotic maps in Differential Evolution
applied to gray-level Image Thresholding

Uroš Mlakar, Janez Brest, Iztok Fister Jr., Iztok Fister
Faculty of Electrical Engineering and Computer Science

University of Maribor, Slovenia
Email: uros.mlakar@um.si

Abstract—Image segmentation is an important preprocessing
step in many computer vision applications, using the image
thresholding as one of the simplest and the most applied methods.
Since the optimal thresholds’ selection can be regarded as an
optimization problem, it can be found easily by applying any
meta-heuristic with an appropriate objective function. This paper
investigates the impact of different chaotic maps, embedded into
a self-adaptive differential evolution for the purpose of image
thresholding. The Kapur entropy is used as an objective function
that maximizes the entropy of different regions in the image.
Three chaotic maps, namely the Kent, Logistic and Tent, found
commonly in literature, are studied in this paper. The applied
chaotic maps are compared to the original differential evolution,
self-adaptive differential evolution, and the state-of-the-art L-
Shade tested on four images. The results show that the applied
chaotic maps improve the results obtained using the traditional
randomized method.

I. INTRODUCTION

Image segmentation is a process of dividing an image into
disjoint sets, which share similar properties, such as intensity
or color. Image segmentation is normally the first step in many
applications of computer vision, such as feature extraction,
image recognition, and classification of objects. Simply put, it
is a process of dividing an image into regions, which are then
processed further by higher level methods. Image thresholding
is one of the most simple segmentation methods performing
the image segmentation based on values contained in the image
histogram. The histogram is a probability distribution of the
colors contained in the image that must be calculated prior
to the segmentation process. Image thresholding is one of the
most used methods for image preprocessing, because of its
simplicity. In the case of separating an image into two disjoint
regions, the process is called bi-level thresholding, while we
deal with multilevel thresholding, when separating the image
into several regions. The selection of optimal threshold values
is crucial, since the results of a good segmentation are a
prerequisite for further image processing.

Recently, we can see a trend of growing interest for using
the thresholding methods. Thus, the optimal threshold selec-
tion can be formulated as an optimization problem. In line with
this, different optimization criteria are used, like class variance
or various entropy measures. As a result, many meta-heuristics
have been developed for solving this problem, since the
exhaustive methods become computationally expensive, espe-
cially, when confronted with the larger number of thresholds.
On the other hand, there is also a rising interest in studying

chaotic systems applied to various meta-heuristic algorithms.
It has been proven that, when enhancing a meta-heuristic
algorithm with a chaotic map, its convergence property is
improved, since it offers a better exploitation of the current
solutions [8].

In this paper, we want to investigate the influence of differ-
ent chaotic maps, when applied to a self-adaptive differential
evolution algorithm (jDE) [3] for solving the multi-level gray-
scale image thresholding. The chaotic enhanced algorithms are
compared with the standard Differential Evolution (DE) [18]
and the state-of-the-art L-Shade [20] tested on four standard
test images found in literature.

The remainder of this paper is structured as follows. In
Section II, a brief review of novel meta-heuristics is presented
applied to image thresholding is presented. Then, Section III
describes the Differential Evolution (DE) algorithm and its
extension (jDE). In Section IV, the studied chaotic maps are
presented, while Section V defines the image thresholding
problem formally. The results of experimentation are gathered
in Section VI. The paper outlines the future directions of its
development, in Section VII.

II. RELATED WORK

Recently, there is growing interest in using various meta-
heuristics for image segmentation. Actually, the exhaustive
methods were demonstrated to be computationally ineffective
in practice. Therefore, the researchers search for new ways for
solving this problem.

Sarkar et al. [17] utilized a minimum cross entropy method
for objective function in solving the image segmentation with a
DE algorithm. Thus, a comparison with several meta-heuristics
and an exhaustive search was performed, where the DE clearly
outperformed the other methods used in the study. In another
study by Sarkar et al. [16], the DE using the Tsallis entropy
as an objective function was studied, giving the best results
among the comparing algorithms. Cuevas et al. [4] used the DE
for finding a mix of Gaussian functions, which approximated
the given histogram of the input image as closely as possible.
Their results stated that the method is feasible for fast and
reliable image segmentation.

Suresh and Lal [19] presented a computationally efficient
Cuckoo Search (CS) algorithm for satellite image segmenta-
tion. They compare their CS variant to other meta-heuristic
methods based on Otsu’s between-class variance, and Kapur’s



and Tsallis’ entropies. Their proposed algorithm outperformed
the others in attaining the global optimum thresholds as well
as the convergence rate. A CS for multilevel satellite image
segmentation is presented in [2], where the proposed algorithm
also provides good results by selecting the optimal thresholds
effectively and properly.

Alidhozic and Tuba [1] improved the bat algorithm with
some elements of the DE and Artificial Bee Colony (ABC)
algorithms. They compare their improved bat algorithm with
other state-of-the-art algorithms, where the results showed a
significant improvement in the convergence speed, and also
improving the quality of the results. A maximum entropy
thresholding method, aided with the ABC algorithm was
studied by Horng [11]. The results show that the method
achieves similar results as the PSO, hybrid PSO, fast Otsu’s
method, and honey bee mating optimization algorithm. Again,
the computational time is reduced when using the proposed
algorithm.

III. DIFFERENTIAL EVOLUTION

Differential evolution (DE) [18] is a population based algo-
rithm designed for global optimization. It belongs to the family
of Evolutionary Algorithms (EAs), since it mimics a complex
evolutionary process using simple mathematical equations.
The original DE maintains a population of NP solutions
xi = {xij}, for i = 1, . . . ,NP ∧ j = 1, . . . , D, which
are improved using various evolutionary operators during each
generation g. By using the operators, like mutation, crossover,
and selection, a trial vector (offspring) is produced, which
competes with its parent for survival. Thus, the better between
trial and parent solution, accordingly the fitness value is
selected to undergo the evolutionary process in the succeeding
generation g + 1.

In DE, a mutant vector is created by applying a mutation
strategy for each population vector xi. There are many dif-
ferent mutation strategies found in the literature, but for the
purpose of this study the ’best/1/bin’ strategy was applied as
follows:

vi,g+1 = xbest + F (xr1,g − xr2,g), (1)

where the r1 and r2 are random integers from the interval
1, . . . ,NP and the following inequality holds r1 6= r2 6= i.
Factor F is used to control the amplification of the difference
vector, and is defined mostly within the interval [0, 1]. The
next step in the evolutionary loop is the recombination of the
newly created mutant vector vi,g+1 with the target vector xi,g

to create a trial vector by using a crossover:

uij,g+1 =

{
vij,g+1, if rand(0, 1) ≤ Cr or j = jrand ,

xij,g+1, otherwise.
(2)

As can be seen from Eq. (2), the crossover rate Cr is defined
at the interval [0, 1] and it defines the probability of modifying
the corresponding element of the trial vector with uij,g . The
jrand index is responsible for the trial vector to contain at least
one value from the mutant vector; this mechanism is employed
to prevent the cloning of target vectors. In the original DE the

control parameters are fixed as F = 0.5, and Cr = 0.9, during
the evolutionary process.

An extension of the DE algorithm was proposed in [3],
which self-adapts the F and Cr control parameters. When gen-
erating the vi,g+1 and ui,g+1 vectors, firstly the corresponding
Fi and Cri are updated using the following mechanisms:

Fi,g+1 =

{
Fl + rand1Fu, if rand2 ≤ τ1,
Fi,g, otherwise.

(3)

Cr i,g+1 =

{
rand3, if rand4 ≤ τ2,
Cr i,g, otherwise.

(4)

The rand j for j = 1, . . . , 4 are randomly generated num-
bers from the interval [0, 1] and τ1 = τ2 = 0.12 [22].

Finally, the selection operator compares the fitness function
value of the trial vector ui,g+1 with the same value of the
target vector xi,g . The fittest vector is selected to undergo the
evolutionary process in the next generation:

Fi,g+1 =

{
ui,g+1 if f(ui,g+1) ≥ f(xi,g),

xi,g, otherwise.
(5)

IV. CHAOTIC MAPS

Recently, many new applications of EAs combined with
chaotic maps have been reported in literature [15], [22]. The
results of the experiments revealed that applying the chaotic
maps in an EA increases the exploitation of the current
solutions which, in general, improves the convergence property
of the algorithm. Thus, the concepts of chaos applied to an
EA would be beneficial. Although many researchers focus
on applying the chaos for updating the parameters during
algorithm runs, we investigated the behavior of the algorithms,
when the random number generator is completely replaced
with a chaotic map.

A lot of chaotic maps have been introduced in the literature,
applicable to different domains of human activity. In this paper
we investigate three chaotic maps, which are described more
thoroughly in the following subsections.

A. Kent map

Kent map [7] is among the most studied chaotic maps, used
in many applications, such as encryption, and can be expressed
as:

xn+1 =

{
xn

m , 0 < xn ≤ m,
1−xn

1−m , m < xn < 1,
(6)

where 0 < m < 1. If x0 ∈ [0, 1], for all n ≥ 1, xn ∈ [0, 1].

B. Logistic map

The logistic map [7] is defined by the following iterated
function:

xn+1 = rxn(1− xn), (7)

where xn ∈ [0, 1] and r is a parameter. The generated time
series are chaotic, when the iterated Logistic map with r = 4
is used.



C. Tent map

Tent map [14] is generated according to the following
iterated function:

xn+1 =

{
µxn, xn <

1
2 ,

µ(1− xn), xn ≥ 1
2 ,

(8)

where for µ = 2, the tent map is a non-linear transformation
of both the bit shift map and the r = 4 case of the logistic
map [7].

V. IMAGE THRESHOLDING

Image thresholding is the most simple and common method
for image segmentation. In gray-scale images, the thresholds
define the intensity values for classifying the image into dif-
ferent groups. The thresholding is divided into bi-level and/or
multi-level, based on the number of prescribed thresholds.

Consider a gray-scale image with intensity values ranging
from 0 to N − 1, where N is the maximum possible intensity
value. When considering bi-level thresholding, the goal is
to find the intensity value, which makes the foreground and
background regions the most distinguishable. Several methods
have been adopted for this task, where many of them rely on
calculating the variances of the pixel values in distinct regions,
or calculating various entropy measures for the objective
function.

When an image contains multiple regions, which cannot be
separated by a single threshold, bi-level thresholding fails to
provide a good solution. Hence, we must apply a multilevel
thresholding method, which in most cases is just a simple
extension of the bi-level thresholding scheme.

A. Kapur’s entropy

Image thresholding on Kapur’s entropy bases on the fact
that an image is comprised of a background and foreground
regions, which contribute to the probability distribution of the
intensity values in the image [12]. The entropy of each region
is calculated independently, while the sum of entropy values
needs to be maximized. This maximization can be regarded as
an optimization problem formulated as follows:

[T1, . . . , Tt] = arg max

t∑
i=1

Hi, (9)

Hi = −
ti+1−1∑
j=ti

(
pj
ωi

); ωi =

ti+1−1∑
j=ti

pj (10)

Here the Hi denotes the entropy value for the i-th threshold,
and pj is the probability of the pixel intensity value.

In this paper the Kapur’s entropy is utilized as the objective
function for searching the optimal thresholding.

VI. RESULTS

A. Image dataset

To conduct the experiments, we have chosen four standard
images usually found in the literature from the computer vision
field [21]. All images are of the size 256 × 256 pixels. The
images and their corresponding histograms are depicted in
Fig. 1. It is evident that the histograms of the images are
multi-modal, which makes the task of the optimal thresholds’
selection additionally difficult.

B. Experimental settings

In order to study the impact of chaotic maps on gray-
scale image thresholding, the following algorithms were taken
into consideration: original DE, jDE, jDE with Kent chaotic
map (jDEKent ), jDE with Logistic chaotic map (jDELog ), jDE
with Tent map (jDETent ) and, lastly, the state-of-the-art L-
Shade [20]. The implementation for DE and jDE algorithms
were provided on our own, while the code for L-Shade was
taken from the CEC 2014 competition website. To provide the
comparison of the observed algorithms as fairly as possible,
the stopping criteria for all algorithms’ runs was set to 10,000
function evaluations with a total of 30 runs per algorithm.
The population size was fixed at 20 for all algorithms, except
for L-Shade, whose parameters were kept as provided in the
implementation. All experiments were performed on the test
images using the 2, 4, 6, 8, 10, and 12 threshold levels.

C. Performance metrics

For evaluating the quality of segmentation results, two
established performance metrics such as PSNR and SSIM
were considered to compare the results of the algorithms in
the study. Additionally, the required CPU computational time
of algorithms was used for searching the optimal thresholds.
The accuracy of the reconstructed image is measured using the
measure PSNR of the segmented images, since this measure
relies directly upon the pixel intensity values. The PSNR can
be expressed mathematically as:

PSNR = 10 log10

(
2552

MSE

)
, (11)

where MSE is defined as:

MSE =
1

MN

M∑
i=1

N∑
j=1

[I(i, j))− J(i, j)]2 . (12)

Variables I and J in Eq. (12) are the original and segmented
images, respectively.

On the other hand, SSIM provides an assessment on image
quality based on the degradation of structural information that
is calculated as:

SSIM (I, J) =
(2µIµJ + C1)(2σIJ + C2)

(µ2
I + µ2

J + C1)(σ2
I + σ2

J + C2)
, (13)

where µx and µy stand for the mean intensities of images I
and J, σx and σy represent standard deviations of I and J , and
σxy is the local correlation coefficient between I and J . C1



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Test images and their corresponding histograms. (a) Lena, (b) Pirate, (c) Cameraman, (d) Jetplane, (e) Lena histogram, (f) Pirate histogram, (g)
Cameraman histogram, (h) Jetplane histogram.

TABLE I
COMPARISON OF BEST MEAN OBJECTIVE VALUES, WITH MEAN CPU TIMES COMPUTED BY DE, JDE, L-SHADE, JDEKent , JDELog , AND JDETent

USING KAPUR’S ENTROPY.

Test image M Mean objective values Mean CPU time (s)
DE jDE L-Shade jDEKent jDELog jDETent DE jDE L-Shade jDEKent jDELog jDETent

Cameraman 2 12.2865 12.2865 12.2865 12.2865 12.2864 12.2755 0.007933 0.005533 0.09727 0.0165 0.006333 0.01353
4 18.5566 18.5411 18.5566 18.5566 18.5548 18.5486 0.03623 0.01093 0.4641 0.0417 0.01267 0.05563
6 24.0475 24.0162 24.0284 24.0349 24.0145 23.9877 0.1361 0.03217 0.541 0.07487 0.0333 0.1356
8 29.0174 28.9506 28.9805 29.0441 28.985 28.9182 0.2358 0.0387 0.7035 0.1397 0.04107 0.1478
10 33.4566 33.5101 33.3654 33.536 33.4688 33.4034 0.2194 0.05507 0.6755 0.2107 0.0446 0.1628
12 37.4313 37.6009 37.3881 37.5821 37.5803 37.4017 0.216 0.0728 0.6649 0.2524 0.0548 0.1776

Jetplane 2 12.2422 12.2417 12.2427 12.2427 12.2408 12.2382 0.007133 0.006133 0.1204 0.0129 0.0053 0.0108
4 18.3397 18.339 18.3395 18.3397 18.3388 18.3316 0.0363 0.01413 0.6295 0.0354 0.015 0.05303
6 23.3563 23.3286 23.3487 23.3418 23.3165 23.3097 0.1857 0.03723 0.6496 0.0763 0.02377 0.1046
8 27.8426 27.8354 27.8272 27.8685 27.8153 27.7896 0.2128 0.03977 0.6481 0.1268 0.03267 0.1416
10 31.7967 31.8122 31.7673 31.8689 31.8018 31.727 0.2071 0.0503 0.6114 0.1928 0.03727 0.1624
12 35.3962 35.4535 35.3617 35.4877 35.4652 35.3255 0.2022 0.08537 0.5963 0.222 0.0658 0.1867

Lena 2 12.344 12.344 12.344 12.344 12.344 12.3425 0.002633 0.001767 0.02203 0.004667 0.001933 0.003067
4 18.0051 17.9939 18.006 18.0035 17.9955 17.9893 0.02583 0.006567 0.1458 0.01547 0.005067 0.02303
6 22.9775 22.9617 22.971 22.9785 22.9546 22.9478 0.0838 0.008833 0.1691 0.03517 0.008033 0.04513
8 27.2804 27.258 27.2612 27.3103 27.2459 27.2459 0.09947 0.0167 0.1821 0.06113 0.0119 0.0643
10 31.2279 31.236 31.1904 31.3018 31.2388 31.1669 0.0947 0.0204 0.1929 0.0874 0.01807 0.07307
12 34.8056 34.9039 34.7315 34.9471 34.8765 34.7849 0.09707 0.03163 0.2 0.09977 0.02593 0.0824

Pirate 2 12.0033 12.0033 12.0033 12.0033 12.0033 12 0.006967 0.0053 0.1026 0.01483 0.0056 0.01083
4 17.6585 17.655 17.6584 17.6583 17.655 17.6486 0.03893 0.01183 0.538 0.04007 0.0166 0.05483
6 22.396 22.3861 22.3896 22.3922 22.37 22.3578 0.201 0.02797 0.5639 0.0841 0.02853 0.09927
8 26.8266 26.7759 26.7874 26.8518 26.7625 26.7528 0.2245 0.03843 0.5686 0.1263 0.0318 0.1367
10 30.7942 30.8072 30.7437 30.8728 30.788 30.6882 0.2144 0.05703 0.5842 0.2012 0.0499 0.1585
12 34.3153 34.4399 34.2567 34.4061 34.3881 34.2478 0.2047 0.07237 0.5847 0.2166 0.0615 0.1813

and C2 are constants, which are included to avoid instability
when µ2

I +µ2
J is close to zero (C1 = 6.5025, C2 = 58.5225).

As mentioned in Section V, the Kapur’s entropy was
utilized as the objective function. In this section, we present
the numerical results of the optimal thresholding and also
report the segmentation qualities of the found thresholds using
the variables PSNR and SSIM . The results are collated in
Tables I, II and III, while Figures 2, 3, 4 and 5 represent
segmented images by applying the best found thresholds. The
best results in Tables are marked in bold text.

The results in Table I summarize the best mean objective

values obtained by each algorithm and also the average CPU
time is also reported in seconds. Based on the mean objective
values, the jDEKent obtained the best results, since it achieved
the highest values in 17 instances. Interestingly, the fastest
method was the jDELog , despite achieving very poor results
regarding the mean objective value. The DE, jDE, and L-Shade
achieved fairly similar results, with the original DE obtaining
the best results in 9 instances.

Table II provides a very interesting analysis. Despite the
jDEKent being the best method based on mean objective
values, the jDELog is best based on mean PSNR, achieving



TABLE II
COMPARISON OF BEST AND MEAN PSNR VALUES COMPUTED BY DE, JDE, L-SHADE, JDEKent , JDELog , AND JDETent USING KAPUR’S ENTROPY.

Test image M Mean PSNR values Best PSNR values
DE jDE L-Shade jDEKent jDELog jDETent DE jDE L-Shade jDEKent jDELog jDETent

Cameraman 2 12.3596 12.3596 12.3596 12.3596 12.3596 12.6524 12.359600 12.359600 12.359600 12.359600 12.359600 12.733200
4 18.7247 18.7247 18.7247 18.7247 18.7247 18.9743 18.993000 19.251900 18.734500 18.993000 18.993000 19.099600
6 21.0304 21.0304 20.9466 21.0304 20.9035 21.0314 21.150100 21.824500 21.342800 21.801400 22.023700 22.363300
8 23.3645 25.7138 22.7434 23.7674 25.7674 23.1902 25.336800 25.736300 25.525800 25.664000 25.767400 25.873900
10 24.2294 26.9639 26.8608 26.9017 27.1849 26.9168 27.318100 27.858600 27.178000 27.975500 27.855500 27.770400
12 28.257 28.672 28.0585 28.6593 28.7419 28.1981 29.116900 29.354200 28.974600 28.894900 28.941500 29.032900

Jetplane 2 13.6047 13.6047 13.6047 13.6047 13.9169 13.6047 13.916900 13.916900 13.604700 13.604700 13.916900 13.916900
4 15.486 15.4888 15.486 15.486 15.486 15.4247 15.486000 15.489600 15.489600 15.486000 15.491900 15.695900
6 15.8073 16.0383 15.8991 15.9056 16.8276 16.0353 16.660600 16.668300 16.114400 16.259800 17.687600 21.016700
8 17.83 17.129 17.3395 18.1003 19.3374 19.0139 19.342000 20.049700 19.030700 18.698000 20.945900 22.395700
10 19.161 20.713 17.4116 20.696 22.7395 18.7546 22.356500 23.500100 23.451000 21.237900 23.426900 23.474800
12 20.7842 21.3217 20.3233 20.8084 30.3105 20.7469 24.316300 25.508200 24.250200 25.145300 30.310500 25.937800

Lena 2 15.3922 15.3922 15.3922 15.3922 15.3922 15.3922 15.392200 15.392200 15.392200 15.392200 15.426000 15.527700
4 19.2781 19.9098 19.2742 19.2781 19.7086 19.3526 19.909800 19.948800 19.339400 19.909800 19.909800 19.909800
6 22.691 22.9464 22.5986 22.691 23.5434 22.6 22.879300 23.525600 22.878600 22.869300 23.551300 23.734400
8 26.0959 25.2248 24.4398 26.4532 23.8557 25.1451 26.578700 26.467500 26.380700 26.461000 26.457600 26.460600
10 27.6907 27.8523 28.4177 27.7279 27.0339 28.3116 28.448900 28.488100 28.557100 28.573700 28.507700 28.311600
12 29.2924 30.0984 29.4302 29.4418 28.2879 29.1704 29.957100 30.098400 30.006700 29.882000 30.077300 30.094900

Pirate 2 15.0289 15.0289 15.0289 15.0289 15.0289 14.8072 15.028900 15.028900 15.028900 15.028900 15.028900 15.256900
4 20.2454 20.2454 20.2514 20.2454 20.2454 20.2454 20.245400 20.346200 20.251400 20.245400 20.346200 20.433600
6 23.3456 23.3388 23.0403 23.2948 23.499 23.4612 23.526900 23.526900 23.527400 23.526900 23.582600 23.774500
8 25.4394 26.1338 25.3582 26.1227 26.4099 25.704 26.026800 26.544300 25.816700 26.130400 26.498800 26.613700
10 27.3313 28.2588 28.1003 28.1812 27.6326 28.5772 28.317300 28.642100 28.273800 28.398000 28.701900 28.577200
12 29.2492 30.027 29.8518 29.8984 29.2036 29.3289 30.165600 30.259400 30.327900 30.475300 30.417700 30.003600

TABLE III
COMPARISON OF BEST AND MEAN SSIM VALUES COMPUTED BY DE, JDE, L-SHADE, JDEKent , JDELog , AND JDETent USING KAPUR’S ENTROPY.

Test image M Mean SSIM values Best SSIM values
DE jDE L-Shade jDEKent jDELog jDETent DE jDE L-Shade jDEKent jDELog jDETent

Cameraman 2 0.631909 0.631909 0.631909 0.631909 0.631909 0.638434 0.631909 0.631909 0.631909 0.631909 0.631909 0.639749
4 0.744457 0.744457 0.744457 0.744457 0.744457 0.744746 0.746217 0.755225 0.745266 0.746217 0.751425 0.758728
6 0.806079 0.806079 0.815235 0.806079 0.802476 0.805833 0.810285 0.824556 0.815235 0.821852 0.827346 0.826608
8 0.84577 0.847675 0.85041 0.847332 0.854299 0.842927 0.856523 0.859208 0.860297 0.851170 0.857465 0.863194
10 0.857823 0.870537 0.857136 0.8715 0.873763 0.870142 0.880227 0.885122 0.871042 0.886116 0.884030 0.882035
12 0.884603 0.893052 0.874679 0.894005 0.895747 0.885887 0.900261 0.899272 0.898976 0.895360 0.897160 0.895555

Jetplane 2 0.757859 0.757859 0.757859 0.757859 0.763005 0.757859 0.763005 0.763005 0.757859 0.757859 0.763005 0.763637
4 0.798905 0.799323 0.798905 0.798905 0.798905 0.80362 0.798905 0.803837 0.803518 0.798905 0.803620 0.807261
6 0.804604 0.804388 0.800967 0.801478 0.770107 0.803924 0.809413 0.808360 0.813889 0.804388 0.809680 0.814683
8 0.761106 0.77537 0.76875 0.760763 0.766419 0.76379 0.789023 0.793276 0.812467 0.782795 0.806104 0.803115
10 0.776587 0.777575 0.77879 0.776253 0.812936 0.766437 0.801461 0.835434 0.834710 0.780978 0.833285 0.834900
12 0.783423 0.786605 0.784624 0.785251 0.910886 0.779839 0.858495 0.872925 0.854468 0.854471 0.910886 0.863033

Lena 2 0.646656 0.646656 0.646656 0.646656 0.646656 0.646656 0.646656 0.646656 0.646656 0.646656 0.646656 0.657604
4 0.755555 0.7591 0.75686 0.755555 0.76906 0.753537 0.759100 0.772368 0.756860 0.771363 0.772088 0.772100
6 0.8239 0.818639 0.825057 0.8239 0.81104 0.825623 0.824986 0.826188 0.825162 0.824757 0.824757 0.825719
8 0.857382 0.86005 0.853231 0.860341 0.853586 0.851419 0.865187 0.866019 0.862370 0.865887 0.864937 0.865878
10 0.880768 0.879695 0.893952 0.879189 0.876722 0.887371 0.893894 0.895934 0.894688 0.896568 0.895850 0.896233
12 0.905753 0.917113 0.904617 0.90681 0.89377 0.894826 0.914920 0.917388 0.915304 0.914075 0.915690 0.915304

Pirate 2 0.596805 0.596805 0.596805 0.596805 0.596805 0.595282 0.596805 0.596805 0.596805 0.596805 0.596805 0.599208
4 0.747946 0.747946 0.747962 0.747946 0.747946 0.747946 0.747946 0.750798 0.748011 0.748085 0.750798 0.750832
6 0.810056 0.807803 0.808664 0.827037 0.816087 0.810347 0.812245 0.827400 0.815756 0.828531 0.827606 0.826613
8 0.851647 0.867826 0.850671 0.868329 0.869785 0.853071 0.857583 0.870851 0.869903 0.868436 0.870474 0.869505
10 0.886486 0.895181 0.892986 0.894169 0.892394 0.900463 0.896369 0.902054 0.895802 0.897103 0.903646 0.900463
12 0.910983 0.918543 0.917691 0.919516 0.909938 0.910329 0.921941 0.921254 0.918639 0.924161 0.922359 0.922844

the highest score in 13 instances. On the other hand, when
comparing the best PSNR values, interestingly the jDETent

was the best.
The images were also compared on the basis of the SSIM

performance metric. The results of this comparison are gath-
ered in Table III. The performance of the algorithms, based
on SSIM are very similar to those of PSNR. Based on the
mean SSIM , the best was again the jDELog , while the jDETent

obtained the best result when considering the best SSIM .
Friedman tests [9] were conducted in order to estimate the

quality of the results obtained by various DE algorithms for
the gray-level image segmentation statistically. The Friedman
test is a two-way analysis of variances by ranks, where the
statistic test is calculated and converted to ranks in the first
step. The post-hoc tests are conducted using the calculated

ranks in the second step. Here, a low value of rank means
a better algorithm [6]. The second step is performed only
if a null hypothesis of Friedman test is rejected. Note, the
null hypothesis states that medians between the ranks of all
algorithms are equal.

According to Demšar [5], the Friedman test is a more
safe and robust non-parametric test for the comparisons of
more algorithms over multiple classifiers (also datasets) that,
together with the corresponding Nemenyi post-hoc test enables
a neat presentation of statistical results [13]. The main draw-
back of the Friedman test is that it makes the whole multiple
comparisons over datasets and it is, therefore, unable to
establish proper comparisons between some of the algorithms
considered [6]. Consequently, a Wilcoxon two paired non-
parametric test was applied as a post-hoc test after determining



DE jDE L-Shade jDEKent jDELog jDETent

TH=4

TH=8

TH=12
Fig. 2. Image Lena segmented into 4, 8, and 12 levels.

DE jDE L-Shade jDEKent jDELog jDETent

TH=4

TH=8

TH=12
Fig. 3. Image Pirate segmented into 4, 8, and 12 levels.

DE jDE L-Shade jDEKent jDELog jDETent

TH=4

TH=8

TH=12
Fig. 4. Image Cameraman segmented into 4, 8, and 12 levels.

the control method (i.e., the algorithm with the lowest rank)
by using the Friedman test. On the other hand, the Nemenyi
test is very conservative and it may not find any difference
in most of the experimentations [10]. Therefore, the Nemenyi

test is used for graphical presentation of the results, while the
Wilcoxon test shows which of the algorithms in test are more
powerful. Both tests were conducted using the significance
level 0.05 in this study.



DE jDE L-Shade jDEKent jDELog jDETent

TH=4

TH=8

TH=12
Fig. 5. Image Jetplane segmented into 4, 8, and 12 levels.

Algorithms Fri. Nemenyi Wilcoxon
CD S. p-value S.

DE 3.48 [3.10,3.86] 0.05167 -
jDE 3.26 [2.88,3.64] � 0.05 +

L-Shade 3.88 [3.50,4.26] † � 0.05 +
jDEKent 2.71 [2.33,3.10] ‡ ∞ +

jDELog 3.53 [3.15,3.92] † � 0.05 +
jDETent 4.13 [3.74,4.51] † � 0.05 +

(a) Numerical results of the Friedman and Wilcoxon tests.

(b) Graphical representation of ranks and critical distances

Fig. 6. Statistical analysis of DE algorithms for image segmentation

The results of the statistical tests are illustrated in Fig. 6,
which is divided into two diagrams. The first diagram rep-
resents a table with the numerical results of three statistical
tests, i.e., the Friedman non-parametric test, together with
the Nemenyi and Wilcoxon non-parametric tests. The values
were obtained by comparing the best fitness values for each
of the observed axes together with their corresponding mean
values. As a result, each observed algorithm (i.e., classifier)
consists of 4× 6× 4 = 96 values (i.e., 4 images × 6 different
threshold levels × 4 statistical measures: the best, mean, worst,
and standard deviation, were considered). The second diagram
illustrates the results of the Nemenyi post-hoc statistical test
graphically.

As can be seen from the Fig. 6(a), the jDEKent algorithm
achieved the best results due to the minimum rank value
according to the Friedman non-parametric test. Therefore, this
algorithm represents the control method with which the other
algorithms were compared. The control method is denoted by
the sign ’‡’ in the table. The interval in the column ’CD’ by

the Nemenyi test denotes the confidence interval according to
which the significant difference can be determined between
two algorithms. In line with this, two algorithms are sig-
nificantly different, if their critical differences (CD) do not
overlap. The significant differences are denoted in the table
by the sign ’†’.

Let us notice that both post-hoc statistical tests return the
same results, where the jDEKent algorithm (i.e., the control
method) outperformed the results of the algorithms, like jDE,
L-Shade, jDELog and jDETent significantly. Interestingly, the
difference between jDEKent and DE is not significant.

VII. CONCLUSION

A study of the impact of different chaotic maps, embedded
into a self-adaptive differential evolution for the purpose of
image segmentation was performed in this paper. The used
objective was the Kapur entropy, which works by maximizing
the entropy of different regions in the input image. Three
chaotic maps were considered, namely the Kent, Logistic and
Tent maps commonly found in literature. The applied chaotic



methods were compared to DE, jDE, and L-Shade, tested on
four different images, which are usually found in computer
vision benchmarks. The comparison was made based on the
objective value, and two image quality performance metrics,
such as PSNR and SSIM . The results show, that the chaotic
embedded methods performed better. The best performing map
was the Tent map, while the fastest convergence was obtained
with the Logistic map.

For future work, we plan to study other chaotic maps, while
also considering other objective functions, such as maximiz-
ing between-class variance or various entropy measures like
Tsallis or Renyi entropy.

ACKNOWLEDGMENT

REFERENCES

[1] Adis Alihodzic and Milan Tuba. Improved bat algorithm applied to
multilevel image thresholding. The Scientific World Journal, 2014, 2014.

[2] AK Bhandari, A Kumar, and GK Singh. Tsallis entropy based multilevel
thresholding for colored satellite image segmentation using evolutionary
algorithms. Expert Systems with Applications, 42(22):8707–8730, 2015.

[3] Janez Brest, Sašo Greiner, Borko Boskovic, Marjan Mernik, and Viljem
Zumer. Self-adapting control parameters in differential evolution: a com-
parative study on numerical benchmark problems. IEEE transactions on
evolutionary computation, 10(6):646–657, 2006.

[4] Erik Cuevas, Daniel Zaldivar, and Marco Prez-Cisneros. A novel
multi-threshold segmentation approach based on differential evolution
optimization. Expert Systems with Applications, 37(7):5265 – 5271,
2010.

[5] Janez Demšar. Statistical comparisons of classifiers over multiple data
sets. Journal of Machine Learning Research, 7:1–30, 2006.

[6] Joaqun Derrac, Salvador Garcı́a, Daniel Molina, and Francisco Herrera.
A practical tutorial on the use of nonparametric statistical tests as
a methodology for comparing evolutionary and swarm intelligence
algorithms. Swarm and Evolutionary Computation, 1(1):3–18, 2011.

[7] David P Feldman. Chaos and fractals: an elementary introduction.
Oxford University Press, 2012.

[8] Iztok Fister Jr., Xin-She Yang, Janez Brest, Dušan Fister, and Iztok
Fister. Analysis of randomisation methods in swarm intelligence.
International journal of bio-inspired computation, 7(1):36–49, 2015.

[9] Milton Friedman. A comparison of alternative tests of significance for
the problem of m rankings. The Annals of Mathematical Statistics,
11:86–92, 1940.

[10] Salvador Garcı́a and Francisco Herrera. An extension on ”statistical
comparisons of classifiers over multiple data sets” for all pairwise
comparisons. Journal of Machine Learning Research, pages 2677–2694,
2008.

[11] Ming-Huwi Horng. Multilevel thresholding selection based on the
artificial bee colony algorithm for image segmentation. Expert Systems
with Applications, 38(11):13785–13791, 2011.

[12] Jagat Narain Kapur, Prasanna K Sahoo, and Andrew KC Wong. A
new method for gray-level picture thresholding using the entropy of the
histogram. Computer vision, graphics, and image processing, 29(3):273–
285, 1985.

[13] Peter B. Nemenyi. Distribution-free multiple comparisons. Princeton
University, 1963.

[14] Edward Ott. Chaos in Dynamical Systems. Cambridge University Press,
2002.

[15] Michal Pluhacek, Roman Senkerik, and Ivan Zelinka. Particle swarm
optimization algorithm driven by multichaotic number generator. Soft
Computing, 18(4):631–639, 2014.

[16] Soham Sarkar, Swagatam Das, and Sheli Sinha Chaudhuri. Multilevel
Image Thresholding Based on Tsallis Entropy and Differential Evolution,
pages 17–24. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[17] Soham Sarkar, Gyana Ranjan Patra, and Swagatam Das. A Differential
Evolution Based Approach for Multilevel Image Segmentation Using
Minimum Cross Entropy Thresholding, pages 51–58. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[18] Rainer Storn and Kenneth Price. Differential evolution–a simple and ef-
ficient heuristic for global optimization over continuous spaces. Journal
of global optimization, 11(4):341–359, 1997.

[19] Shilpa Suresh and Shyam Lal. An efficient cuckoo search algorithm
based multilevel thresholding for segmentation of satellite images using
different objective functions. Expert Syst. Appl., 58(C):184–209, October
2016.

[20] Ryoji Tanabe and Alex S Fukunaga. Improving the search performance
of shade using linear population size reduction. In 2014 IEEE Congress
on Evolutionary Computation (CEC), pages 1658–1665. IEEE, 2014.

[21] USC Viterbi. The usc-sipi image database, 2016.
[22] Aleš Zamuda and Janez Brest. Self-adaptive control parameters ran-

domization frequency and propagations in differential evolution. Swarm
and Evolutionary Computation, 25:72–99, 2015.


