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a b s t r a c t

A PID controller is an electrical element for reducing the error value between a desired setpoint and an
actual measured process variable. The PID controller operates according to its input parameters, which
need to be set before its run. The optimal values of these parameters must be found during the so-called
tuning process. Today, this process can be automatized using stochastic, nature-inspired, population-
based algorithms, such as evolutionary and swarm intelligence-based algorithms. Unfortunately, these
algorithms are too time consuming, and so the reactive, nature-inspired algorithms using a limited
number of fitness function evaluations are proposed in this paper. Two reactive evolutionary algorithms
(differential evolution and genetic algorithm), and four reactive, swarm intelligence-based algorithms
(bat, hybrid bat, particle swarm optimization and cuckoo search), were used to tune the PID controller in
our comparative study. Only ten individuals and ten iterations (generations) were used in order to select
the most appropriate optimization algorithm for fast tuning of controller parameters. The results were
compared using statistical analysis and showed that particle swarm optimization is the best option for
such a task.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

A PID controller is an electrical element for reducing an error
value between a desired setpoint and an actual process variable.
The desired setpoint can be set by a function generator, while the
actual process variable is measured by a sensor. A set of input
parameters is required for proper controller service. Therefore, the
optimal input parameters need to be searched for in a so-called
tuning process. Only tuned parameters ensure correct behavior
of the electrical and mechanical systems, long-term service, and
damage prevention. The PID controller can be described as a
closed-loop system, i.e., a system in which the actual process
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variable has to be controlled. There are many examples of closed-
loop systems, such as:

• robot mechanism control,
• temperature control,
• level control,
• direction control, etc.

In this paper, we propose parameter tuning of the PID controller
controlling the robot arm mechanism. This arm simulates the
movement of a human arm and consists of two joints powered by
twomotors. This type of robot arm is also referred to as a Selective
Compliance Assembly Robot Arm (SCARA) and was designed by
Hiroshi Makino in 1980. The structure of the robot arm enables
precise positioning in industrial robotics and electronics. Usually,
SCARA is accompanied by another motor or hydraulic piston for
vertical movement of the robot’s top. The main task of the SCARA
is to capture objects, manipulate them in 3-D space, and then put
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them into another position.We should note that only the positional
part of the robot without vertical manipulator was used in our
laboratory experiments.

The task of optimization is to search for the optimal input
variables by known model and output variables [1]. There are
numerous optimization problems that can be divided into many
classes, e.g., continuous, numeric, discrete (also combinatorial),
multi-objective, constrained, etc. Not all algorithms achieve the
same results for all classes of optimization problems. This is in
accordance with the No-Free Lunch theorem (NFL) [2], which
states that the results of two optimization algorithms are equal
when compared to the all classes of problems. In our case, it
handles about the relatively simple problem belonging to a class
of discrete/numerical problems being solved in four dimensional
search space.

Recently, the problem of parameter tuning of the PID controller
has been solved using a different stochastic, nature-inspired,
population-based algorithms and even computational intelligence
algorithms, including fuzzy systems, artificial neural networks, and
artificial immune systems [3]. A survey of these algorithms can be
found in [4–6]. We propose reactive algorithms, e.g. algorithms
that use only little time to converge to the final result. Ten
individuals and ten iterations were used to realize, how well
reactive algorithms can perform, if they would be applied even for
online tuning of controller parameters.

In general, the stochastic, nature-inspired, population-based
algorithms are inspired by two aspects of the natural world. The
first is Darwinian evolutionary theory [7], whereby only the more
adapted individuals can survive in the unforgiving struggle for
existence. This inspiration led to the emergence of evolutionary
algorithms (EA), where the better solutions, generated by using
operators crossover and mutation, can survive and transfer their
values in the next generation in the simulated evolution. Alan
Turing was the first engineer to incorporate the principles of
the natural selection into an algorithm [8] and his first work
in artificial intelligence was the Intelligent Machinery. Based on
Turing’s results, John Holland implemented a genetic algorithm
(GA) in 1988 which even today remains the most widely-used
evolutionary algorithm [9]. Differential evolution (DE), developed
by Storn and Price in 1995 [10], was one of the youngest EAs
especially suited to continuous global optimization.

The second inspiration for the development of the optimization
algorithms emerged in 1995, when a Particle Swarm Optimization
(PSO) was developed by Russel Eberhart and James Kennedy [11].
It was based on social relations among individuals in swarm.
Many types of biological species have been mimicked since then,
including birds, fish, ants, bees, cuckoos, bats, and termites. They
all rely on a randomly generated population of particles which are
continuously being moved around a search space using variation
operators. The velocity of a single particle is calculated for every
dimension of the problem and is later added to the appropriate
position, thus exploring the problem search space. In 2009, an
optimization algorithm called cuckoo search (CS) was developed
by Yang and Deb [12] based on the behavior of the cuckoo, which
dumps its eggs into random nests. A year later, the bat algorithm
(BA), whichmimics the phenomenon of echolocation inmicro bats,
was proposed in 2010 by Yang [13].

It iswell known that the stochastic, nature-inspired, population-
based algorithms are extremely time consuming for finding near-
optimal solutions. The number of fitness function evaluations is
the main factor responsible for the time complexity of these al-
gorithms. Typically, it is expressed as a product of population size
multiplied by the maximum number of generations. However, for
the robot arm operating in an environment, it is important how
rapidly a reaction to environmental change is performed. In order
to make these kinds of algorithms more reactive, the number of
Fig. 1. SCARA robot arm mechanism.

fitness function evaluations needs to be limited. Therefore, these
algorithms are used as reactive, nature-inspired algorithms in the
study.

The purpose of this paper is to compare different reactive,
nature-inspired algorithms for tuning parameters of the PID
controller in order to discover the most suitable algorithm for
use in solving this class of problem. The reactive, nature-inspired
algorithms such as BA, HBA, PSO, DE, GA, and CS are compared in
order to show which of them is most useful in working with small
population sizes and small generation numbers.

The remainder of the paper is organized as follows. Section 2
describes the system equipment of a highly nonlinear SCARA robot
mechanism, i.e., the computer control hardware and simple PID
position controller used during the development and testing of
the optimization algorithms. In Section 3, we discuss stochastic,
nature-inspired, population-based algorithms. Section 4dealswith
a description of the experiments and the results of the nature-
inspired algorithms used in the comparative study. The paper
concludes with a summary of the work and the suggestions for
further development.

2. Description of the 2-DOF SCARA robot arm

Robotics arose from the human desire to supplant human labor
withmachines for long-running, boring, and even dangerous tasks.
Especially in Japan, robots already do housework, while their
work on conveyor belts is indispensable in industry. Today, we
cannot imagine painting cars without robots. Thus, a robotic arm
successfully replaces the human arm and even outdoes it when
needed. However, some form of feedback is necessary in order to
move the arm in a specific environment. The PID controller is the
most common device for using feedback in natural and man-made
systems.

In engineering applications, this controller appears in many
different forms, i.e., as a stand-alone controller, as a part of
distributed systems, or built into embedded systems [14]. A
lot of technological changes influenced the development of the
controller, in particular the introduction of microprocessors. These
provide additional features, such as automatic parameter tuning,
gain scheduling, and continuous adaptation. A robotic arm is
moved and positioned using a closed-control loop that consists of
a PID controller, a control plant, and a sensor. The PID controller is
part of a system that controls the electro-mechanical part of the
SCARA robotic arm (control plant). The control plant consists of
electrical motors to lift and lower the arm. The mechanical part
obeys the mechanical laws. The sensor obtains feedback from the
control plant (Fig. 1). The input of the PID controller is an error
value e, which is transformed into the output signal u, according to
Eq. (1), as follows

u(t) = KP · e(t) +
1
Ti

·


e(t) dt + Td ·

de(t)
dt

, (1)

where e(t) means

e(t) = ydes(t) − yact(t). (2)
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From Eq. (1), three gains can be recognized, i.e., proportional
(KP ), integral ( 1

Ti
) and derivative (Td). Those three gains represent

weightswhich directly influence the roboticmovement. In order to
optimize the response of the robot, these three parameters need to
be adapted. This type of PID controller is used for analogue control.
For SCARA control, Eq. (1) should be transformed into discrete
form, presented by Eq. (3). Moreover, a simplification can be done
in order to enhance robotic movement, therefore the integrator
part ( 1

Ti
= 0) should be eliminated. The reason for simplifying

the Eq. (1) is hidden in the structure of robot, which contains the
natural integrator in the controlled plant. Therefore, it is useless
to impose another integrator into control equation. While the first
equation uses the analogue operator of time, the second one uses
the sample time for the sequencing of sensor readings, as follows:

u(k) = q0 · e(k) − q1 · e(k − 1), (3)

where

q0 = KP +
Td
Ts

, q1 =
Td
Ts

. (4)

Theu(k) is an input of the control plant,written in discrete form,
while the u(k − 1) presents the control signal from the previous
sample time. The e(k) stands for an error of the actual sample
time and e(k − 1) for an error from the previous sample time. q0
and q1 elements represent the input of PID controller, set by an
optimization algorithm. For a discrete z-transform approximation,
the relation s =

1
Ts

(1 − z−1) is used, which is allowed to be used,
if the sample time Ts is ten times lower than the shortest time
constant in control plant.

For the linear control plant, more common tuning methods are
applicable. A sample of these would include Bode plotting [15],
the root locus method [16] and the Ziegler–Nichols method [14].
Unfortunately, these methods cannot be used on our highly
nonlinear control plant. The fact is, when one axis moves, with
its torque affects also on the other one, and vice versa. This
phenomena, called mechanical coupling, cannot be satisfactory
controlled by simple linear control techniques, since the control
plant parameters are not constant, but are changeddue to changing
inertia. Faster the robot arms move, the greater the mechanical
coupling affects. Considering maximum possible velocity of robot
as our goal, coupling becomes an immense challenge to respect.
Therefore, we must rely on either manual (experimental) method,
which is very time consuming, or automatic method using an
optimization algorithm.

In the remainder of this section, a robot arm mechanism
presenting the control plant, and the microprocessor dedicated to
tuning its parameters, are described in details.

2.1. Robot arm mechanism

The SCARA robot arm mechanism (see Fig. 2) has two degrees
of freedom (2 DOF). Rotation of the first robot link around the first
robot axis is presented as the first DOF, and rotation of the second
robot link around the second robot axis on the tip of the first link
is presented as the second DOF. Both robot links are driven by
direct current (DC)motors and gear-boxeswith transmission ratios
N1 = 60/10 for the first DOF andN2 = 173/19 for the second DOF.
By using gear-boxes, the nonlinear inertia influences due to robot
links load mass are decreased, but not eliminated (see Eq. (7)).
Additional dynamic nonlinearities are brought to the system as
viscous and Coulomb friction, which is proportionally large (up to
20% of maximum torque at the nominal speed of both motors) in
the SCARA robot mechanism.

Robot links are driven by a DC-motor with the commercial
name ESCAP 28D11-219P with nominal voltage of 12 V, nominal
Fig. 2. SCARA robot arm mechanism.

current 1.5 A, nominal velocity 600 rd/s, inertia moment Jm =

17.6 × 10−7 kg m2, viscous friction coefficient Bm = 1 × 10−7

N ms/rd and nominal torque 28.4 × 10−3 N m. The DC-motors
used are equipped with sinusoidal incremental encoders. The
sinus signals for both motors from the incremental encoders are
transmitted by power electronics to 400 pulses per robot joint
rotation. Pulses from the incremental encoders are used for the
position feedback information of a robot arm joint positions.

A nonlinear direct dynamic model of the general SCARA robot
mechanism is derived from the Lagrange equation of motion, as
follows:

M (θ) · θ̈ + h

θ, θ̇


= Tm − Fv


θ̇

− FC


θ̇

− Td, (5)

where M is an inertial matrix, h is a torque vector due to the
centrifugal, centripetal and Coriolis forces and Tm is a vector of
the drive torque applied to the robot’s motors. Fv and FC presents
viscous friction and Coulomb friction torques, while Td stands for a
torque vector due to unknown disturbances. θ presents the vector
of robot’s arm position, θ̇ the vector of robot’s arm velocity and θ̈
the vector of robot’s arm acceleration.

Vectors Tm, θ, θ̇, θ̈, h andmatricesM, Fv, FC for the 2-DOF SCARA
robot mechanism are written as:

Tm =


T1m
T2m


; θ =


θ1
θ2


; θ̇ =


θ̇1
θ̇2


; θ̈ =


θ̈1
θ̈2


; (6)

M(θ) =

Jm1 · N1 +
a1 + a2 · cos θ2

N1

a3 + a2 · cos θ2

N1

a3 + a2 · cos θ2

N2
Jm2 · N2 +

a3
N2

 ; (7)

h(θ, θ̇) =


−a2 · (2 · θ̇1 · θ̇2 + θ̇2

2 ) + sin θ2

N1

a2 · θ̇2
1 · sin θ2

N2

 ; (8)

Fv(θ̇) =


Bm1 · N1 + BGB1 0

0 Bm2 · N1 + BGB2


·


θ̇1
θ̇2


; (9)

FC(θ̇) =


Fm1 + FGB1 0

0 Fm2 + FGB2


·


sign(θ̇1)
sign(θ̇2)


; (10)

where parameters for i = 1, 2 are as follows: Jm,i inertia moment
of DC motors, Bm,i viscous friction of the ith motor, Fm,i Coulomb
friction of the ith motor, BGB,i viscous friction of the ith gear-box,
FGB,i Coulomb friction of the ith gear-box, and

a1 = IZ1 + IZ2 + IZ3 + IZ4 + m2 · l21T
+ (m3 + m4) · l21 + m4 · l22T , (11)

a2 = m4 · l2T , (12)

a3 = IZ4 + m4 · l22T , (13)
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Fig. 3. Hardware implementation hosting the application.

where inertia moments of the links and other elements (bearings,
sprockets, belt pulleys) are

IZ1 = 1.28 × 10−5 kg m2, IZ2 = 1.159 × 10−4 kg m2,

IZ3 = 1.28 × 10−5 kg m2, IZ4 = 1.28 × 10−5 kg m2.

Here, length of the links are l1 = 0.12m and l2 = 0.095m, masses
of the links and the other elements are m1 = 0.0667 kg, m2 =

0.053 kg, m3 = 0.0737 kg, m4 = 0.024 kg and distances between
the center of gravity and center of rotation of the links are l1T =

0.057 m and l2T = 0.045 m.

2.2. Computer control system

The developed algorithms consisting of the off-line optimiza-
tion algorithm for position PID controllers of both axes, the on-line
implementation of the control algorithms and the Graphic User In-
terface (GUI), are being executed on a DSP2 robotic controller card.
This DSP2 system is connected via a serial RS-232 bus to a personal
computer (PC) and via wires to robot servo electronics. Servo elec-
tronics is designed to generate the required current for theDC driv-
ing motors of the robot axes and for measuring the position of the
robot axes using a combination of incremental encoders. Hardware
implementation of the complete set-up is shown in Fig. 3.

The DSP2 system is composed of a DSP2 controller [17] and
a DSP2 add-on robotic board. The key component of the DSP2
controller is the high performance floating point digital signal
processor (DSP) used for control and optimization algorithm
execution. The DSP2 system contains all the necessary peripherals
for 4-axes robot control, meaning that it has 16 digital inputs,
8 digital outputs, 4 analogue inputs/outputs and 4 incremental
encoder interfaces.

A DSP2 system, connected to a lab PC through the serial
port implements a control algorithm, developed by using MAT-
LAB/Simulink. Through the analogue and digital I/O signals, the
DSP2 system drives a two-axes SCARA robot (Fig. 2). ComVIEW VI
communicates between the PC and the DSP2 system for monitor-
ing signals and tuning parameters.

3. Nature-inspired algorithms

Today, stochastic, nature-inspired, population-based algo-
rithms encompass evolutionary algorithms (EA) and swarm
intelligence-based (SI) algorithms. Although both families of algo-
rithms follow different inspirations from nature, a more detailed
implementation analysis reveals that they have many character-
istics in common. At first glance, algorithms of these two families
consist of the following elements:
• initialization of solutions,
• fitness function evaluation,
• replacing the worst solutions,
• generation of new solutions.

In addition to these elements, the termination condition as well
as the representation of solutions need to be defined in order to
complete these algorithms. Although the implementation details
of specific elements (e.g., initialization, evaluation, replacement)
do not differ significantly, the generation of new solutions presents
themain difference in implementation between these two families
of nature-inspired algorithms. While the new solutions are
generatedusing three operators in EAs (parent selection, crossover,
and mutation), in general only one operator (move) is used in
SI-based algorithms.

The population-based algorithms operate with a population of
n vectors of dimension D, where each vector represents a solution
to the optimization problem. Generally, the optimization problem
is defined as a quadrupleOP = ⟨I, S, f , goal⟩ [18], where I presents
a set of instances resulting from the input, S is a set of feasible
solutions, f is an objective function, and goal denotes whether the
minimum or maximum of the objective function is searched for.

In our case, the input vector denotes the parameters of the
simplified PID controller, as follows

x = [q1,0, q1,1, q2,0, q2,1], (14)

where q1,0 and q1,1 are the controller input parameters for the first
axis and q2,0 and q2,1 for the second axis of a robotic manipulator.
The task of optimization is to maximize the fitness function,
i.e., max(fi), where the fitness function is evaluated by three
different measured values obtained as feedback y from the control
plant, i.e.,

• Overi: actual overshoot,
• Essi: actual steady state error and
• Timei: actual settling time.

Feedback from the control plant can be obtained by exciting the
robot arm with the reference signal. There are many reference
signals that provide different responses from the robot arm, i.e.,

• a step function,
• a trapezoidal function,
• a sine function,
• a sine2 function.

While the step function enables the hard controlling of the robot
arm, the other three functions are devoted to soft control, of which
the sine2 provides the softest.

For our application, step function control was used. Here, the
reference signal is raised from zero to one immediately for each
time interval of five seconds. The robot arm must respond to this
change of the reference signal (Fig. 4).

If the actual value overcomes the reference signal, this indicates
an actual overshoot. When the actual signal settles down—arrives
to the vicinity of the reference signal and no longer deviates from
it, the settling time can be measured. Finally, for our example a
steady state error can be detected after five seconds. The reference
and actual values are then subtracted and the absolute value of this
subtraction yields the result of the steady state error.

This, in turn, results in the following fitness function:

f (y) =

2
i=1

1
2
(E1i(1 − |Pi − Overi|)

+ E2i(1 − Timei) + E3i(1 − Essi)), (15)

where Eij stands for initialized constants representingweights that
determine the influence of the specific output for each axis in
Eq. (15) and Pi is a desired overshoot,which is in our case set to zero
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Fig. 4. Step response of SCARA mechanism.
(Pi = 0). Obviously, the sumof these three constants of specific axis
is equal to one, in other words

3
i=1

Eij = 1, (16)

where i is the specific output variable and j the specific axis.
The developed nature-inspired algorithms demand a specific

population model, because the simplified PID controller runs on
the same processor as these algorithms do. As can be seen from
Fig. 5, the initialized solutions are saved to a population of trial
solutions, while the fitness values of candidate solutions are
set to zero. Fitness function evaluation is then performed, and
the generated values sent to the simplified PID controller. After
running the control loop, the output values are obtained, from
which the fitness suitability of trial solutions is calculated. The
replace function then compares the fitness values of trial and
candidate solutions, and the better of these are preserved for the
next generation. In the last step, the variation operator takes the
candidate solutions and generates the new solutions.

In the present study, the following stochastic, nature-inspired,
population-based algorithms have been implemented:

• bat algorithm,
• hybrid bat algorithm,
• differential evolution,
• particle swarm optimization,
• genetic algorithm,
• cuckoo search.

In the remainder of the paper, the biological foundations of the
algorithms are discussed, the generation operators presented, and
the pseudo-codes of the implemented stochastic, nature-inspired
population-based algorithms illustrated. The section concludes
with a summary of the characteristics of these algorithms.

3.1. Bat algorithm

The bat algorithm (BA) was developed by Yang [19] andmimics
a behavior of micro-bats that use the phenomenon of echolocation
for orientation in the dark. This phenomenon consists of generating
an ultrasonic pulse which bounces off obstacles and prey and
echoes back to the bat. The bat then calculates its distance to either
obstacle or prey. The BA treats bats as a swarm,moving throughout
a search space and searching for prey.

Indirectly, the current best bat diverts the whole swarm
towards regions rich with food. From the engineer’s point of view,
more food means higher value of fitness function and a higher
quality solution to the problem.Movement of the bats in the search
space is governed by a simplemathematicalmodel of echolocation.
Themodeling process, described in [13], depends on three different
vectors: frequency of pulse Q (t)

i , velocity v(t)
i and position x(t+1)

i of
the ith bat at generation t . This movement can be summarized in
the following equations:

Q (t)
i = Q (t)

min +


Q (t)
max − Q (t)

min


· β,

v(t+1)
i = v(t)

i +


x(t)
i − x(t)

best


· Q (t)

i ,

x(t+1)
i = x(t)

i + v(t)
i .

(17)

Output pulse frequency can vary in the interval Q (t)
i ∈ [Qmin,

Qmax]. The random number β ∈ [0, 1] specifies the output pulse
and x(t)

best presents the current best solution. These equations
represent a strategy for exploring the new solutions. Additionally,
the algorithm proposes the local search strategy, expressed as
follows:

xnew = xold + ϵ · L(s, α), (18)

where ϵ > 0 is the step size scaling factor and L(s, α) the Lévy flight
alpha-stable distribution with parameters scale s and exponent
α ∈ (0, 2]. The distribution reduces to Gaussian for α = 2 and
to Cauchy for α = 1. This strategy is more exploitative, and
represents a kind of random walk that is primarily focused on
exploring the vicinity of the current best solution. Both exploration
strategies are balanced in the search process using the parameter
pulse rate r (t)

i .

Algorithm 1 Original Bat algorithm
1: INITIALIZE_solutions_randomly;
2: FIND_the_best_solution;
3: while TERMINATION_CONDITION_not_meet do
4: EVALUATE_each_trial_solution;
5: REPLACE_worse_solutions_conditionally;
6: FIND_the_best_solution;
7: GENERATE_new_trial_solutions;
8: if rand(0, 1) > ri then
9: IMPROVE_the_best_solution_using_Lévy_flight;

10: end if{local search step}
11: end while

The pseudo-code of the BA algorithm is presented in Algorithm
1. Two peculiarities distinguish the BA algorithm from the
other stochastic, nature-inspired algorithms: explicit control of
exploration/exploitation strategies and conditional replacement of
the worst solution. The former is implemented in the ‘GENERATE’
(exploration strategy in line 7) and ‘IMPROVE’ (exploitation
strategy in line 9) functions, balanced using the parameter
pulse rate (line 8), while the later is implemented in the
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Fig. 5. Population model of the nature-inspired algorithms.
‘REPLACE’ function (line 5). The motivation behind the conditional
replacement of the worse solution is borrowed from a simulated
annealing (SA) [20], where the best solution replaces the worst
under some probability, thus avoiding becoming stuck in local
optima.

3.2. Hybrid bat algorithm

The hybrid bat algorithm (HBA)was developed by Fister Jr. et al.
in [21]. In fact, this is a modified version of the BA algorithm,
where the random walk improvement strategy was replaced with
the ‘DE/rand/1/bin’ mutation strategy. This strategy increases the
exploration power of the original BA algorithm on the one hand,
but eliminates the local search improvement strategy on the other.

Algorithm 2 Hybrid bat algorithm
1: INITIALIZE_solutions_randomly;
2: FIND_the_best_solution;
3: while TERMINATION_CONDITION_not_meet do
4: EVALUATE_each_trial_solution;
5: if rand(0, 1) > ri then
6: IMPROVE_the_best_solution_using_"DE/rand/1/bin";
7: end if{local search step}
8: REPLACE_worse_solutions_conditionally;
9: FIND_the_best_solution;

10: GENERATE_new_solutions;
11: end while

The pseudo-code of the HBA algorithm is illustrated in
Algorithm 2, from which it can be seen that the only change
between the modified and the original algorithm is the call of
‘IMPROVE’ function in line 9.

3.3. Differential evolution

Differential evolution (DE) is an evolutionary algorithm intro-
duced by Storn and Price in 1995 [10] and is appropriate for contin-
uous and combinatorial optimization. Although it uses metaphors
for variation operators similar to typical EAs (i.e., crossover, muta-
tion and selection), they are implemented bymathematical opera-
tions and therefore do not follow from any real natural inspiration.
DE is a population-based algorithm consisting of n real-coded vec-
tors, where each vector represents a candidate solution.

The variation operator in DE supports a differential mutation
and a differential crossover. In particular, the differential mutation
randomly selects two solutions and adds the scaled difference
between these to the third solution. This mutation can be
expressed as follows:

u(t)
i = x(t)

r0 + F · (x(t)
r1 − x(t)

r2 ), for i = 1, . . . ,Np, (19)

where F denotes the scaling factor as a positive real number
that scales the rate of modification, and r0, r1, r2 are randomly
selected values in the interval [1, n]. Note that Price and Storn
proposed F ∈ [0.0, 2.0] in the original DE, though the interval
F ∈ [0.1, 1.0] is typically used in the DE community.

A uniform crossover is used in the DE as a differential crossover,
where the trial vector is built from parameter values copied from
two different solutions. Mathematically, this crossover can be
expressed as follows:

w
(t+1)
i,j =


u(t)
i,j randj(0, 1) ≤ CR ∨ j = jrand,

x(t)
i,j otherwise,

(20)

where CR ∈ [0.0, 1.0] controls the fraction of parameters that are
copied to the trial solution. Note that the relation j = jrand ensures
that the trial vector is different from the original solution x(t)

i .
A differential selection is in fact a generalized one-to-one

selection that can be mathematically expressed as follows:

x(t+1)
i =


w(t)

i if f (w(t)
i ) ≤ f (x(t)

i ),

x(t)
i otherwise.

(21)

In a technical sense, crossover and mutation can be performed
in several ways in differential evolution. Therefore, a specific
notation is used to describe the varieties of these methods (also
strategies) generally. For example, ‘rand/1/bin’ denotes that the
base vector is randomly selected, 1 vector difference is added to
it, and the number of modified parameters in the mutant vector
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follows binomial distribution. A detailed description of the other
DE mutation strategies, as well as exponential crossover, is found
in [22,23].

Algorithm 3 The original DE algorithm
1: INITIALIZE_solutions_randomly;
2: while TERMINATION_CONDITION_not_meet do
3: EVALUATE_each_candidate_solution;
4: SELECT_better_between_candidate_and_trial;
5: GENERATE_new_trial_solutions;
6: end while

The pseudo-code of a DE algorithm is presented in Algorithm
3, where the ‘GENERATE’ function implements operator mutation,
crossover, and selection according to Eqs. (19)–(21).

3.4. Particle swarm optimization

Particle swarmoptimization (PSO)was one of the firstmembers
of SI-based algorithm family. It was proposed by Kennedy and
Eberhart [24] in 1995. The PSO algorithm mimics the behavior
of flocks of birds. Therefore, it is a population-based algorithm,
and its population consists of n particles comprised of real-coded
elements representing the solution to the problem in question.

The PSO algorithm explores a new solution by moving the
particles throughout a search space in the direction of the current
best solution. Thus, two sets of particles are managed by the
algorithm: the local best solutions p(t)

i and the current positions
of the particles x(t)

i . Moreover, the best solution in the population
g(t) is determined for each generation. The new particle position is
generated as follows:

v(t+1)
i = v(t)

i + C1U(0, 1)(p(t)
i − x(t)

i )

+ C2U(0, 1)(g(t)
− x(t)

i ),

x(t+1)
i = x(t)

i + v(t+1)
i ,

(22)

where U(0, 1) denotes a random value drawn from the uniform
distribution in interval [0, 1], and C1 and C2 are learning factors.

The pseudo-code of the original PSO algorithm is illustrated in
Algorithm 4.

Algorithm 4 Pseudo code of the PSO algorithm
1: INITIALIZE_particles_randomly;
2: while TERMINATION_CONDITION_not_meet do
3: EVALUATE_each_particle_solution;
4: REPLACE_worse_local_best_solutions;
5: FIND_the_global_best_solution;
6: GENERATE_new_particle_solutions;
7: end while

We should note that Eq. (22) is implemented in the ‘GENERATE’
function, while the ‘FIND’ function determines the current best
solution in each generation.

3.5. Genetic algorithm

The genetic algorithm (GA) was one of the first optimization
algorithms belonging to the family of evolutionary algorithms
(EAs) [25]. This family of algorithms mimics Darwinian evolu-
tion [7] through problem solving. According to Darwinian the-
ory, the fittest individuals have a better chance of surviving in the
struggle for existence. Similarly, the better solutions have a higher
probability of survival and thus a better chance to transfer their
characteristics to the next generation during the simulated evolu-
tionary cycle.

In each generation, the solutions undergo operator crossover
and mutation [9]. Many operators have been developed since
the creation of this algorithm and its application to a variety
of problems. Although the original GAs employed a binary
representation of solutions, contemporary GAs also support
real-coded solutions, and suitable operators were developed in
conjunction with this. However, in our study, tournament parent
selection with size two, arithmetic crossover, random mutation,
and steady-state population model [26] are used.

The pseudo-code of the original GA algorithm is illustrated in
Algorithm 5.

Algorithm 5 Genetic algorithm
1: INITIALIZE_solutions_randomly;
2: while TERMINATION_CONDITION_not_meet do
3: EVALUATE_each_trial_solution;
4: SELECT_SURVIVOR_solutions;
5: SELECT_PARENT_solutions;
6: RECOMBINE_pairs_of_parents;
7: MUTATE_the_resulting_offspring;
8: end while

As can be seen from Algorithm 5, the generated solutions
consist of three functions in the GA algorithm: ‘SELECT_PARENT’
selects two parents entering the crossover operation, ‘RECOMBINE’
performs the arithmetic crossover that creates two offspring
from two parents by calculating the mean of two corresponding
elements, and ‘MUTATE’ generates a random value from the
interval of feasible values for a suitable element. The steady-state
population model means that for each generation a portion of the
best offspring solutions replaces a portion of the worst parent
solutions in the ‘SELECT_SURVIVOR’ function.

3.6. Cuckoo search

Cuckoo search (CS) is a contemporary stochastic, nature-
inspired, population-based algorithm which was developed by
Yang and Deb in late 2009 [12]. CS belongs to the SI-based
algorithm family [27] inspired by the natural behavior of some
cuckoo species along with their obligate brood parasitism. This
means that some cuckoo species lay their eggs in the nests of other
birds so that the latter will care for them as if they were their own.

A solution in the original cuckoo search algorithm correspond-
ing to cuckoo nests represents a position of the cuckoo nest in the
search space. Each nest is evaluated according to the fitness func-
tion. The egg can be put in the nest by a local random walk or by
simply being ejected from the nest. Being the least fit, the egg has
to be built at a random position. The local random walk is primar-
ily intended for exploitation of the current solutions by using Lévy
flight distribution expressed, as

x(t+1)
i = x(t)

i + ϵL(s, λ), (23)

where the term L(s, λ) determines the Lévy flight distributionwith
scale s and exponent λ ∈ (0, 2] and ϵ > 0 is a step size scaling
factor. Notice that this equation is similar to Eq. (18) for the BA
algorithm.

Abandoning the old nest and building the new one at a
random position represents the global random walk that is
intended primarily for exploration of the search space. This is
mathematically expressed, as

x(t+1)
i = (Ubj − Lbj) ∗ Uj(0, 1) + Lbj, (24)

where Lbj and Ubj are the lower and upper bounds of the specific
variable, respectively, andUj(0, 1) is a randomnumber drawn from
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Table 1
Parameter settings of the algorithms in the study.

BA HBA DE PSO GA CS
Par. Set Par. Set Par. Set Par. Set Par. Set Par. Set

Q [0.5, 1.5] F 0.9 F 0.9 C1 1.0 pc 0.8 α 1.0
β [0, 1] CR 0.5 CR 0.5 C2 1.0 pm 0.01 λ 1.5
ri 0.1 ri 0.1 w .729 PS T = 2 pa 0.1
Ai 0.9 Ai 0.9 v [0, 2] PM SS s 1.0
a uniform distribution in interval [0, 1]. The balance between the
global random walk and the local random walk occurs according
to the probability pa.

Algorithm 6 Original Cuckoo search algorithm
1: INITIALIZE_solutions_randomly;
2: while TERMINATION_CONDITION_not_meet do
3: EVALUATE_each_trial_solution;
4: REPLACE_worse_solutions_randomly;
5: GENERATE_new_trial_solutions;
6: if rand(0, 1) < pa then
7: REINITIALIZE_worst_nest;
8: end if
9: end while

Interestingly, the CS algorithm employs a ‘one-to-random’
replacement operator that is somewhat similar to the ‘one-to-
one’ selection operator in DE [10]. However, the randomly selected
candidate solution j competes with the ith trial solution for a place
in the next generation by means of the ‘one-to-random’ operator,
while in the case of fitness improvement the ith trial solution
replaces the corresponding ith candidate solution with the ‘one-
to-one’ operator.

4. Experiments and results

The purpose of our experimental workwas twofold: we sought,
on the one hand, to show that the quality of results achieved by
parameter tuning of the PID controller depends on type of nature-
inspired algorithm used, and on the other, to show how the results
of parameter tuning improve by increasing the generations. In line
with these objectives, three experiments were performed:

• a comparative study of the selected nature-inspired algorithms
for parameter tuning of the simplified PID controller,

• a convergence analysis of the selected nature-inspired algo-
rithms for the parameter tuning of the simplified PID controller,
and

• an estimation of a time complexity of the nature-inspired
algorithms for the parameter tuning of the simplified PID
controller.

The algorithms used in our comparative study were: BA, HBA,
DE, PSO, GA and CS. The parameter settings of these algorithms as
used during the experiment work are illustrated in Table 1. The
meaning of the parameters in the table is discussed in Section 3.
We should note that the abbreviations PS and PM in relation to
the GA algorithm refer to parent selection and population model,
respectively. In fact, the GA for tuning the parameters of the
simplified PID controller used the tournament parent selection of a
size two and a steady-state (SS) population model, where the two
best offspring solutions replace the two worst solutions.

Because we worked with reactive nature-inspired algorithms,
we used the same small population size n = 10 and employed
the same small generation numbers MAX_GEN = 10 in order to
test their responses. In this way, all algorithms terminatewhen the
maximum number of fitness function evaluations MAX_FE = 100
is achieved. Each algorithm was run ten times to determine its
stochastic nature. The obtained values of fitness function for both
axes, as well as their mean values, were recorded for each run. In
order to restrict the size of the search space, the input parameters
captured values from the interval q0 ∈ [0, 400] and q1 ∈ [0, 20]
for each of the observed axes.

In the remainder of the paper, we present the PC configuration
used to conduct the experiments. Then, the results of both
experiments are illustrated and discussed.

4.1. PC and DSP2 configuration

All runswere carried out on anHP computer, with the following
configuration:

• Processor: Intel(R) Core(TM) i5-4570 CPU @ 3.20 GHz,
• RAM: 8 GB,
• Operating system: Windows 8.1, 64-bit.

Configuration of the DSP2 was as follows:

• Processor: high performance floating point — Texas Instru-
ments TMS320C32,

• Instruction cycle time: 33 ns,
• Instructions per second: 30 MIPS.

All tested algorithms were implemented in the MATLAB and
Simulink Student Suite-Release 2014a.

4.2. Comparative study

The aim of this study was to illustrate the behavior of six
reactive, nature-inspired, population-based algorithms, i.e., BA,
HBA, DE, PSO, GA and CS, by tuning the parameters of the
simplified PID controller. The best fitness values for both axes
obtained for each run after controlling are presented in Table 2,
along with the corresponding mean values. Finally, the minimum,
maximum, average, and standard deviation values obtained in ten
independent runs are presented under ‘‘Total’’. The best results are
highlighted in bold.

As can be seen from Table 2, the best results according to
the maximum fitness value achieved for the observed algorithms
are more or less similar because, with the exception of the PSO
algorithm that achieved the maximum fitness value fmax(y) =

0.9831, which is above the interval, these moved within the
interval fmax(y) ∈ [0.9747, 0.9788]. According to the average
values, the best results were also obtained by the PSO (i.e., f (ȳ) =

0.9753), while the worst results were achieved by the HBA
(i.e., f (ȳ) = 0.9577). The main reason for this laid is found in the
third run, where the HBA obtained the fitness value f (y) = 0.9204.
Actually, eliminating the local search improvement strategy from
the algorithm negatively affected the results of the tuning process
of the SCARA robot.

In order to statistically estimate the quality of the results
obtained by the various reactive nature-inspired algorithms for
parameter tuning of the simplified PID controller, Friedman
tests [28] were conducted. The Friedman test is a two-way analysis
of variances by ranks, where the statistical test is conducted in the
second step using the calculated rankings. Here, a low rank means
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Table 2
Comparison of results.

Run Fitness BA HBA DE PSO GA CS

1
Axis-1 0.9729 0.9706 0.9754 0.9816 0.9804 0.9670
Axis-2 0.9726 0.9595 0.9762 0.9846 0.9600 0.9744
Mean 0.9727 0.9651 0.9758 0.9831 0.9702 0.9707

2
Axis-1 0.9795 0.9741 0.9760 0.9445 0.9729 0.9655
Axis-2 0.9497 0.9368 0.9717 0.9810 0.9556 0.9773
Mean 0.9646 0.9555 0.9738 0.9627 0.9642 0.9714

3
Axis-1 0.9702 0.9220 0.9777 0.9710 0.9726 0.9690
Axis-2 0.9847 0.9189 0.9800 0.9893 0.9845 0.9804
Mean 0.9775 0.9204 0.9788 0.9801 0.9786 0.9747

4
Axis-1 0.9757 0.9574 0.9754 0.9736 0.9455 0.9586
Axis-2 0.9802 0.9718 0.9681 0.9918 0.9653 0.9807
Mean 0.9780 0.9646 0.9717 0.9827 0.9554 0.9696

5
Axis-1 0.9778 0.9746 0.9722 0.9742 0.9638 0.9615
Axis-2 0.9592 0.9354 0.9764 0.9750 0.9443 0.9333
Mean 0.9685 0.9550 0.9743 0.9746 0.9540 0.9474

6
Axis-1 0.9724 0.9584 0.9706 0.9686 0.9782 0.9703
Axis-2 0.9790 0.9713 0.9526 0.9798 0.9640 0.9559
Mean 0.9757 0.9648 0.9616 0.9742 0.9711 0.9631

7
Axis-1 0.9746 0.9683 0.9762 0.9805 0.9752 0.9621
Axis-2 0.9810 0.9327 0.9735 0.9668 0.9727 0.9752
Mean 0.9778 0.9505 0.9749 0.9737 0.9740 0.9687

8
Axis-1 0.9647 0.9463 0.9797 0.9665 0.9774 0.9485
Axis-2 0.9887 0.9849 0.9620 0.9865 0.9409 0.9723
Mean 0.9767 0.9656 0.9709 0.9765 0.9592 0.9604

9
Axis-1 0.9787 0.9839 0.9726 0.9748 0.9721 0.9759
Axis-2 0.9733 0.9689 0.9745 0.9805 0.9569 0.9624
Mean 0.9760 0.9764 0.9736 0.9777 0.9645 0.9692

10
Axis-1 0.9748 0.9707 0.9810 0.9706 0.9662 0.9769
Axis-2 0.9430 0.9468 0.9574 0.9651 0.9568 0.9636
Mean 0.9589 0.9588 0.9692 0.9678 0.9615 0.9703

Total

Min 0.9589 0.9204 0.9616 0.9627 0.9540 0.9474
Max 0.9780 0.9764 0.9788 0.9831 0.9786 0.9747
Avg 0.9726 0.9577 0.9725 0.9753 0.9653 0.9665
StDev 0.0066 0.0150 0.0047 0.0064 0.0081 0.0079
a better algorithm [29]. The second step is performed only if a
null hypothesis from the Friedman test is rejected. Note, the null
hypothesis states that the median of the rankings of all algorithms
is equal.

According to Demšar [30], the Friedman test is safer and
more robust non-parametric test for the comparison of several
algorithms over multiple classifiers (also datasets) that, together
with the corresponding Nemenyi post-hoc test, allows for a neat
presentation of the statistical results [31]. The main drawback of
the Friedman test is that it makes all of the multiple comparisons
over datasets and therefore it is unable to establish a proper
comparison among some of the algorithms considered [29].
Consequently, a Wilcoxon two-paired, non-parametric test is
applied as a post-hoc test after determining the control method
(i.e., the algorithm with the lowest rank) using the Friedman test.
On the other hand, the Nemenyi test is very conservative and may
not reveal any difference in most experiments [32]. Therefore, the
Nemenyi test is used for graphical representation of the results,
while the Wilcoxon test shows which of the algorithms in the test
are more powerful. In this study, both tests were conducted using
a significance level 0.05.

The results of the statistical tests are illustrated in Fig. 9, which
is comprised of two diagrams. The first is a table showing the
numerical results of three statistical tests: the Friedman non-
parametric test, the Nemenyi, and Wilcoxon non-parametric test.
The values were obtained by comparing the best fitness values for
each of the observed axes together with their corresponding mean
values. As a result, each observed algorithm (i.e., classifier) consists
of 3 × 10 = 30 values. The second diagram graphically illustrates
the results of the Nemenyi post-hoc statistical test.
Table 3
The best input parameters obtained by the observed nature-inspired algorithms.

Alg. Axis-1 Axis-2 Efficiency [%]
q1,0 q1,1 q2,0 q2,1

BA 255.47 20.00 102.76 11.70 97.80
HBA 30.70 1.22 154.97 9.47 97.64
DE 215.17 18.01 120.81 7.26 97.88
PSO 151.44 10.89 114.95 6.55 98.31
GA 56.42 3.27 108.57 7.69 97.86
CS 136.55 8.88 89.84 5.81 97.47

As can be seen from Fig. 6(a), the PSO algorithm achieved
the best results due to the minimum ranking value according
to the Friedman non-parametric test. Therefore, this algorithm
became the control method to which the other algorithms were
compared. The control method is denoted by the ‘Ě’ sign in
the table. The interval in the column ‘CD’ for the Nemenyi test
denotes the confidence interval according to which the significant
difference between two algorithms can be determined. As such,
two algorithms are considered significantly different if their critical
differences (CD) do not overlap. The significant differences are
denoted in the table by the ‘Ď’ sign.

We should point out that both post-hoc statistical tests yielded
the same results, where the PSO algorithm (i.e., the control
method) significantly outperformed the results of the other two
algorithms (i.e., HBA, GA) and CS. Interestingly, the differences
between BA, DE and PSO are not significant.

The same conclusions can also be drawn from Fig. 6(b), where
two algorithms are considered significantly different, when the
lines denoting their critical differences do not overlap. As a
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(a) Table. (b) Graph.

Fig. 6. Statistical analysis of the observed nature-inspired algorithms.
Fig. 7. The best values of various algorithms during the generations.

result, the PSO, DE, and BA significantly outperformed the other
algorithms (i.e., the HBA, GA and CS) in the test.

Finally, the best input parameters as found by the observed
nature-inspired algorithms are aggregated in Table 3. Interestingly,
no unique global optima were suggested by the observed reactive
algorithms. It seems that searching for the correct ratios between
input parameters q1,0 and q1,1, as well as q2,0 and q2,1, is more
important than a single global optima. As a matter of fact, these
ratio values approach the approximate value of ≈15.

The best fitness values obtained in each of the ten independent
runs are illustrated graphically in Fig. 7.

From Fig. 7 it can be seen that the quality of results obtained by
the observed reactive nature-inspired algorithms do not depend
on the initial values of the parameters in general. However, an
exception to this is the HBA, which obtained theworst result in the
third run. Obviously, this algorithm is sensitive to initial conditions.
Consequently, the poor initial parameters can cause the algorithm
to become stuck in local optima.

4.3. Convergence graph

The convergence graph showshow the best results of the tuning
parameters increase by increasing the number of generations
with respect to the observed reactive algorithms. This graph also
shows how strong the selected parameters (i.e., population size,
maximum number of generations, etc.) limit their exploratory
power.
Fig. 8. Convergence graph.

The convergence graph capturing the algorithms observed in
our study is shown in Fig. 8, from which it can be seen that all the
algorithms in the tests improved their initial results significantly,
except the HBA, for which a straight curve is shown. In examining
the other algorithms in the graph, two kinds of behavior can be
detected: first, the GA starts to improve the results obtained in
later generations. This means that both the population size and
the number of generations should be increased in order to improve
the results. On the other hand, the BA converge to the best results
very quickly. This fact proves that this algorithm can be suitable in
situations where rapid reaction in real-time is demanded from the
system.

4.4. Time complexity

The purpose of this experiment was to show the time
complexity of the stochastic, population-based algorithms used.
Thus, we focused on the reactivity of these algorithms. As we
know, the online response of the processor must be lower than
5 ms. In line with this, the time complexity of each of the
implemented algorithms was measured in milliseconds. Thus, the
time duration of the fitness function evaluation was omitted from
themeasurement. All algorithmswere runwith parameter settings
as presented in Table 1, and used the limited population size n =

10 and the limited generation number MAX_GEN = 10. Thus, 10
independent runs were performed for each algorithm on the DSP2
with 30 MIPS.

The results of the experiments are presented in Fig. 9, and are
divided into two parts: a table depicting the numerical results and
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(a) Numerical results. (b) Graphical results.

Fig. 9. Time complexity of the nature-inspired algorithms on DSP2 30 MIPS.
a diagram presenting the results graphically. In the diagram, a
reference line is drawn that denotes a regionwhere the algorithms
having a time complexity under 5 ms are suitable for use in online
applications.

As can be seen from the figure, all reactive algorithms except
the GA are suitable for online applications on the DSP2 used.
Interestingly, the HBA and BA are shown to be the fastest
algorithms used in the study. Actually, this fact confirms our
assumptions.

5. Conclusion

In general, tuning describes a process of finding the optimal
algorithm parameter values before the run. Here, the optimal
values of the simplified PID controller are sought. PID controllers
are among the most popular control systems used in industry.
Their parameters must be tuned in order to avoid instability
and delay during system operation. The purpose of tuning their
parameters is to find the safety margins in the phase and
gain of the PID controller. Although the initial attempts to
determine the optimal values of the parameters were performed
manually, automatic tuning is used today. This automatic tuning
of PID parameters captures the various reactive, nature-inspired,
population-based algorithms.

This paper deals with a comparison of the reactive nature-
inspired population-based algorithms for tuning the simplified
PID controlled parameters. In line with this, six evolutionary and
swarm-intelligence algorithms, like BA, HBA, DE, PSO, GA and CS,
were taken into consideration. The results of these algorithmswere
statistically analyzed in order to obtain the best algorithm for
this purpose. In this analysis, the online response of the observed
algorithmswas highlighted. Consequently, the reactive algorithms
in tests use the small numbers of generations and the small
population sizes. Under these conditions, the best results were
achieved by the PSO algorithm. Also the results of the BA and
DE algorithms were solid. However, the results obtained for the
algorithms, like the GA, reflect the slow convergence rate and
therefore demand the higher population sizes.

Future research should focus on testing the online response
of the PID controller by sudden loads using the reactive, nature-
inspired, population-based algorithms. The quick response of the
majority of the algorithms observed suggests to us that these
algorithms could be successfully applied to these kinds of problems
as well.
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