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a b s t r a c t 

Epistasis in genetics denotes an impact of one gene on the expression of the another genes. 

This means that so called epistatic gene influences the characteristics of the so called hy- 

postatic genes. As a matter of fact, there is no one-to-one correspondence between genes 

and traits in nature. On the other hand, values of offspring genes are inherited from the 

parents genes. In this paper, the impact of epistatic genes in evolutionary computation is 

studied, where each epistatic gene in offspring depends on the corresponding hypostatic 

genes of its parents by an epistatic arithmetic crossover used in differential evolution. 

Thus, epistatic genes are determined by the Cartesian graph product of both parents pre- 

sented as linear graphs. The epistatic arithmetic crossover is applied as a mutation strategy 

to the ensemble differential evolution. The results of extensive experiments conducted on 

CEC-14 function benchmark suite showed a great potential of the proposed algorithm and 

encouraged us to start to experiment with other graph products as well. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Evolutionary algorithms (EAs) represents nowadays a powerful tool for solving the hardest problems with which humans

are confronted today. They found an inspiration for their operation in Darwinian evolution [15] , where the fittest individuals

in a population have more chances for surviving and transferring the best characteristics on their offspring. Modern bio-

chemistry and genetics have extended this Darwinian macroscopic view on evolution by microscopic view concerning the

mechanisms of heredity [16] . 

In genetics, a genotype determines a characteristics (traits) of each individuals (i.e., its phenotype) and represents a

blueprint or set of instructions for building and maintaining a living cell. Thus, all information are written in genes that

represent transfer units of heredity. A sequence of genes is combined into a linear order known as chromosome. Each gene

is positioned at the specific chromosomal position (also loci). Interestingly, a mapping of genes to traits is not one-to-one

(not injective). Although one gene can determine one traits, in common, more genes in chromosome specify one trait. In

line with this, the fitness of individual trait depends on contribution that one gene has on the value of another gene.

This dependence is also known under the name epistasis, where the more epistatic genes influence the expression of one

hypostatic gene. 
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The phenomenon of epistasis in the genetic algorithms was the first considered by Davidor in [3,4] that connected each

problem with its so called epistatic level. This level corresponds to the maximal number of dependent variables k of n rep-

resenting a solution of some sub-problems into which the problem is decomposed. For instance, the problem with epistatic

level zero cannot be decomposed into sub-problems, because all n variables in the solution are independent. In general,

these k variables represent a block that can be overlapped with another block by sharing some variables. The classical prob-

lem of size n and epistatic level k with overlapping blocks is the NK -landscape [6] . The more complete survey of this domain

can be found in Gras [5] . 

Mathematically, a set of epistatic genes can be determined in different ways. In our study, we use a tool from graph

theory, more specifically, the Cartesian product of graphs. It turns out that many real-world problems can conveniently be

described by means of a graph consisting of a set of nodes (vertices) together with lines (edges) joining certain pairs of these

nodes [38–40,51] . Graphs represent invaluable models for better understanding of biological systems. Nodes in biological

networks can represent biomolecules such as genes, proteins or metabolites, and edges connecting these nodes indicate

functional, physical or chemical interactions between the corresponding biomolecules. The Cartesian product is a binary

operation which creates a new graph from two initial ones, and in many cases properties of a Cartesian product graph can

be derived from the properties of its factors. Cartesian products of graphs have applications in many branches, like coding

theory, network designs, chemical graph theory, telecommunications, and others [41–43,50] . In this study the Cartesian

product is used to determine epistatic genes, where the factors of this product are paths (linear graphs) representing both

parents. 

Differential evolution (DE) developed by Storn and Price in 1995 [7] has become one of the most prominent EAs for

solving real-world optimization problems. Like other standard EAs, i.e., genetic algorithms (GA) [17] , genetic programming

(GP) [18] , Evolution Strategies (ES) [16] and Evolutionary Programming (EP) [19] , the DE is also population-based algorithm,

where each individual in the population represents a solution of the problem to be solved in a form of real-vectors. These

vectors (also parents) are subject of operators crossover and mutation. As a result, trial vectors (also offspring) are produced

that compete with their parents for a place in the next generation. In this competition for surviving, the better among

parent and a trial vector according to the fitness value is placed at the parent’s position in the population. 

In order to improve the algorithm, a lot of modifications have been applied to the original DE. Mainly, modifications

concerned setting DE algorithm parameters and changing DE mutation strategies. Algorithm parameters control the evolu-

tionary search process, because the parameters valid at the beginning become inappropriate at the end of the optimization

and vice versa. Therefore, the DE parameters need to be adapted and self-adapted. The more successful algorithms of this

kind are jDE [8] and SaDE [10] . The DE mutation strategies determine a way in which the search space is explored. As it is

known, some DE mutations are more explorative, while the others are more exploitative. As a result, the mutation strategies

need to be changed during a discovering of the search space. This kind of adaptation has previously been addressed in [11]

and widened with so called arithmetic recombination as a mutation strategy in ensemble DE strategies in [20] based on

linear arithmetic crossover as developed for GAs in [21] . Finally, some kind of DE algorithms try to improve the results of

the original DE algorithm by using ensembles of parameters and mutation DE strategies [12,13] . A complete survey of DE

methods can be found in [1,14] . 

In this study, the epistatic differential crossover based on Cartesian graph product in ensemble DE (eXEDE) is proposed,

where the epistatic arithmetic crossover is used as a strategy in ensemble DE strategies that beside the ordinary arithmetic

crossover [2] takes into account also interactions with epistatic genes. While the original linear crossover calculates three

possible values for two parameters laying at the same positions in parent vectors, the epistatic arithmetic crossover selects

one of these three values randomly and to this value adds contributions of the epistatic genes determined by Cartesian graph

products. As a result, one offspring is generated. Let us notice that these contributions consist of two parts, i.e., dependence

contribution of epistatic genes of the first as well as the dependence contribution of the second parent. However, the mag-

nitude of both contributions that have an impact on the final value of a specific parameter can be regulated by weights. The

corresponding eXEDE was applied to the CEC-14 function benchmark suite. The results of the optimization showed that the

proposed eXEDE improved the results of the original DE, both self-adaptive DEs (i.e., jDE and SaDE), ensemble DE (EDE) as

well as the ensemble DE with arithmetic crossover (XEDE). 

The structure of the remainder of the paper is as follows. Section 2 discusses background information about founda-

tions of Cartesian graph products and differential evolution. In Section 3 , an evolution of arithmetic crossover strategies in

differential evolution is given. The experiments and results are subjects of Section 4 . Section 5 concludes the paper with

summarizing of the performed work and the possible directions for further development are outlined. 

2. Background information 

2.1. Cartesian graph products 

The Cartesian product G �H of graphs G and H is the graph with the vertex set V ( G ) × V ( H ) in which vertices ( g , h ) and

( g ′ , h ′ ) are adjacent whenever gg ′ ∈ E ( G ) and h = h ′ , or g = g ′ and hh ′ ∈ E ( H ). Thus, V ( G ) and V ( H ) denote the vertex sets of

graphs G and H , respectively, while the E ( G ) and E ( H ) their corresponding edge sets. 

According to Imrich and Klavžar [25] , Cartesian products of graphs were defined in 1912 by Whitehead and Russell. Later

they were repeatedly rediscovered and studied extensively since the 1960s. Due to their nice metric properties, they have
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found numerous applications in coding theory, radio-frequency assignment, theoretical chemistry, etc. The most important

metric property of the Cartesian product operation is that for any graphs G and H , 

d G �H ((g, h ) , (g ′ , h 

′ )) = d G (g, g ′ ) + d H (h, h 

′ ) . 

It follows immediately from the definition that the Cartesian product is commutative and associative, i.e., G �H = H�G

and G �(H�K) = (G �H) �K (up to isomorphism) for all graphs G , H and K , with K 1 as its unit. The product G �H is connected

if and only if both factors G and H are connected. 

A graph G is prime if it is nontrivial and G = G 1 �G 2 implies G 1 = K 1 or G 2 = K 1 . Every graph G has a prime factorization

G = G 1 �G 2 �. . . �G p , where each factor G i is prime. A fundamental theorem, proved independently by Sabidussi [27] and

Vizing [28] , states that the prime factorization of a connected graph is unique, that is, if a connected graph G has prime

factorizations G 1 �G 2 �. . . �G p and H 1 �H 2 �. . . �H q , then p = q and G i = H i for 1 ≤ i ≤ p (after reindexing, if necessary). 

This fundamental theorem was a starting point for research concerning the relations between a Cartesian product and

its factors. These relations are of particular interest as they allow us to break down problems by transferring algorithmic

complexity from the product to the factors. In 2006, Imrich and Peterin [26] gave an algorithm able to compute the prime

factorization of connected graphs in linear time and space, making the use of Cartesian product decomposition particularly

attractive. 

Prime examples of Cartesian product graphs are hypercubes. A hypercube, i.e., a Cartesian product of two-vertex complete

graphs, is one of the most widely used topologies because it provides small diameter and embedding of various interconnec-

tion networks. In [32] the authors show that simultaneous broadcasting in hypercube networks via mutually independent

Hamiltonian cycles is robust with respect to edge faults. In [34] the authors significantly improve previously known results

on queue layouts of hypercubes, which is an interesting concept with applications in sorting permutations, parallel process

scheduling, matrix computations, graph drawings, and queue-based computers. Gray codes [37] , which can be viewed as

Hamiltonian paths of hypercubes, are widely used to facilitate error correction in digital communications such as digital

terrestrial television and some cable TV systems. Research on Gray codes satisfying certain additional properties [35,36] has

received a considerable attention, and applications have been found in diverse areas like data compression, graphics and im-

age processing, information retrieval, signal encoding, processor allocation in hypercubic networks. A general construction

of level-disjoint partitions for Cartesian products which allows simultaneous broadcasting of optimal number of messages in

optimal time in some of these networks was developed in [33] . Hypercubes and other general Cartesian products of graphs

have found applications in many other different fields of science. 

In this paper we use 2-dimensional grids, i.e., Cartesian products of two paths, where a path (or linear graph) on n

vertices P n is given by the set of vertices V (P n ) = { v 1 , v 2 , . . . , v n } and the set of edges E(P n ) = { v i v i +1 | i = 1 , . . . , n − 1 } . 
The open neighborhood of a vertex g in G is defined as N G (g) = { g ′ ; gg ′ ∈ E(G ) } . This means that for the product G �H and

a vertex (g, h ) ∈ V (G �H) we have: N G �H (g, h ) = { (x, y ) ; (x, y )(g, h ) ∈ E(G �H) } . It follows from the definition that the open

neighborhood of a vertex ( g , h ) in the Cartesian product G �H equals N G �H (g, h ) = { (x, h ) ; x ∈ N G (g) } ∪ { (g, y ) ; y ∈ N H (h ) } .
Vertices from open neighborhoods are used in the function, defined in Section 3 . 

2.2. Differential evolution 

Differential evolution (DE) [1] is an evolutionary algorithm appropriate for continuous and combinatorial optimization

that was introduced by Storn and Price in 1995 [7] . This is a population-based algorithm that consists of Np vectors with

real-coded parameters of dimensions D representing the candidate solutions, as follows: 

x 

(t) 
i 

= (x (t) 
i, 1 

, . . . , x (t) 
i,D 

) , for i = 1 , . . . , Np , (1)

where t denotes the generation number. 

The variation operator in DE supports a differential mutation and a differential crossover. In particular, the differential

mutation randomly selects two solutions and adds a scaled difference between these to the third solution. This mutation

can be expressed as follows: 

u 

(t) 
i 

= x 

(t) 
r1 

+ F · (x 

(t) 
r2 

− x 

(t) 
r3 

) , for i = 1 , . . . , Np , (2)

where F denotes the scaling factor as a positive real number that scales the rate of modification whilst r 1, r 2, r 3 are randomly

selected values in the interval 1 , . . . , Np . Note that Price and Storn proposed F ∈ [0.0, 2.0] in the original DE, but typically

the interval F ∈ [0.1, 1.0] is used in the DE community. 

Uniform crossover is typically used in DE, where the trial vector is built from parameter values copied from two different

solutions. Mathematically, this crossover can be expressed as follows: 

w 

(t+1) 
i, j 

= 

{ 

u 

(t) 
i, j 

rand j (0 , 1) ≤ CR ∨ j = j rand , 

x (t) 
i, j 

otherwise , 
(3)

where CR ∈ [0.0, 1.0] controls the fraction of parameters that are copied to the trial solution. Note that the relation j = j rand

ensures that the trial vector is different from the original solution x (t) 
i 

. 
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Fig. 1. The generated mutation element w 1 of vector w 1 lies between elements x 1 and x 2 of vectors x 1 and x 2 , when 0 < K < 1, element w 2 of vector w 2 

above the element x 2 of vector x 2 when K > 1 and element w 3 of vector w 3 below the element w 3 of vector w 3 for K < 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A differential selection is in fact a generalized one-to-one selection that can be mathematically expressed as follows: 

x 

(t+1) 
i 

= 

{
w 

(t) 
i 

if f (w 

(t) 
i 

) ≤ f (x 

(t) 
i 

) , 

x 

(t) 
i 

otherwise . 
(4) 

In a technical sense, crossover and mutation can be performed in several ways in differential evolution. Therefore, a

specific notation is used to describe the varieties of these methods (also strategies) generally. For example, ‘rand/1/bin’

denotes that the base vector is randomly selected, 1 vector difference is added to it, and the number of modified parameters

in the mutant vector follows binomial distribution. A detailed description of the other DE mutation strategies as well as

exponential crossover can be seen in [1,22] . 

3. Evolution of arithmetic crossover strategies 

At first glance, using the arithmetic crossover as a mutation strategy in DE sounds very confusing. It is about a mixture

of two different notations, i.e., the one used in EA community and the other in DE community. In EA sense, the crossover

means a way in which parameters of one parent are exchanged with at the same position layed parameters of the second

parent, while the crossover in DE prescribes how many parameters will be exchanged between both parameters. The method

of changing the parameters is defined by mutation strategy in DE. Therefore, a concept arithmetic crossover in this paper

denotes a method of changing parameters and indeed represents a mutation strategy with crossover rate CR = 1 . 0 (i.e., there

is no crossover in DE sense). 

3.1. Arithmetic crossover strategy 

The arithmetic crossover strategy was developed by Hui and Suganthan [20] and it is based on linear crossover reported

by Wright [21] . From two parent solutions x i and x j , the linear crossover creates the three solutions, i.e., 

w 1 = 0 . 5(x 

(t) 
i 

+ x 

(t) 
j 

) , 

w 2 = (1 . 5 x 

(t) 
i 

− 0 . 5 x 

(t) 
j 

) , 

w 3 = (−0 . 5 x 

(t) 
i 

+ 1 . 5 x 

(t) 
j 

) . (5) 

at generation t . However, only two solutions are selected by this operator. Using some perturbations, the proposed Eq. (5)

can be written as follows 

w 1 = x 

(t) 
i 

+ 0 . 5(x 

(t) 
j 

− x 

(t) 
i 

) , 

w 1 = x 

(t) 
i 

− 0 . 5(x 

(t) 
j 

− x 

(t) 
i 

) , 

w 1 = x 

(t) 
i 

+ 1 . 5(x 

(t) 
j 

− x 

(t) 
i 

) . (6) 

When the factors 0.5 and 1.5 in Eq. (6) are replaced with K and indices i and j with random vectors r1 and r2 , the

following equation is obtained 

0 w i = x r1 + K(x r2 − x r1 ) , (7) 

which represents the arithmetic crossover strategy. A graphical representation of this crossover for vectors in 1-dimensional

space is presented in Fig. 1 . 

If only one solution needs to be selected from three different intervals, the value K must be selected from the interval

[ K L , K U ], where the K L < 0 and K U > 1. However, the setting of proper value of this parameter has a great influence on the

performance of this arithmetic crossover strategy, because both parameters determine a magnitude of the search space to

be explored. 
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Fig. 2. The figure represents the neighborhood of the k th element obtained as the Cartesian graph product of linear graphs G (x i ) �G (x j ) . This element is 

denoted in blue color, while the corresponding epistatic neighbors in red color. Edges that connect neighbors with the k th element are colored with green 

color. Thus, the epistatic elements x i,k −1 and x i,k +1 depend more on the linear graph G ( x i ), while elements x j,k −1 and x j,k +1 more on the linear graph G ( x j ). 

However, the influence of the epistatic elements are controlled by epistatic coefficient. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Epistatic arithmetic crossover strategy 

Epistasis in genetics addresses genes having a contribution on the phenotype traits of individuals. This phenomenon in

evolutionary computation community denotes the effect of a unit that is context dependent, i.e., one unit is not predictable

unless the value of another unit is known [23] . Epistasis is related to the problem difficulty of EAs. 

A basis of the epistatic arithmetic crossover represents an arithmetic crossover strategy presented in Eq. (1) to which

a contribution of adjacent elements of vectors is determined by Cartesian graph product. Thus, both parents x i and x j en-

tering in a process of a crossover are treated as linear graphs G ( x i ) and G ( x j ), where edges in the Cartesian graph product

G (x i ) �G (x j ) determine the neighborhood for each vertex in this graph ( Fig. 2 ). 

The neighborhood defines the epistatic elements (genes) which contribute by forming the total value of the correspond-

ing offspring element. Let us notice that the contribution consists of two parts, i.e., the contribution of the first parent x i
and the second parent x j expressed as 

�i,k = δi,k −1 (x j,k − x i,k −1 ) + δi,k (x j,k − x i,k +1 ) , 

� j,k = δ j,k −1 (x j,k −1 − x i,k ) + δ j,k (x j,k +1 − x i,k ) , (8)

where δi , k determines the dependence of the k th epistatic element x i,k +1 on the hypostatic element x i , k in vector x i and

δj , k denotes the dependence of the k th epistatic element x j,k +1 on the same hypostatic element. 

Dependence vectors δi = { δi,k } for i = 1 , . . . , NP and k = 1 , . . . , D are realized as a circular linked list, whose elements are

self-adapted according to equation 

δ(t+1) 
i,k 

= δ(t) 
i,k 

exp 

τN(0 , 1) , (9)

where τ = 1 / 
√ 

D is a learning rate and N (0, 1) designates a random number drawn from normal distribution with mean

zero and standard deviation one. One dependence vector δi is added to each solution vector x i by the epistatic arithmetic

crossover. Self-adaptation can take place when so called evolution window is found, where the evolutionary search can

progress [16] . The occurrence of this window is connected with a proper setting the starting value δ(0) 
i,k 

for i = 1 , . . . , NP ∧ j =
1 , . . . , D that usually demands a lot of experimental work in order to be determined. 
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In Eq. (8) , �i , k and �j , k denote a total dependence of epistatic elements by both parents x i and x j on the k th element

of offspring according to the equation 

w i = x r1 + K(x r2 − x r1 ) + E �r1 + (1 − E) �r2 , (10) 

where the parameter E ∈ [0, 1] is so-called epistatic coefficient that regulates an epistatic impact of both parents on their

offspring. 

Let us notice that the epistatic arithmetic crossover ( Eq. (10) ) is distinguished from the arithmetic crossover presented in

Eq. (7) regarding the last two terms, where contributions of epistatic elements on the total values of hypostatic elements of 

a parent x r 1 are considered additionally [24] . 

3.3. Ensemble DE using the epistatic arithmetic crossover strategy 

Mutation DE strategies describe a kind of a problem search space exploration. Typically, this exploration is a dynamic

process in which an evolutionary search is adapted to a fitness landscape. The fitness landscape is a metaphor borrowed

from the genetics [29] , where genotype characteristics represent a search space, while phenotype determines a fitness. Each

point in a search space comply with the corresponding fitness point. All fitness points describe the fitness landscape, while

a specific fitness landscape belongs to a specific problem. Unfortunately, typical fitness landscape is not smooth. In contrast,

this is rugged with many hills, valleys and plateaus [31] . Valleys in the fitness landscape can usually present a barrier for the

evolutionary search process that can often get stuck in local optima by experiencing them. In order to avoid this undesirable

phenomenon, a lot of mechanisms have been proposed in evolutionary computation community. 

Ensemble DE strategies enables an adaptation of an evolutionary search space to a fitness landscape by changing the

DE strategies during the evolutionary search process. As it is known, different strategies have a different exploration power.

Some of these are more exploratory, while the other focus on the exploitation of yet discovered good solutions. For instance,

the ‘DE/Rand/1/bin’ strategy is more exploratory, while the ‘DE/Best/1/bin’ is more exploitative. In our study, the following

strategies are taken into consideration: 

1. ‘DE/RandToBest/2/bin’, 

2. ‘DE/Rand/2/bin’ and 

3. ‘DE/CurrToRand/1’. 

The first DE mutation strategy is expressed as 

u 

(t) 
i 

= x 

(t) 
i 

+ F (x 

(t) 
best 

− x 

(t) 
i 

) + F (x 

(t) 
r1 

− x 

(t) 
r2 

) + F (x 

(t) 
r3 

− x 

(t) 
r4 

) , (11) 

where r 1–r 4 are randomly selected vectors from the interval [0 , Np − 1] and r 1 
 = r 2 
 = r 3 
 = r 4 
 = i . The second DE mutation

strategy is described as 

u 

(t) 
i 

= x 

(t) 
r1 

+ F (x 

(t) 
r1 

+ x 

(t) 
r2 

) − F (x 

(t) 
r3 

− x 

(t) 
r4 

− x 

(t) 
r5 

) , (12) 

where r 1–r 5 are randomly selected vectors from the interval [0 , Np − 1] and r 1 
 = r 2 
 = r 3 
 = r 4 
 = r 5 
 = i . Finally, the third

DE mutation strategy is defined as 

u 

(t) 
i 

= x 

(t) 
i 

+ F (x 

(t) 
best 

− x 

(t) 
i 

) + Q(x 

(t) 
r1 

− x 

(t) 
r2 

) + F (x 

(t) 
r3 

− x 

(t) 
r4 

) , (13) 

where r 1–r 4 are randomly selected vectors from the interval [0 , Np − 1] , Q ∈ [0, 1] is the value randomly drawn from

uniform distribution and r 1 
 = r 2 
 = r 3 
 = r 4 
 = i . 

The first DE mutation strategy focuses on the exploitation of the best solution, while the second on the exploration of

the search space. The third DE strategy is rotationally invariant and therefore suitable for solving the rotated problems [30] .

Interestingly, this strategy does not use a crossover (i.e., CR = 1 . 0 ) as well. The last strategy in an ensemble DE strategies

can be selected optionally from the set of remaining DE strategies. In our case, one of both arithmetic crossover operators

can also be selected for this optional strategy. 

Additionally to changing the DE mutation strategies during an evolutionary run, changing parameters is also performed

in ensemble DE algorithm (EDE). In this study, the DE control parameters, like F and CR are added to a representation of

solution in EDE together with a DE mutation strategy. As a result, the solution vector is represented as 

x 

(t) 
i 

= [ x i, 1 , . . . , x i,D , F i , CR i , ST i ] 
T , (14) 

where each element { x i , j } for i = 1 , . . . , D denotes a problem variable, while F i ∈ [0.1, 1.0], CR i ∈ [0.0, 1.0] and ST i ∈ [1, N s ]

the control parameters. The parameter N s denotes the number of different strategies in EDE, i.e., this number is fixed to

N s = 4 in our case. Let us notice that the control parameters F i and CR i are self-adapted similarly as proposed by Brest et al.

[8] , i.e., 

F (t+1)) 
i 

= 

{
r 1 · F max + F min , if r 2 < τ1 , 

F (t+1) 
i 

, otherwise , 
(15) 
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where F min and F max represent the minimum and maximum values of F (t+1) 
i 

, and 

C R 

(t+1) 
i 

= 

{
r 3 , if r 4 < τ2 , 

C R 

(t+1) 
i 

, otherwise . 
(16)

In Eqs. (15) and (16) , r 1 –r 4 denote a random number drawn from a universal distribution in the interval [0.0, 1.0], and τ 1

and τ 2 are so called learning rates. On the other hand, the DE mutation strategy ST i is modified according to the following

equation 

ST (t+1) 
i 

= 

{
(int)(r 5 · N s ) , if r 6 < τ3 , 

ST (t) 
i 

, otherwise , 
(17)

where r 5 and r 6 are random numbers drawn from the universal distribution in the interval [0.0, 1.0], N s is the number of

strategies in EDE and τ 3 is a learning rate. 

4. Experiments and results 

The purpose of the experimental work was to show: (1) importance of the arithmetic crossover strategy in the ensemble

DE strategies, and (2) additional improvement of the results by introducing the epistatic arithmetic crossover strategy. In

line with this, the proposed arithmetic crossover strategies are taken into consideration in the tests. Four experiments were

conducted in order to discover an influence of the proposed features. As a result, the following tests were conducted: 

• influence of a scale factor K in arithmetic crossover, 

• searching for an evolution window δ(0) in epistatic arithmetic crossover, 

• influence of an epistatic coefficient E in epistatic arithmetic crossover, 

• influence of epistatic arithmetic crossover on different DE variants. 

The parameter setting of the ensemble DE used in tests were the same during the tests, i.e., F (0) = 0 . 5 and CR (0) = 0 . 9 .

Each variant of these algorithms used the same population size, i.e., Np = 100 . A termination condition represented the

maximum number of fitness function evaluations and it is prescribed by the CEC-14 benchmark suite as MAX _ F E = 10 , 0 0 0 ·
D . The total number of independent runs was set to 51. The quality of results was measured by five measures as follows: 

• the minimum value achieved during 51 independent runs, 

• the maximum value achieved during 51 independent runs, 

• the average value achieved during 51 independent runs, 

• the median value achieved during 51 independent runs, 

• the standard deviation achieved during 51 independent runs. 

All algorithms were applied for solving the CEC-14 benchmark function suite. The functions of dimensions D = 10 , D = 30

and D = 50 are taken into consideration. In the remainder of paper, the CEC-14 function benchmark suite is described. Then,

the proposed four experiments are described. 

4.1. PC configuration 

All runs were made on a computer, with the following configuration: 

• Processor: Intel(R) Core(TM) i5-3470 @ 3.20 GHz, 

• RAM: 8GB, 

• Operating system: Linux Ubuntu 14.04.2 LTS. 

All tested algorithms were implemented in the C++ programming language. 

4.2. Test suite 

The CEC-2014 test suite ( Table 1 ) consists of 30 benchmark functions that are divided into four classes: 

• unimodal functions (1–3), 

• simple multi-modal functions (4–16), 

• hybrid functions (17–22), 

• composition functions (23–30). 

Unimodal functions have a single global optimum and no local optimums. The unimodal functions in this suite are non-

separable and rotated. Multi-modal functions are either separable or non-separable. In addition, they are also rotated or/and

shifted. To develop the hybrid functions, the variables are randomly divided into some subcomponents and then different

basic functions are used for different subcomponents [44] . Composition functions consist of a sum of two or more basic

functions. In this suite, hybrid functions are used as the basic functions to construct composition functions. The characteris-

tics of these hybrid and composition functions depend on the characteristics of the basic functions. 
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Table 1 

Summary of the CEC’14 test functions. 

Subgroup No. Functions F ∗
i 

= F i (x ∗) 

Unimodal functions 1 Rotated high conditioned elliptic function 100 

2 Rotated bent Cigar function 200 

3 Rotated discus function 300 

Simple multimodal functions 4 Shifted and rotated Rosenbrocks function 400 

5 Shifted and rotated Ackley’s function 500 

6 Shifted and rotated Weierstrass function 600 

7 Shifted and rotated Griewanks function 700 

8 Shifted Rastrigin’s function 800 

9 Shifted and rotated Rastrigins function 900 

10 Shifted Schwefels function 10 0 0 

11 Shifted and rotated Schwefel’s function 1100 

12 Shifted and rotated Katsuura function 1200 

13 Shifted and rotated HappyCat function 1300 

14 Shifted and rotated HGBat function 1400 

15 Shifted and rotated expanded Griewanks 1500 

plus Rosenbrocks function 

16 Shifted and rotated expanded Scaffer’s F6 function 1600 

Hybrid functions 17 Hybrid function 1 ( N = 3 ) 1700 

18 Hybrid function 2 ( N = 3 ) 1800 

19 Hybrid function 3 ( N = 4 ) 1900 

20 Hybrid function 4 ( N = 4 ) 20 0 0 

21 Hybrid function 5 ( N = 5 ) 2100 

22 Hybrid function 6 ( N = 5 ) 2200 

Composition functions 23 Composition function 1 ( N = 5 ) 2300 

24 Composition function 2 ( N = 3 ) 2400 

25 Composition function 3 ( N = 3 ) 2500 

26 Composition function 4 ( N = 5 ) 2600 

27 Composition function 5 ( N = 5 ) 2700 

28 Composition function 6 ( N = 5 ) 2800 

29 Composition function 7 ( N = 3 ) 2900 

30 Composition function 8 ( N = 3 ) 30 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Influence of a scale factor K in arithmetic crossover 

The goal of this experiment was to discover an influence of a scale factor K in arithmetic crossover. This factor determines

the location of the difference between elements of two randomly selected vectors according to Eq. (7) . This difference can

be located in the interval [ x r 1, j , x r 2, j ] when 0 ≤ K ≤ 1, below the value x r 1, j when K < 0, and above the value x r 2, j when

K > 1. On the other hand, the value K determines the size of the search space. In order to determine the proper size, the

scale factor was varied from K = 0 and K = 1 to K = −1 and K = 2 in steps of −0 . 1 and +0 . 1 , respectively. As a result,

eleven instances of the optimization problem are achieved, where the search space is gradually expanding. Thus, the size

of the search space is searched for, where the best results are obtained. In line with this, the ensemble DE with arithmetic

crossover (XEDE) was employed in the experiment. 

In this study, we are focused on the quality of cumulative results more than the detailed ones. Therefore, Friedman

tests [49] were conducted in order to estimate the obtained results statistically. The Friedman test is a two-way analysis of

variances by ranks, where the test statistic is calculated and converted to ranks in the first step, and after that the post-hoc

tests are conducted using the calculated ranks in the second step. Here, a low value of rank means a better algorithm [45] .

The second step is performed only if a null hypothesis of Friedman test is rejected. Note, the null hypothesis states that

medians between the ranks of all algorithms are equal. 

According to Demšar [48] , the Friedman test is more safe and robust non-parametric test for the comparisons of more

algorithms over multiple classifiers (also datasets) that together with the corresponding Nemenyi post-hoc test enables a

neat presentation of statistical results [46] . The main drawback of the Friedman test is that it makes the whole multiple

comparisons over data sets and therefore it is unable to establish proper comparisons between some of the algorithms

considered [45] . Consequently, a Wilcoxon two paired non-parametric test is applied as a post-hoc test after determining

the control method (i.e., the algorithm with the lowest rank) by using the Friedman test. Unfortunately, the Nemenyi test

is very conservative and it may not find any difference in most of the experimentations [47] . Therefore, the Nemenyi test

is used for graphical presentation of the results, while the Wilcoxon test shows which of the algorithms in test are more

powerful. Both tests were conducted using a significance level 0.05 in this study. 

The tests captured the results of optimizing all the 30 functions in the CEC-14 test suite according to all observed dimen-

sions. In summary, eleven classifiers were compared according to 30 ∗ 5 = 150 variables obtained after 51 independent runs,

where the first number in the expression denotes the number of functions and the second denotes the number of measures

taken into consideration. In totally, the 11 ∗ 51 = 561 independent runs for each observed dimensions (i.e., 3 ∗ 561 = 1683 )
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Fig. 3. Influence of the scale factor K in arithmetic crossover. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

must be conducted in order to publish the results presented in Fig. 3 . The figure is divided to three parts according to the

observed dimensions, where each part consists of a table denoting the results of three statistical tests (i.e., Friedman, Ne-

menyi and Wilcoxon), and a diagram presenting the results of Nemenyi test graphically. In diagrams, labels A0–A10 denote

the intervals from K ∈ [0.0, 1.0] (standard DE) to K ∈ [ −1 . 0 , 2 . 0] in steps of 0.1. 

From Fig. 3 it can be seen that the interval limiting the search space is increased with increasing the dimension of the

problem. This means that the optimal values of K ∈ [ −0 . 3 , 1 . 3] were found for dimensions D = 10 and D = 30 , while for

dimension D = 50 , the best values of K lay in the interval K ∈ [ −0 . 4 , 1 . 4] . 

4.4. Searching for an evolution window δ(0) in epistatic arithmetic crossover 

An evolution window is characteristics of the normal mutation that indicates an order of magnitude within the reason-

able performance is observed [16] . This is controlled by the starting values of dependence vectors δi , j for i = 1 , . . . , Np ∧ j =
1 , . . . , D . In line with this, the starting values of these vectors were varied in the interval [0.001, 0.010] in steps of 0.001.

Thus, ten instances of the optimization problem were obtained. In summary, the 10 ∗ 51 = 510 independent runs for each of

three observed dimensions (i.e., 3 ∗ 510 = 1 , 530 ) were conducted. The cumulative results of the optimization are presented

in Fig. 4 that is organized similar as those illustrated in the last section. 

As can be seen from Fig. 4 , the selection of the starting values of dependence vectors δi , j has a great influence on

the results of the optimization regarding the Wilcoxon tests. The best results were obtained by initialization of dependence

vectors by δi, j = 0 . 007 for dimension D = 10 , by δi, j = 0 . 004 for dimension D = 30 , and by δi, j = 0 . 007 for dimension D = 50 .

According to Wilcoxon signed rank post-hoc test, these values significantly outperformed the majority of the other observed

instances of dimensions D = 10 and D = 30 , while the difference between instances was not significant by dimension D = 50 .
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Fig. 4. Evolutionary window in epistatic arithmetic crossover. 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Influence of an epistatic coefficient E in the arithmetic crossover 

An epistatic coefficient E regulates the influence of the epistatic elements of vectors x i and x j on the trial vector. This

influence is controlled by an epistatic coefficient E in the epistatic arithmetic crossover. The higher the value, the stronger

the influence of the second parent. In order to discover what impact this parameter has on the results of the optimization,

this was varied in the interval E ∈ [0.0, 1.0] in steps of 0.1. As a result, eleven instances of the optimization problem were

obtained. In line with this, the 11 ∗ 51 = 561 independent runs for each of three observed dimensions (i.e., 3 ∗ 561 = 1 , 683 )

were executed. 

As can be seen from Fig. 5 , the best results were obtained by E = 0 . 5 by each observed dimension. Mainly, this instance

was also significantly better as the other instances according to Wilcoxon signed rank statistical test. In summary, equivalent

impact of epistatic elements in both parents produce the best results. 

4.6. Comparative analysis 

The purpose of this experiment was to show that using the arithmetic crossover in ensemble DE strategies can outper-

form the results of the other DE variants, like the original DE [7] , and self-adaptive variants jDE [8] and SaDE [9] . In line with

this, three ensemble DE strategy algorithms have been developed, i.e., ensemble DE using the scale factor K (EDE), ensemble

DE with arithmetic crossover strategy (XEDE) and ensemble DE with the epistatic arithmetic crossover strategy (eXEDE). Let

us notice that the SaDE algorithm beside the adaptation of a scale factor F and a crossover rate CR in DE mutation strategies,
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Fig. 5. Epistatic coefficient E in arithmetic crossover. 

 

 

 

 

 

 

 

 

 

 

 

 

adapts also type of DE mutation strategy in order to modify a kind of exploring the search space. A difference between both

algorithms is that the SaDE selects the new strategy with roulette wheel selection, while the EDE uses Eq. (17) for changing

the type of strategy. 

The following parameter setting was used during the experiments. The scaling factor F = 0 . 5 and crossover rate CR = 0 . 9

were applied for the DE algorithm. The same initial values were used for jDE. In our SaDE implementation, the following

mutation strategies were applied: ‘rand/1/bin’, ‘rand/2/bin’, ‘rand-to-best/2/bin’ and ‘current-to-rand/1’. The learning period

was set as LP = 20 , while the scale parameters F i were changed using the normal distribution N (0.5, 0.3) with mean value

0.5 and standard deviation 0.3, and crossover rates CR i were randomly drawn from normal distribution N ( CRm k , 0.1) with

mean value CRm k and standard deviation 0.1. 

The results of the optimization of CEC-14 benchmark suite by solving dimension of functions D = 30 are illustrated in

Table 2 . Due to the paper length limitation, the detailed results of the other dimensions of the functions (i.e., D = 10 and

D ) = 30 ) are omitted. Note that the best results as achieved by the optimization are presented bold. 

As can be seen from Table 2 , the original DE achieved the best results three times, jDE once, SaDE five times. EDE

four times, XEDE eight times and eXEDE seven times. In summary, ensemble DE using arithmetic and epistatic arithmetic

crossover (XEDE and eXEDE) outperformed the other algorithms in test substantially. 

The cumulative results of the optimizing the CEC-14 benchmark functions according to all observed dimensions (i.e.,

D = 10 , D = 30 and D = 50 ) are presented in Table 6 . 
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Table 2 

Comparison of mean and std values for algorithms used in the study on dimension D = 30 . 

F Meas. DE jDE SaDE EDE XEDE eXEDE 

f 1 Mean 101465 61174.6 3725.56 78881.4 5638.95 3997.18 

Std 89819.5 76381 3261.35 61701.6 4513.23 4065.14 

f 2 Mean 2.27E–015 2.27E–015 1.71E–014 1.14E–015 2.39E–014 2.39E–014 

Std 7.87E–015 7.87E–015 1.47E–014 5.68E–015 1.06E–014 1.06E–014 

f 3 Mean 2.05E–014 4.09E–014 6.25E–014 2.50E–014 5.46E–014 5.68E–014 

Std 2.78E–014 2.60E–014 1.80E–014 2.88E–014 1.14E–014 0 

f 4 Mean 2.84123 8.53396 1.53E–013 1.16E+001 1.68E–013 1.77E–013 

Std 12.6172 21.6167 7.11E–014 24.6342 9.21E–014 6.21E–014 

f 5 Mean 20.8904 20.3361 20.289 20.3682 20.4061 20.3889 

Std 0.0767006 0.0325836 0.0403143 0.0345644 0.0465178 0.0305861 

f 6 Mean 4.11751 5.30804 14.9301 6.71426 1.37047 3.69622 

Std 3.10541 4.03538 0.941979 4.69168 1.76997 1.63413 

f 7 Mean 0.0 0 0295842 0.0 0 0295842 9.09E–014 8.64E–014 0.0 0 0295842 0.00373993 

Std 0.00147921 0.00147921 4.79E–014 4.96E–014 0.00147921 0.0079714 

f 8 Mean 65.2201 0.119395 1.02E–013 0 4.55E–015 0.278589 

Std 31.7165 0.329991 3.60E–014 0 2.27E-014 0.886203 

f 9 Mean 173.543 38.0751 35.8277 46.2976 29.5789 25.9375 

Std 10.8376 5.71342 7.00529 6.14563 5.17458 5.29906 

f 10 Mean 2144.97 3.17197 1.10508 2.42121 20.7329 10.2815 

Std 980.44 3.18171 2.01974 2.91087 3.15085 6.29153 

f 11 Mean 6699.81 2707.35 2278.88 2738.17 2643.17 2331.92 

Std 323.601 274.56 344.643 249.438 341.429 317.283 

f 12 Mean 2.39944 0.476899 0.458619 0.51757 0.517386 0.508992 

Std 0.297368 0.0541086 0.0523364 0.0665004 0.0766053 0.0763449 

f 13 Mean 0.317998 0.284315 0.301583 0.290451 0.241216 0.210 0 02 

Std 0.0429744 0.0355372 0.0369317 0.0354088 0.0328373 0.0360487 

f 14 Mean 0.27284 0.302073 0.267787 0.298374 0.270534 0.237317 

Std 0.0306132 0.0414956 0.139632 0.0281479 0.0436366 0.0354316 

f 15 Mean 14.8258 5.36367 4.86126 5.64289 4.62401 4.02045 

Std 1.12613 0.742653 0.41658 0.653411 0.727968 0.708776 

f 16 Mean 12.5109 10.2964 10.3215 10.5327 10.2855 9.90624 

Std 0.240958 0.323022 0.342 0.231708 0.442214 0.472961 

f 17 Mean 1283.14 1624.38 855.477 1809.15 764.487 803.527 

Std 340.352 1485.54 280.061 2548.08 313.763 247.283 

f 18 Mean 50.8323 18.565 49.1882 20.1481 47.9372 50.2522 

Std 16.59 10.3504 25.6845 10.7412 23.9881 21.1402 

f 19 Mean 4.88768 4.96616 5.259 5.25006 4.67343 5.36851 

Std 0.858623 0.961318 1.15292 0.720126 0.654865 0.761403 

f 20 Mean 12.4475 13.5782 18.4514 10.78 15.2427 17.2232 

Std 6.76961 6.63615 4.13879 3.39675 4.85249 4.63811 

f 21 Mean 275.343 297.879 431.453 203.32 321.316 337.28 

Std 253.179 224.848 131.92 179.125 110.081 121.683 

f 22 Mean 121.209 137.556 164.526 121.524 124.561 120.862 

Std 122.111 53.7631 71.0822 51.3297 65.5073 69.8855 

f 23 Mean 315.244 315.244 315.244 315.244 315.244 315.244 

Std 9.28E–014 0 0 0 0 0 

f 24 Mean 222.362 226.488 225.169 225.563 225.006 225.152 

Std 7.05938 3.33795 4.31446 1.77416 2.17037 1.47548 

f 25 Mean 202.76 203.553 203.458 203.391 203.494 203.226 

Std 0.219477 0.880935 0.551686 0.655508 0.921585 0.571736 

f 26 Mean 100.316 100.276 100.302 100.298 100.266 100.221 

Std 0.0418593 0.0505395 0.0354606 0.0401162 0.0470502 0.0372353 

f 27 Mean 378.338 401.426 546.126 391.417 325.979 379.194 

Std 82.2668 54.3829 110.996 31.0188 30.9886 29.7201 

f 28 Mean 843.542 838.246 808.137 823.568 820.632 919.525 

Std 47.3228 29.8885 37.7788 24.3492 32.5525 179.476 

f 29 Mean 682617 865.619 840897 820.335 723.047 1732130 

Std 2.36E+006 161.798 2.66E+006 100.367 41.3626 35350 0 0 

f 30 Mean 1956.74 2788.4 2342.55 2471.52 1543.2 1865.84 

Std 1241.54 1216.2 1380.57 10 0 0.43 716.631 1096.27 

 

 

 

 

 

From Fig. 6 , it can be observed that using the arithmetic crossover in XEDE significantly outperformed the results of

the other DE variants (i.e., DE and SaDE) by optimizing the CEC-14 benchmark functions of dimension D = 10 . The same

variants of the DE algorithm was significantly better that all the other algorithms except eXEDE by optimizing the CEC-

14 benchmark functions of dimension D = 30 , while the eXEDE was the best algorithm by optimizing the functions of the

higher dimensions (i.e., D = 50 ). This means that the epistatic arithmetic crossover works well by exploring the higher search

spaces. 
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Fig. 6. Influence of the arithmetic crossover on DE algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

This paper deals with an impact of arithmetic crossover in the ensemble DE strategies by solving the CEC-14 benchmark

suite. Beside the pure arithmetic crossover, the so called epistatic arithmetic crossover was proposed that also takes into

consideration an impact of epistatic genes. In genetics, more than one gene has an impact on specific traits, in general.

This influence is handled in genetics as epistasis. Here, the epistasis is expressed as a graph product of two linear graphs

determined by vectors (i.e., candidate solutions) that enter into crossover operation. Although there are many graph products

we focus on the Cartesian graph product only in the study. 

In the experimental work, an influence of the arithmetic crossover on the results of optimization was discovered. In

line with this, three tests were performed in which the influence of the scale factor K in arithmetic crossover was veri-

fied, an evolution window δ(0) in epistatic arithmetic crossover was searched for, and influence of an epistatic coefficient

E in epistatic arithmetic crossover was discovered. Finally, the ensemble DE strategies using arithmetic crossover (i.e., EDE,

XEDE and eXEDE) were compared with the original DE and two self-adaptive DE variants, i.e., jDE and SaDE. This compar-

ative study showed an appropriateness of both arithmetic strategies because using the arithmetic and epistatic arithmetic

crossover within ensemble DE strategies significantly outperformed the results of the other algorithms in tests. 

Epistatic arithmetic crossover demonstrated the best results especially by solving the CEC-14 benchmark functions of

higher dimensions. As a future work, we would like to study Cartesian product of graphs which are not necessarily iso-

morphic to linear graphs. Moreover, we could apply also other graph products, like strong, direct and lexicographic, in the

epistatic arithmetic crossover. 
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