
Chaos, Solitons & Fractals 73 (2015) 29–35
Contents lists available at ScienceDirect

Chaos, Solitons & Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier .com/locate /chaos
Particle swarm optimization for automatic creation of complex
graphic characters
http://dx.doi.org/10.1016/j.chaos.2014.12.019
0960-0779/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Faculty of Natural Sciences and Mathemat-
ics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia.

E-mail address: matjaz.perc@um.si (M. Perc).
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Nature-inspired algorithms are a very promising tool for solving the hardest problems in
computer sciences and mathematics. These algorithms are typically inspired by the fasci-
nating behavior at display in biological systems, such as bee swarms or fish schools. So far,
these algorithms have been applied in many practical applications. In this paper, we pres-
ent a simple particle swarm optimization, which allows automatic creation of complex
two-dimensional graphic characters. The method involves constructing the base charac-
ters, optimizing the modifications of the base characters with the particle swarm optimi-
zation algorithm, and finally generating the graphic characters from the solution. We
demonstrate the effectiveness of our approach with the creation of simple snowman, but
we also outline in detail how more complex characters can be created.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Computer games are one of the most profitable prod-
ucts of the interactive entertainment industry. Worldwide,
the number of active users is staggering, and this largely
regardless of age, gender and ethnicity. The positive trend
in the number of user since the 80’s has been spurred on
further with the advent of massive online multi-player
games. The demand on the technology to deliver ever more
authentic and exhilarating user experience is of course also
increasing, and this creates a continuous need for innova-
tion and improvement at many different levels of the
industry. In addition to the obvious importance of
hardware improvement, the development of new software,
new interaction possibilities, as well as a firm positioning
in the market all demand expertise and skill. At the junc-
ture of these different aspects of development, theoretical
research in computer science, applied mathematics and
complex systems also plays a key role. And it is to the latter
subject in particular that we aim to contribute with this
paper.

In the past decades, the methods and techniques
employed first in computer games have been applied with
notable success in computational agent-based system
research [21]. Many studies have also looked at video
games as an art form on its own right [8]. At some univer-
sities and research institutes, computer games have
become the subject on which one could do a masters or a
PhD. Most notably, however, video games have had the
most significant impact on the development of personal
computers. Due to popular demand, personal computers
had to improve steadily in the amount of RAM, processor
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speed, display resolution and graphic card capabilities to
keep with the pace of more and more sophisticated games.

Simultaneously with the development of hardware,
software methods have also arisen for solving the hardest
real-world problems. As many of these problems are NP-
hard [19], many heuristical algorithms have been proposed
for solving such problems approximately. The majority of
these heuristics take inspiration from nature. Two
branches of algorithms are particularly known for their
close ties with nature, namely the evolutionary algorithms
(EA) [9] and swarm intelligence algorithms (SI) [4]. The
former are inspired by the Darwinian principle of ‘‘only
the fittest survive’’ [26], while the later take from social
insects, swarms of birds and flocks of fish to execute com-
plex actions based on elementary and indeed very simple
interactions among individuals [38]. An intersection of
both is the emergence of collective behavior in evolution-
ary games [28].

In general, it has been established that using advanced
nature-inspired algorithms in computer graphics can be
very useful. Applications to this domain include the EA in
[33,34], where genetic algorithms were introduced to com-
puter graphics. Later on, other evolutionary algorithms
were also applied [14,2], while the most recent studies
include also genetic algorithms [18] for polynomial B-
spline surface reconstruction, particle swarm optimization
[16] for the same problem and particle swarm optimiza-
tion for Bézier surface reconstruction [15]. For example,
Gálvez and Iglesias [17] applied the firefly algorithm
[10,11] for polynomial Bézier surface parameterization,
which is a well known problem in computer graphics. Fur-
ther to these advances, creative 3D shape modeling has
been proposed, where an initial population of 3D models
is evolved to produce novel shapes in the next generation
[40]. A new emerging field termed search-based proce-
dural content generation is also growing rapidly, the aim
of which is to use metaheuristics in automatic generation
of content for games [36].

Since many games operate with a large number of dif-
ferent characters, we here address a very basic problem
in a new way. In particular, we explore the usefulness of
particle swarm optimization (PSO) for the automatic crea-
tion of complex graphic characters. We show how a mod-
ified particle swarm optimization algorithm can be used to
create a gallery of 2D characters with different colors and
shapes using a predefined set of parts. For the approach
to work, the problem is defined as constraint satisfaction
problem (CSP). Each candidate solution that satisfies all
constraints is placed in a gallery from which the best char-
acters can be selected by the game designer. As an exam-
ple, we show the generation of 2D snowman, but we also
outline the approach for the creation of 3D and more com-
plex characters.

The remainder of this paper is structured as follows.
Section 2 reviews the basics of the constraint satisfaction
problem. In Section 3, we present particle swarm optimiza-
tion algorithm for the automatic creation of graphic char-
acters. The experiments and results are presented in
Section 4. We conclude with a summary and directions
for future development, as well as with a broader discus-
sion about the relevance of nature-inspired algorithms
for the emergence of intelligent design and cognition [29].

2. Constraint satisfaction problems

The majority of intractable (NP-hard) real-world prob-
lems are constrained [19]. That means, not all of candidate
solutions obtained in EA and SI are valid after performing
various variation operators. Usually, these operators act
blindly according to constraints, i.e., these do not provide
valid solutions. The constraint satisfaction problems (CSP)
consist of three components hx;D;Ci [30], where.

� x is a vector of variables x ¼ ðx1; . . . ; xnÞ, where n
denotes a dimension of the problem,
� D is a set of domains D ¼ fD1; . . . ;Dng for each variable

of x,
� C is a set of constraints C ¼ fC1; . . . ;Cmg that specify

allowable combinations of values.

Each domain is determined by its lower and upper
bounds Di 2 ½lbi;ubi�. Each constraint Ci consists of a pair
hscope; relationi, where scope determines variables that
participate in the constraint and relation defines an relation
that needs to be valid in order to satisfy the so named fea-
sibility condition /. The feasibility condition for each can-
didate solution is composed of constraints and can be
expressed as conjunction of constraints
/ðxÞ ¼ ^i¼1...mCiðxÞ. In fact, the feasibility condition is true
if and only if all constraints are satisfied.

There are two main types of constraints handling in EA
and SI [9]:

� Indirect, where constraints are transformed into opti-
mization objectives,
� Direct, where the population based algorithms keep

alone account about constraints during the run.

In this paper, indirect constraint handling was consid-
ered, where the proper solution is found, when the feasibil-
ity condition is satisfied. In this case, the value of fitness
function is zero, i.e., /ðxÞ ¼ true if and only if f ðxÞ ¼ 0.

3. Automatic creation of graphic characters

Particle swarm optimization (PSO) was one of the oldest
swarm intelligence algorithms that was introduced at an
International conference on Neural Networks by Kennedy
and Eberhart in 1995 [23]. PSO is inspired by the social for-
aging behavior of some animals such as flocking behavior
of birds and schooling behavior of fish. There are some
individuals with better developed instinct for finding food,
in both animal species. According these individuals, the
whole swarm is directed into more promising regions in
the fitness landscape.

The PSO is a population-based algorithm that consists

of particles xðtÞi ¼ ðxi;1; . . . ; xi;nÞT for i ¼ 1 . . . Np representing
their position in a n-dimensional search space. Thus, the
variable Np limits the number of particles in the
population. The particles move across the search space
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with velocity vðtÞi ¼ ðv i;1; . . . ;v i;nÞT according to the position

of the best particle xðtÞbest towards the more promising
regions in the search space. However, this movement is
also dependent on the local best position of each particle

pðtÞi and can mathematically be expressed, as follows:

vðtþ1Þ
i ¼ vðtÞi þ c1rðtÞ1 pðtÞi � xðtÞi

� �
þ c2rðtÞ2 xðtÞbest � xðtÞi

� �
: ð1Þ

Then, the new particle position is calculated according
to the expression

xðtþ1Þ
i ¼ xðtÞi þ vðtÞi : ð2Þ

Pseudo-code of the PSO algorithm is illustrated in Algo-
rithm 1.

Algorithm 1. Pseudo code of the PSO algorithm

Input: PSO population of particles xi ¼ ðxi;1; . . . ; xi;nÞT

for i ¼ 1 . . . Np.
Output: The best solution xbest and its corresponding

value f min ¼minðf ðxÞÞ.
1: init_particles;
2: eval ¼ 0;
3: While termination_condition_not_meet do
4: for i ¼ 1 to Np do
5: f i = evaluate_the_new_solution (xi);
6: eval ¼ evalþ 1;
7: if f i 6 pBesti then
8: pi ¼ xi; pBesti ¼ f i; // save the local best

solution
9: end if
10: if f i 6 f min then
11: xbest ¼ xi; f min ¼ f i; // save the global best

solution
12: end if
13: xi = generate_new_solution (xi);
14: end for
15: end while
After finishing the initialization in function ‘init_parti-
cles’ (Algorithm 1), the main loop starts in which the eval-
uation of fitness function takes place (‘evaluate_the_
new_solution’ function) and the new position of particle
is calculated according to Eqs. (1) and (2) (‘gener-
ate_new_solution’ function). The former determines the
quality of solution, while the latter moves the particle to
a new possible better region of the search space [32,31].
However, between both functions the code for saving the
local best as well as global best solution is executed. Note
that the main loop is terminated when the termination
condition (in line 3) is satisfied. Usually, the number of
generation MAX_GEN is used for these purposes. Over the
past years, also some PSO variants were proposed
[12,44,42,24,41,22,6,27].

Particle swarm optimization was also used in many prac-
tical and real-world applications. It was used in electromag-
netics applications [7], spam detection [43], electric power
systems [1] and many more. On the other hand, PSO was also
a good candidate for solving problem of traveling salesman
person [39] which is a problem of discrete optimization.

3.1. Applying particle swarm optimization

The generation of characters is defined as a constraint
satisfaction problem (CSP), where the proper solution is
found, when the conjunction of constraints /ðxÞ ¼
^i¼1...mCiðxÞ is true. Here, the graphic characters are divided
into integral parts that are saved into a set of parts. Each part
can be colored with different colors and can include various
strokes, i.e., a shape outline with stroke width, line style and
color. The former has an impact on characters look, while
the later on a its shape. Generally, a development of auto-
matic generation of graphic characters can be divided into
three phases:

� Construction of the base character,
� Optimizing the modifications of the base character with

the PSO algorithm,
� Generation of graphic characters from the solutions.

As an example, an automatic generation of snowman
graphics was applied in this paper. The motivation for gen-
eration snowman graphics was that these graphics are rel-
atively easy to construct, while all problems with which a
designer is confronted by this generation can be identified.
In the remainder of the paper generation of snowman
graphics in the light of the mentioned problems are illus-
trated in details.

3.1.1. Construction of the base character
In the first phase, the base character is constructed that

is then divided into integral parts. These parts that can be a
subject of modification constitutes a set of parts and share
the same characteristics (e.g., that are colored with the
same color). However, the size of this set depends on the
complexity of graphic characters. More complex the gra-
phic character, greater the number of parts and more com-
plex the shape.

For example, a snowman in Fig. 1 consists of 20 parts
and 4 strokes, as follows: the lower part, the middle part,
the upper part, the head, the hat, the left and right hand.
The greater parts, like the lower, middle, upper parts and
the hat are outlined with a stroke of various thickness.
Each hand completes with the palm. The interior of the
middle part of the snowman hull is filled with three but-
tons, while the head consists of two eyes, nose and mouth.
The eyes and the nose are trimmed with strokes of fixed
thickness, while the mouth are fixed.

3.1.2. Optimization of modifications of the base character
This phase can be performed using different optimiza-

tion algorithms. In this study, the PSO algorithm was
applied, where each modifications of the base characters
are represented as a vector xi ¼ fxi;1; . . . ; xi;ng for
i ¼ 1 . . . Np of length n ¼ 24 with real-valued elements in
the interval xi;j 2 ½0;1�. The elements xi;1; . . . ; xi;16 represent
the color of defined part, and tuples hxi;17; xi;18i; . . . ;

hxi;23; xi;24i the strokes of four greater parts of snowman.
Here, the even elements of tuples denote colors, while



Fig. 1. A simple snowman, which we use as the benchmark for our
theory. We have used the snowman for its simple shape to demonstrate
the correctness of our method. Moreover, we have used neutral colors to
highlight the parts that are subject to change.

Table 1
An example of a simple encoding scheme for colors and widths of the
character.

Lower bound Upper bound Colors (D) Widths

0.0 0.1 Orange 1
0.1 0.2 Black 2
0.2 0.3 Blue 3
0.3 0.4 Red 4
0.4 0.5 Yellow 5
0.5 0.6 Green 6
0.6 0.7 Magenta 7
0.7 0.8 Cyan 8
0.8 0.9 Aqua 9
0.9 1.0 Coral 10
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odd widths. Mapping of the colors and widths is imple-
mented according to encoding scheme as represented in
Table 1. Note that as higher the number of widths, the
thicker the stroke.

The automatic generation of graphic characters is the
CSP problem, where the proper solution is found, when
the feasibility condition /ðxÞ ¼ true. Using the fitness func-
tion, the feasibility condition is expressed as

f ðxÞ ¼
Xm

i¼1

vðCiðxÞÞ; ð3Þ

where

f ðxÞ ¼
1 if CiðxÞ is false;
0 otherwise:

�
ð4Þ

In line with this, the fitness function counts the number
of constraint violations. Normally, the constraints are
defined by designer and depends on users demands and
desires. In case of snowman characters, the following con-
straints were defined:

� The number of colors needed for coloring the snowman
parts must be more or equal to 4. This constraint can be
formally described as jS1jP 4, where the set S1 is
expressed as
S1 ¼ 8xi8xjjDxi – Dxj for i¼1 . . .16^ j¼1 . . .16^ i – j
� �

;

where D denotes a color of the parts xi and xj as illus-
trated in Table 1.
� There must be at least 4 different strokes. This con-

straint can be formally described as jS2jP 4, where
the set S2 is defined as
S2 ¼ 8xi 8xjjDxi – Dxj for i ¼ 17 . . .
�

24 ^ j ¼ 17 . . . 24 ^ i – j ^ ði mod 2Þ ¼ 1g:

� At least one stroke must have a value more than 5.
Mathematically, this constraint can be written as
jS3j > 5, where the set S3 is defined as
S3 ¼ 9xijDxi > 5 for i ¼ 17 . . . 24 ^ ði mod 2Þ ¼ 1f g:

� At least one stroke must have a value less than 5. The
constraint can mathematically be expressed as
jS4j < 5, where the set S4 is defined as
S4 ¼ 9xijDxi < 5 for i ¼ 17 . . . 24 ^ ði mod 2Þ ¼ 1f g:

� The color of snowman eyes and the color of the snow-
man face cannot have the same color. This constraint
can directly be written as a conjunction of constraints,
in other words Dx14 – Dx6 ^ Dx16 – Dx6, where x14 and
x16 denotes eyes and x6 the snowman face (the upper
part of snowman torsion).

Using the described representation of solutions evalu-
ated by the fitness function represented in Eq. (3), the ori-
ginal PSO algorithm as illustrated in Algorithm 1 can be
applied to the problem for automatic generation of graphic
characters.

3.1.3. Generation of graphic characters
The solution generated by the PSO algorithm describes

how to combine the colors and strokes of the snowman
parts to get the unique visual presentation of 2D graphic
character. Unfortunately, this description has nothing to
do with the real graphical presentation of 2D snowman.



Fig. 2. A gallery of automatically created snowman, made with the particle swarm optimization algorithm. Only those snowman are depicted that satisfy all
the criteria in the constraints set. The selection of the best graphic is, however, left to the judgment of the developer or user.
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In order to plot the real 2D snowman graphic, an inter-
preter in Ruby programming language [13] was developed.
Modifications can be directly transformed to call of graph-
ical function from RMagick library [35,3]. Moreover, Ruby
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enables performing any operation tackling the snowman
graphic characters within its script. Because the interpreter
is easy to implement, the detailed description of it is left
out of the scope of this paper.
4. Experiments and results

The goal of our experimental work was to prove that the
proposed method for automatic generation of the graphic
2D characters with the PSO algorithm could be applied to
real-world video game development as well. In line with
this, the set of graphical snowman parts was defined. On
that basis, the PSO algorithm was developed for solving
the constraint satisfaction problem of automatic genera-
tion of snowman 2D graphics. The solution of the problem
was found when all constraints were satisfied as posed by
designer. Finally, the proper solutions were added to a gal-
lery of snowman graphic characters.

In the experiments, an implementation of classical PSO
algorithm in Ruby was taken from author’s Github reposi-
tory [5]. The parameter settings of the PSO algorithm was
during experiments, as follows. The values of velocities
were limited to the interval v i 2 ½�1:1�, the population size
was set to Np ¼ 10, maximal velocity to vmax ¼ 100, and
the constriction coefficients to c1 ¼ c2 ¼ 2:0. As a termina-
tion condition, the number of generation 100 was set in the
case that the proper solution cannot be found. The small
population size is applied because of the faster conver-
gence of the PSO algorithm.

A gallery of properly generated snowman graphic char-
acters is illustrated in Fig. 2 from which it can be observed
that a lot of different solutions was obtained by the PSO
algorithm. What is the best solution here? The running
cycle of this PSO algorithm is slightly different from runs
of the classical stochastic algorithms (like EA and SI),
where normally the best solution is taken after satisfying
the specific termination condition, (i.e., after the maximum
number of generation, the maximum number of function
evaluations, etc.). The best solutions in more independent
runs are then evaluated according to statistical measures,
as minimum, maximum, average, and standard deviation
values.

The characteristics of this problem are that the solution
can be found quickly. On the other hand, these solutions
are not the best solutions per se. Each of the proper solu-
tions can be viewed as the best depending on the obser-
ver’s point of view. Unfortunately, this point of view can
be very subjective. Therefore, all the proper solutions are
aggregated into a gallery and evaluated later by ordinary
users, i.e., video game developers. The video game develop-
ers are the only definitive point of reference for this assess-
ment because they know also the context in which the
generated characters are supposed to act.
5. Discussion

Computer games are at the heart of mass entertainment,
driving not just hardware development, but pushing also
the limits of software development. In fact, nowhere else
are hardware and software development so closely
interrelated. Video games are becoming increasingly
sophisticated, and the need is clearly there to aid this
development with nature-inspired algorithms. Clearly, no
man-made system achieves the complexity seen in nature,
so the next best thing is to learn from nature to aid artificial
design.

The main contribution of our paper to this area is to
help game designers facilitate the difficult task of design-
ing large groups of characters that arise usually in histori-
cal, sports, and war-game settings. A new, highly efficient
method for automatics generation of graphic characters
has been proposed based on the particle swarm optimiza-
tion algorithm, which is able to generate characters of arbi-
trary complexity. The results presented confirm that we
are on the right path towards improving existing algo-
rithms, as well as harvesting the knowledge of complexity
science for use in the entertainment industry.

On a related note, which ought to be of interest to indi-
viduals working on complex systems, collective behavior
and cognition, the question is if engineers looking for the
best algorithms to design computer games benefit from
the swarm intelligence, does it make sense to imagine that
research work of the same type may help us to deepen our
understanding of the origin of intelligence and cognition?
[37,25,20]. While it is impossible at this point to make
arguments precise, at least the conceptual link between
particle swarm optimization and other nature-inspired
algorithms and the emergence of intelligence is evidently
there. In fact, the very use of these algorithms leads one
to conclude that we are using intelligence to create new
intelligence, and it may be along these lines that inspiring
new discoveries could be made.
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